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We study an inflation model with a flat scalar potential supported by observations and find that slow-roll
inflation can emerge after a quasicyclic phase of the Universe, where it undergoes repeated expansions and
contractions for a finite time period. The initial conditions and the positive spatial curvature required for
such nontrivial dynamics align with the quantum creation of the Universe. The key ingredients that trigger
inflation are dissipative interactions of the inflaton, which are necessary to reheat the Universe after
inflation and thus give us an observational handle on preinflationary physics. Our discovery implies that
inflation occurs more robustly after the creation.
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Introduction. One of the fundamental questions in nature is
the origin of the Universe. The discovery of the cosmic
microwave background (CMB) [1] established the big bang
cosmology, whose problems (horizon, flatness, monopole
puzzles) were solved in the cosmic inflation paradigm,
in which the primordial Universe experiences a period of
nearly exponential expansion [2–7]. Quantum fluctuations
of the inflaton, the scalar field driving inflation, serve as
seeds for the large-scale structure (LSS) of the Universe. Its
simplest version, i.e., the single-field slow-roll inflation
scenario is consistent with cosmological observations of
CMB [8,9] and LSS [10]. Alternatives to inflation include
bounce cosmology, in which a contracting Universe tran-
sitions into an expansion phase, and cyclic cosmology,1

in which the Universe undergoes repeated expansion and
unlimited contraction (see reviews [12–14]). A more
ambitious idea to understand the beginning, if it exists,
of the Universe is quantum creation of the Universe from
“nothing” including the tunneling proposals [15–22] and
the no-boundary proposal [23–25]. In this article, we point
out that these diverse ideas coherently merge into a new
consistent picture of the Universe.
In fact, none of the above individually provide us a fully

satisfactory cosmology. Inflation does not necessarily
resolve the singularity of the big bang [26].2 Bounce
cosmology assumes an infinitely large homogeneous con-
tracting universe in the infinite past, which is possible but

not entirely satisfactory, at least to us. The cyclic universe is
a beautiful idea, but generally conflicts with the second law
of thermodynamics and is unstable (see, e.g., Ref. [31]).
For the quantum creation of the Universe to be predictive,
we need to better understand the classical dynamics that
occur after creation. For instance, sufficiently long inflation
immediately after creation is not necessarily guaranteed, so
we need to explore whether and how our Universe can arise
in such cases.
Since the beginning of the Universe is a highly specu-

lative topic with no direct observational evidence, it will be
useful as a first step to incorporate our knowledge about
CMB observables, which suggest inflation models with a
relatively flat potential [9]. We study the classical dynamics
of the Universe with such a flat scalar potential and with the
initial conditions and the positive spatial curvature moti-
vated by the quantum creation of the Universe. In our
previous work with such a setup, we found homogeneous
solutions representing a cyclic or “vibrating” Universe
when the initial inflaton field value is around the edge
of the flat part of the potential [32]. This is the starting point
from which creation from nothing, cyclic cosmology, and
inflation will eventually unite.
The first step is to notice the possibility that inflation

might occur because of the instability of the quasicyclic
epoch [33–38]. In our setup, a plateau-type potential
necessarily has a field region in which tachyonic instability
occurs. Also, if we assume that inflation occurs after the
quasicyclic epoch in some way, the inflaton must dissipate
into other fields and (re)heat the Universe. Such inter-
actions inevitably participate in the instability process of
the quasicyclic epoch. The purpose of this article is to study

1We consider the cyclicity of the scale factor rather than the
Hubble parameter [11].

2Past incompleteness shown in Ref. [26] does not necessarily
imply physical singularity [27–30].
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this instability process and whether and how an inflation
phase emerges. We find that dissipative interactions can
turn the quasicyclic Universe into the inflationary Universe
before the tachyonic instability significantly develops for
appropriate parameter values.
We do not introduce modifications of gravity beyond

general relativity, exotic matter violating the null energy
condition, a negative cosmological constant, negative
Casimir energy, or a singular bounce. Also, our mechanism
is based on classical dynamics of the inflaton with sub-
Planckian energy density, and it does not involve quantum
tunneling from the quasicyclic period into inflation.

Setup. Throughout this article, we use the natural unit
c ¼ ℏ ¼ 8πG ¼ 1. Our action is given by the following
Lagrangian density:

L ¼ 1

2
R −

1

2
gμν∂μϕ∂νϕ − VðϕÞ þ Lint þ Lmatter; ð1Þ

where R is the Ricci scalar, gμν the inverse metric, ϕ the
scalar field we are interested in, VðϕÞ its potential, Lint
the interaction between ϕ and other fields, and Lmatter the
Lagrangian density for the other fields. As a concrete
example, we consider the potential [39]

VðϕÞ ¼ V0 tanh2
�
ϕ

ϕ0

�
; ð2Þ

where V0 is the overall scale of the potential and
ϕ0 characterizes the width of the valley of the potential.
This type of potential can be obtained, e.g., after switching
to the Einstein frame and/or canonical normalization if
the original model possesses an approximate scale invari-
ance [2,40–42]. The shift symmetry of ϕ can be protected
from quantum corrections [43]. If inflation successfully
occurs, this potential leads to inflationary observables
consistent with the CMB data such as

As ¼
N2

eV0

3π2ϕ2
0

; ns ¼ 1 −
2

Ne
; r ¼ 2ϕ2

0

N2
e
; ð3Þ

where As, ns, r, and Ne are the amplitude of the primordial
curvature perturbations, the spectral index, the tensor-to-
scalar ratio, and the e-folding number between the horizon
exit of the CMB pivot scale and the end of inflation.
We assume homogeneity and isotropy of the Universe

and take the Friedmann-Lemaître-Robertson-Walker ansatz
for the metric

ds2 ¼ −dt2 þ aðtÞ2
�

dr2

1 − Kr2
þ r2dΩ2

2

�
; ð4Þ

where aðtÞ is the scale factor of the Universe, Kð> 0Þ is the
positive spatial curvature representing the closed topology

of the Universe created from nothing, and dΩ2
2 is the line

element for the two-dimensional unit sphere.
We adopt the initial condition motivated by the quantum

creation of the Universe [22]

að0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3K
Vðϕð0ÞÞ

s
; ȧð0Þ ¼ 0; ϕ̇ð0Þ ¼ 0; ð5Þ

with the homogeneous field value ϕð0Þ satisfying jV 0j≲ V,
where a dot and a prime denote a derivative with respect to
time t and ϕ, respectively. K can be fixed to an arbitrary
positive value by rescaling a.
When the scalar field is initially on the plateau, suffi-

ciently long inflation is possible. In this article, we are
interested in more subtle cases in which the scalar field is
initially around the edge of the plateau. In this case, there
are cyclic solutions at the homogeneous level [32]. One
reason why this simple setup with a single scalar field leads
to cyclic solutions is that its field-dependent equation-of-
state parameter w ¼ P=ρ with P and ρ being pressure and
energy density gives rise to a feedback mechanism [32].

Emergence of inflation. To reheat the Universe, the inflaton
must dissipate its energy into other, possibly light and
relativistic, degrees of freedom. Details of this depend on
Lint and Lmatter, but we model them by the following
Friedmann and Boltzmann equations:

Ḣ ¼ −
1

2
ϕ̇2 −

2

3
ρr þ

K
a2

; ð6Þ

ϕ̈þ ð3H þ ΓÞϕ̇þ V 0 ¼ 0; ð7Þ

ρ̇r þ 4Hρr ¼ Γϕ̇2; ð8Þ

whereH ¼ ȧ=a is the Hubble expansion/contraction rate, Γ
the dissipation rate, and ρr the energy density of radiation,
i.e., relativistic degrees of freedom. We will use the above
simplified equations in our analysis, since our scenario
does not rely on the details of the equations of motion, but
note that it is not always possible to derive this form from
the underlying Lagrangian. See, e.g., Refs. [44–47]. The
dissipation rate Γ may depend on the field value and
the temperature if a thermal bath is populated. The dissi-
pation channel may include decay [48,49], scattering [50],
thermal friction due to sphaleron transitions [51–57], etc.
Interesting multiple cosmological roles and underlying
quantum field theoretic origin of Γ were discussed exten-
sively in the context of warm inflation [47,58–61]. We
do not restrict the inflation that emerges (to be shown
below) to be warm or cold. It is possible to realize cold
inflation [62].
To illustrate essential points of our mechanism, we

consider a toy model with a constant Γ, whereas we study
a more realistic model in our companion paper [62], where
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we delineate possible ultraviolet completion of the models
to explain a rather large coupling required for the mecha-
nism to work.
We use the set of equations of motion above to study the

dynamics just after the creation of the Universe. We find
that inflation longer than 60 e-folding is possible after
undergoing single or multiple bounces depending on the
parameters. Two such examples are shown in Fig. 1. We
have confirmed that qualitatively similar solutions are
obtained even if we multiply Γ with a “window function”
to suppress dissipation when the effective mass of ϕ is
negative or small.
The beginning of inflation due to the dissipation effects

is not always guaranteed. If the dissipation rate is too large

or too small, the other generic consequence after the
quasicyclic epoch is dominance either by the kinetic energy
or by radiation and the resultant collapse of the Universe
into the big crunch singularity. In particular, once the
Universe contracts so that the energy density of ϕ exceeds
the asymptotic value V0, there is no longer a chance for a
bounce. This also suggests that sufficiently small shift-
symmetry breaking terms can help the Universe to bounce.
Successful parameter values of Γ are distributed dispersedly
corresponding to different numbers of times of bounces.
These qualitative features do not sensitively depend on

the details of the potential as long as it has a sufficiently flat
part. We have studied other example potentials and found
similar solutions. In particular, the plateau does not need to
be infinitely extended.
So far, we have neglected the inhomogeneity of ϕ, but

there is an intrinsic tachyonic instability for any plateau-
type potential. The tachyonic instability turns out to be so
strong that the number of cycles is significantly limited.
When the gradient energy becomes, e.g., 1% of the initial
energy density, the backreaction to the background
becomes non-negligible and ϕ will fragment. This frag-
mentation time is estimated as

tfrag ≈
1

2μpeak
ln

�
4π3=2 × 0.01ρ
ðkpeak=aÞ4

�
; ð9Þ

where μpeak is the maximum exponent of the tachy-
onic instability and kpeak=a is the corresponding wave
number [63], both of which are of Oð ffiffiffiffiffiffiffiffi

2V0

p
=ϕ0Þ. The

dimensionless fragmentation time tfrag
ffiffiffiffiffiffi
V0

p
can be extended

by lowering the energy scale V0 but only logarithmically.
We estimate tfrag more precisely using the public lattice

calculation tool CosmoLattice [64,65] (see the accompany-
ing paper [62] for details) where we turn off the dissipation
effects, and the results are shown by the vertical dashed
lines in Fig. 1. We have found a set of parameters consistent
with the CMB observations with which inflation begins
before the fragmentation time (the right vertical lines),
which is shown by the thick blue lines, justifying the above
calculations with homogeneity. It may appear that the
inflation barely begins before t ¼ tfrag and one might doubt
the validity of the solution. At t ¼ tfrag, however, ϕ has
already reached deep on the plateau, so the fragmentation
cannot occur thereafter and inflation safely begins. On the
other hand, the parameter values for the thin orange lines
are chosen to clearly demonstrate the quasicyclic behavior
and are incompatible either with the CMB normalization or
with the bound from tachyonic instability (the left verti-
cal lines).
The tachyonic instability becomes more severe for

smaller ϕ0 since ϕ oscillates more in the time scale of
the dynamics of a. Meanwhile, for larger ϕ0, the cyclic
solutions themselves (without dissipation effects) require
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FIG. 1. Two solutions representing the emergence of inflation
after a quasicyclic period. The top panel shows ϕðtÞ and the
bottom panel shows the corresponding log plot of aðtÞ. The
solution shown by the thin orange lines (ϕ0 ¼

ffiffiffiffiffiffiffiffiffiffiffi
0.006

p
and

Γ=
ffiffiffiffiffiffi
V0

p ¼ 0.003) illustrates the beginning of inflation after the
eight bounces, which is too late compared to the left vertical line
showing tfrag estimated by CosmoLattice after fixing V0 to fit As.

The other solution shown by the thick blue lines (ϕ0 ¼
ffiffiffiffiffiffiffiffiffi
0.06

p
and Γ=

ffiffiffiffiffiffi
V0

p ¼ 0.02) illustrates one bounce followed by the
beginning of inflation slightly before the right vertical line
showing tfrag estimated by CosmoLattice after fixing V0 to fit As.
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more fine-tuned parameters.3 Interestingly, there exists
an allowed window for ϕ0 ≈ 0.25, which predicts r≈
4 × 10−5ðNe=55Þ−2. In this case, the number of cycles is
limited to one or a few, at most.

Exploring the parameter space. Let us study where in the
parameter space ðϕ0; V0;ϕð0Þ;ΓÞ the mechanism works.
The two most important parameters are the location of the
plateau ϕ0 and the dissipation rate Γ. The potential height
V0 rescales the overall timescale and affects the ratio
between tfrag and the typical time scale of the dynamics
of ϕ logarithmically. We fix it to fit the CMB normaliza-
tion. The initial field value ϕð0Þ is also an important factor
that affects the behavior of solutions.
We first study where in the parameter space one finds

cyclic solutions before considering the effects of dissipa-
tion (i.e., Γ ¼ 0). Figure 2 classifies solutions with different
ϕ0 and ϕð0Þ. We set the maximal time tmax ¼ 300=

ffiffiffiffiffiffi
V0

p
for

the classification of solutions. In the upper-right corner,
there are inflationary solutions with an e-folding number
(within the simulation time) greater than 50 (yellow) or
smaller than that (green) as expected. Below that, there are

parameter regions that end with a big crunch (red for ϕ̇ > 0

and purple for ϕ̇ < 0), which is also not surprising. There
are also nontrivial regions in the parameter space. The sky
blue region, located in the lower-left corner, represents
cyclic solutions. The existence of inflationary solutions
(yellow and green) just above the sky blue region is also
remarkable. Unlike the inflationary solutions around the
upper-right corner, inflation occurs after cosmic bounce(s)
in this region. Thus, inflation after bounce(s) is possible
even in the absence of dissipation. The orange regions
(passing through the top-left corner) represent sufficiently
long inflation in the homogeneous simulation, but the
beginning of the inflation is later than the fragmentation
time. Dissipative effects are also useful for such solutions to
trigger inflation earlier.
Next, we take into account the dissipative effects and

study how the solutions are modified. We expect solutions
with larger amplitude ϕð0Þ are more susceptible to dis-
sipative effects. Also, the classicality condition jV 0j≲ V
excludes insufficiently large ϕð0Þ (see the black line as a
guide below which the first slow-roll parameter is larger
than 1). For these reasons, let us study a parameter region
near the upper boundary of cyclic phase. For definiteness,
we focus on the slice shown by the white line in Fig. 2:
ϕð0Þ=ϕ0 ¼ 0.9–1.2 log10 ϕ0.
The behavior of the solutions on the (ϕ0, Γ) plane is

summarized in Fig. 3 with a similar color coding. The
characteristic stripe structures correspond to the oscillation
phases of ϕ at which nontrivial dynamics occur. The figure
shows that there are yellow regions in the parameter space
in which sufficiently long inflation occurs before the

FIG. 2. Classification of the parameter points without dissipa-
tive effects. (1) red, (2) purple, (3) sky blue, (4) green, (5) orange,
and (6) yellow regions denote big crunch with (1) ϕ̇ > 0 or
(2) ϕ̇ < 0, (3) cyclic universes, (4) short [ln aðtmaxÞ=að0Þ < 50]
inflation, and long [ln aðtmaxÞ=að0Þ ≥ 50] inflation (5) after or
(6) before the fragmentation time, respectively. The figure
depends on V0 only through the fragmentation time calculation
for the region (5), and V0 is fixed to fit the CMB normalization.
The slice of the parameter space shown by the white line is further
studied in Fig. 3. The black line denotes the place where the first
slow-roll parameter is 1.

FIG. 3. Classification of the parameter points. (1) red, (2) pur-
ple, (3) sky blue, (4) green, (5) orange, and (6) yellow regions
denote big crunch with (1) ϕ̇ > 0 or (2) ϕ̇ < 0, (3) cyclic
universes, (4) short inflation, and long (ln aðtmaxÞ=að0Þ ≥ 50)
inflation (5) in the absence of tachyonic instability or (6) even
in its presence, respectively. We choose the value of V0 to fit the
CMB normalization and that of ϕð0Þ through the relation
ϕð0Þ=ϕ0 ¼ 0.9–1.2 log10 ϕ0 (the white line in Fig. 2).

3ForOð1Þ values of ϕ0 with fine-tuned initial conditions, there
are solutions with inflation after a single or a few bounce(s) even
without dissipation effects [32,66]. We see that similar solutions
exist in an yet unexplored parameter space in the next section.
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would-be fragmentation time. In orange regions, long
inflation occurs in the homogeneous simulation, but it
begins later than the fragmentation time. If we remove the
minimal assumption that this inflation is responsible for
the CMB fluctuations, we can lower V0 and increase the
fragmentation time. Then, the orange regions could become
as viable as in the yellow regions.

Reheating of the universe.Once inflation occurs, the spatial
curvature is flattened out and radiation is diluted, so the
phenomenology is the same as the conventional infla-
tionary scenario. An interesting point in our scenario is that
the process of reheating the Universe is due to the same
interactions that triggered inflation. This gives us a chance
to probe the preinflationary physics immediately after the
creation of the Universe by studying the reheating. This is
especially interesting if the Standard Model fields play an
important role as the radiation ρr in the above equations.
If the radiation consists of the dark/hidden sector beyond
the Standard Model, we need to understand the coupling
between such a sector and the Standard Model sector for a
successful reheating. However, this connection between the
reheating and the quasicyclic period, the pre-/post-inflation
duality, is a unique feature in our scenario.
It is also worth noting that the dynamics of ϕ before and

after inflation are quite different since the spatial curvature
plays a major role in the former case whereas it is negligible
in the latter case. This difference can also be understood
from the impact of the Hubble expansion/contraction rate.
Before inflation, it oscillates around zero, so the physics is
closer to that in flat spacetime. On the other hand, the
Hubble friction significantly reduces the amplitude of ϕ
after inflation, so preheating due to self-interactions is not
effective for ϕ0 ≈ 0.25 [67]. We have confirmed this by
lattice calculations using CosmoLattice.

Probability of inflation. So far, we have treated ϕð0Þ as
a free parameter. Its probability distribution Pðϕð0ÞÞ is
determined by the wave function of the Universe and has
the following exponential dependence [22]:

Pðϕð0ÞÞ ∼ exp

�
� 24π2

Vðϕð0ÞÞ
�
; ð10Þ

where the plus (minus) sign corresponds to the no-boundary
(tunneling) proposal. The most probable outcomes crucially
depend on the sign, and this ambiguity has been a long-
standing controversy in quantum cosmology [21,22,24].
Our study does not contribute to the theoretical reso-

lution of the controversy, and we have nothing to say about
the tunneling proposal since long-lasting inflation can
easily occur. On the other hand, if the wave function of
our Universe is close to that predicted by the no-boundary
proposal, our solutions have a potentially significant
impact. It has long been thought that the potential like

Eq. (2) most probably does not lead to long-lasting inflation
for the no-boundary proposal [22] since a smaller Vðϕð0ÞÞ
is more favored probabilistically. However, this statement
must be reconsidered. Since the probability (10) is derived
by assuming the flatness condition on the potential, let us
exclude the field range of ϕ that does not satisfy the condi-
tion. The probability formula then tells us that the initial
value of ϕ is exponentially more probable to be at the edge
of the plateau where the flatness condition is barely
satisfied [68]. A conventional expectation in such a case
is that inflation is too short and the Universe is supposed to
end with the big crunch singularity. Our solutions show that
this fate can be avoided by transitioning into inflation.
Still, we cannot conclude that such nontrivial dynamics

are the most probable outcome in our model setup once we
introduce the observed small positive cosmological con-
stant Λ [8,69]. In the no-boundary proposal, nucleation of a
universe at the global minimum Vðϕð0ÞÞ ¼ Λ is exponen-
tially more probable. If such a low-energy universe were
created directly from nothing, it would be an empty
universe with no galaxies and no observers. Given the
present Universe with galaxies and our existence, we may
focus on the universes undergoing long-lasting inflation,
which corresponds to thinking about the conditional
probability. Combining our solutions with this anthropic
argument implies that the past of our inflationary Universe
in the no-boundary proposal is most probably the quasi-
cyclic period.

Conclusions. We have found cosmological inflationary
solutions in which the interactions that cause the reheating
of the Universe after inflation are also responsible for
dissipation to start inflation out of a quasicyclic epoch just
after the quantum creation of the Universe from nothing.
One prediction of the scenario is positive spatial curvature.
The connection between the pre- and post-inflationary
periods can, in principle, help us experimentally and
observationally probe the origin of our Universe.
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