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The momentum distribution of particle production in heavy-ion collisions encodes information about
thermalization processes in the early-stage quark-gluon plasma. We use kinetic theory to study the
far-from-equilibrium evolution of an expanding plasma with an anisotropic momentum-space distribution.
We identify slow and fast degrees of freedom in the far-from-equilibrium plasma from the evolution of
moments of this distribution. At late times, the slow modes correspond to hydrodynamic degrees of
freedom and are naturally gapped from the fast modes by the inverse of the relaxation time, τ−1R . At early
times, however, there are an infinite number of slow modes with a gap inversely proportional to time, τ−1.
From the evolution of the slow modes we generalize the paradigm of the far-from-equilibrium attractor
to vector and tensor components of the energy-momentum tensor, and even to higher moments of the
distribution function that are not part of the hydrodynamic evolution. We predict that initial-state momentum
anisotropy decays slowly in the far-from-equilibrium phase and may persist until the relaxation time.
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The rich dynamics of many-body quantum systems out
of equilibrium poses many interesting outstanding chal-
lenges and is an active area of research in cold atomic gases
and the quark-gluon plasma produced in heavy-ion colli-
sions. Though far-from-equilibrium systems are generally
extremely complicated, with degrees of freedom commen-
surate with the number of microscopic states in the system,
in some cases the dynamics can be described by a reduced
number of effective degrees of freedom. Hydrodynamics
is an example of such an effective theory for many-body
systems near equilibrium, in which the relevant (slow)
degrees of freedom are associated to conserved densities.
Out of equilibrium, the dynamics of a system may also
simplify substantially near nonthermal fixed points [1].
Identifying possible slow degrees of freedom (modes)

remains a major challenge in the study of far-from-
equilibrium systems in general [2,3], and the quark-gluon
plasma (QGP) in particular [4–6].
Though hydrodynamic modeling has been enormously

successful in heavy-ion collisions [7], the initial stages of
the collision are very far from equilibrium and therefore
beyond the expected regime of applicability of hydro-
dynamics. Smaller collision systems (e.g., proton–ion and
light-ion) may be out of equilibrium for their whole life-
time [8]. Remarkably, in many scenarios hydrodynamics
describes the evolution of some macroscopic quantities
even far-from-equilibrium [9–15] and can be formulated for
highly anisotropic systems [16–18]. Importantly, in a class
of models of different microscopic theories, the far-from-
equilibrium evolution of the plasma rapidly loses memory
of different initial conditions and macroscopic quantities
exhibit universal attractive behavior [19–35]. These find-
ings suggest that the far-from-equilibrium QGP can be
characterized through the reduced degrees of freedom of
the attractor, with deviations from the attractor decaying
quickly. Macroscopic quantities far-from-equilibrium fol-
low the attractor toward the hydrodynamic solution at late
times, which suggests a connection between the hydro-
dynamic degrees of freedom and the attractor.
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However, studies so far have focused on the scalar
components of the energy-momentum tensor, such as
energy density ϵ and longitudinal and transverse pressures
pL and pT . The behavior of the other components has
rarely been investigated. Consequently, a general relation
between far-from-equilibrium slow modes and hydrody-
namic degrees of freedom remains elusive. In this letter, we
tackle this important gap and reveal important theoretical
and phenomenological consequences of the evolution of
these components.
For a longitudinally expanding plasma that is spatially

homogeneous but has general shape in momentum space,
we identify the underlying slow modes using the adiabatic
analysis of kinetic theory developed in [30,36,37]. Unlike
for the scalar components of the energy-momentum tensor,
we find that the early-time slow modes are not related to
hydrodynamic modes in general, until the relaxation time.
At early times the fast longitudinal expansion drives a
tower of slow degrees of freedom that do not evolve into
hydrodynamic modes. This implies that hydrodynamiza-
tion, namely the dominance of hydrodynamic degrees of
freedom, does not occur far from equilibrium.
Key to understanding equilibration processes in the

quark-gluon plasma from phenomenology is understanding
whether the anisotropic flow observed in small collision
systems is hydrodynamic in origin or receives significant
contributions from the momentum anisotropy generated
by quantum fluctuations in the initial state [38–41]. In
far-from-equilibrium systems the timescale for the decay
of initial-state momentum anisotropies is under debate
[42–44]. Based on the properties of early-time slow modes,
we find that the initial momentum anisotropy decays more
slowly far from equilibrium than would be expected based
on extending hydrodynamics, and could persist throughout
the lifetime of small collision systems.
Kinetic description. We consider the angular distribution

Fðτ; p̂Þ ¼ 1
2π2

R
dpp3fðτ; pÞ of the (massless) gluon distri-

bution f, which characterizes the evolution the energy-
momentum tensor and moments of the same dimension (see
Eq. (3) below). For a longitudinally expanding system with
spatial homogeneity, Fðτ; p̂Þ satisfies [45]

∂τF −
p̂z

�
1 − p̂2

z

�
τ

∂p̂z
F þ 4p̂2

z

τ
F ¼ −C½f� ð1Þ

with p̂z ≡ pz=p and τ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 − z2

p
the proper time. With

Eq. (1), we focus our study on the evolution of anisotropies
in the momentum distribution and will estimate the role of
spatial gradients separately (see discussion later, or as in
Ref. [45]). For illustrative purposes we will close Eq. (1) by
assuming the collision integral is only a function of F, and
takes the form [46,47]

C½F� ¼ −
F − T00 − 3

�
T0xp̂x þ T0yp̂y þ τT0ηp̂z

�
τR

; ð2Þ

where F relaxes to its equilibrium form on the timescale τR.
Eq. (2) conserves energy and momentum density.
Moment equations. We first expand F in spherical

harmonics and recast Eq. (1) into evolution equations for
the moments

Llm ≡
Z

1

−1
dp̂z

Z
dϕ
4π

Fðτ; p̂Þð−1ÞmPm
l ðp̂zÞ cosðmϕÞ: ð3Þ

Here Pm
l are the standard associated Legendre polynomials

and tanϕ≡ p̂y=p̂x. Moments obtained from Eq. (3) by
replacing cosðmϕÞ → sinðmϕÞ are equivalent due to the
rotational symmetry in the transverse plane so we do not
consider them separately. By construction, all independent
components in Tμν are related to the moments with
l ≤ 2, i.e., L00 ¼ T00 ¼ ϵ, L10 ¼ τT0η, L11 ¼ T0x, L20 ¼
1
2
ð3ϵ − pLÞ and L22 ¼ 3ðTxx − TyyÞ.
Equation (1) with the collision integral Eq. (2) is

invariant under SOð2Þ rotations in the transverse plane
and a Z2 “parity” transformation pz → −pz. Since Llm →
ð−1ÞlþmLlm under the parity transformation, we use
s ¼ þð−Þ to denote moments with even(odd) lþm.
Moments with different ðm; sÞ decouple from one another
and evolve independently, so we organize all moments into
a vector for each ðm; sÞ, ψms ¼ ðLmþδs−;m; Lmþδs−þ2;m;…Þ.
Substituting Eq. (3) into Eq. (1) yields an evolution
equation for moments in each ðm; sÞ sector

∂τψms ¼ −HmsðτÞψms: ð4Þ
The matrixHms is obtained from the properties of spherical
harmonics and is given in the Supplemental Material [48].
Slow modes. To identify slow modes in the out-of-

equilibrium evolution, we analyze the eigenspectrum of the
non-Hermitian matrices HmsðτÞ. If Hms is truncated as an
N × N matrix, there are N eigenstates for each ðm; sÞ, ϕN

ms,
which we order by the real part of their eigenvalue, EN

ms,
since it sets their decay rate. In each sector we denote the
slowest eigenmode as the ground state ϕG

ms.
For illustrative purpose we will focus on sectors con-

taining relevant components of Tμν. Sectors ðm; sÞ ¼
ð0;þÞ; ð1;þÞ, and ð0;−Þ contain moments corresponding
to the energy density ϵ and momentum densities Px ¼ T0x

and Pz ¼ τT0η, respectively, and therefore will be referred
to as hydrodynamic sectors. We will additionally consider
the ð2;þÞ sector since it contains the tensor part Tij and
hence information about the momentum anisotropy. In
Fig. 1 we show the evolution of the lowest five eigenvalues
in each sector as a function of time from τ ¼ 0 (purple
circles) to τ=τR ¼ 10 (red squares), obtained from truncat-
ing Hms at N ¼ 11.
Though most eigenvalues are complex with approxi-

mately degenerate real parts, each sector has at least one
real eigenmode. In the hydrodynamic sectors we denote
the real modes by ϕH. These modes are generalized
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hydrodynamic modes since they evolve continuously into
the hydrodynamic degrees of freedom at late times,
namely, ϕH

0þ → ðϵ; 0;…Þ, ϕH
1þ → ðT0x; 0;…Þ and ϕH

0− →
ðτT0η; 0;…Þ. At late times the ϕH are the slowest modes
because their eigenvalues are gapped from eigenvalues
of other modes with a gap 1=τR [see red squares in
Fig. 1(a)–1(c)]. The eigenvalues of ϕH are given by the
conservation equation for Tμν, e.g., ∂τPx=Px ¼
−1=τ; ∂τPz=Pz ¼ −2=τ. The hydrodynamic modes survive
in the long time limit while the gapped nonhydrodynamic
modes vanish on a timescale τR (cf. Ref. [5]).
However, hydrodynamic modes do not in general

emerge smoothly from the slow modes from far from
equilibrium. This can be seen from the evolution of the
generalized hydrodynamic modes for τ ≪ τR (purple
circles in Fig. 1). While the generalized hydrodynamic
modes in the parity-even sectors ϕH

0þ and ϕH
1þ remain

gapped from excited states, the parity-odd mode ϕH
0− is

not the slowest eigenmode until the level crossing in the
ð0;−Þ sector occurs around τ ∼ τR. When τ < τR the
ground state in the ð0;−Þ sector is complex and degenerate.
This demonstrates that hydrodynamic modes are not
necessarily the slow modes out of equilibrium.
In the nonhydrodynamic sector ð2;þÞ the real mode is

the ground state ϕG
2þ and it evolves in time. Once slow

modes dominate, their features describe the evolution of the
shape of the phase space distribution. In the Supplemental
Material we show that the ground state eigenvalues for all
m ≥ 2 in the parity-even sector are

EG
mþ ¼ 1

τ
þ 1

τR
; m ≥ 2: ð5Þ

Remarkably, the ground state eigenvalues are identical for
all parity-even sectors at early times,

lim
τ→0

EH
0þ ¼ EH

1þ ¼ EG
m≥2þ ¼ 1

τ
; ð6Þ

which is a consequence of the free-streaming expansion.

Attractor. Once faster modes have decayed, the evolu-
tion of a system is captured by the evolution of the
remaining slow modes. For our purpose this means that
the moments in each ðm; sÞ sector are fixed by the ground
state ϕG

ms and do not depend on the initial distribution. The
dominance of slow modes thus leads to attractive behavior,
as first discussed in Refs. [36,37]. We now examine the
dominance of slow modes by solving Eq. (4) numerically.
We choose an initial distribution function inspired by color
glass condensate calculations, but with additional momen-
tum anisotropy introduced through coefficients αn:

fIðpÞ ¼
Q0

p
e
−2
3
p2

Q2
0

½1þðξ2−1Þp̂2
z �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ðξ2 − 1Þp̂2
z

p
"
1þ

X
m>0

cosðmϕÞ
#

×

"
1þ

X
n¼1

αn cos
�
ncos−1ðp̂zÞ

�#
: ð7Þ

Q0 is the typical energy of hard gluons and we set
ξ ¼ 2. Upper panels of Fig. 2 show numerical solu-
tions for the ratio of lowest moments in each sector,
Lmþδs−þ2;m=Lmþδs−;m, for ð0;þÞ, ð1;þÞ, ð0;−Þ and
ð2;þÞ sectors, with different initial conditions for αn in
different colors and truncating at N ¼ 21. We observe that
these solutions are independent of initial conditions before
τR for ð0;þÞ, ð1;þÞ, and ð2;þÞ sectors, but not for ð0;−Þ.
Our results for the ð0;þÞ sector are consistent with
previous results in the literature, since L20=L00 is related
to the scalar mode pL=ϵ which has been studied exten-
sively [22,31]. Other sectors extend the observation of
attractor behavior to vector and tensor components of the
energy-momentum tensor, which are new in the literature.
The evolution of the vector mode in the ð1;þÞ sector has
both early- and late-time attractors, like the scalar mode.
The vector mode in the ð0;−Þ sector, however, exhibits
attractor behavior only when τ > τR. In the tensor mode
ð2;þÞ, attractor behavior is present throughout the whole
evolution, but with the same power-law decay of initial
conditions at early and late times. When attractor behavior

FIG. 1. The time evolution of five low-lying eigenvalues of τHms in the complex plane for illustrative sectors ðm; sÞ ¼ ð0;þÞ (a),
ð1;þÞ (b), ð0;−Þ (c) and ð2;þÞ (d). Purple circles and red squares show the eigenvalues of τHms at τ ¼ 0 and τ ¼ 10τR, respectively.
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is present, it is in good agreement with the evolution of the
same ratio of moments for ϕG

ms, shown in dashed black.
Features of the numerical solutions can be understood as

consequences of the dominance of slow modes. Lower
panels of Fig. 2 show the energy gap between the ground
state and the first excited state. Slow modes continuously
dominate in the even sectors, resulting in attractor behavior
at all times, while in the ð0;−Þ sector attractor behavior
only occurs after the level crossing in Fig. 1(c). In the
even hydrodynamic modes ð0;þÞ and ð1;þÞ, the time
dependence of the energy gap differs at early and late
times, resulting in power-law and exponential decays of
initial conditions to the attractor. This also explains the
observed power-law decay in the ð2;þÞ sector for all times.
Fig. 2 therefore exhibits the diverse relations between
hydrodynamic modes and slow modes in the far-from-
equilibrium evolution that has already been foreshadowed
in Fig. 1.
Memory of initial momentum anisotropy. In the very

early stages of a heavy-ion collision, spatial gradients are
much less important than the rapid longitudinal expansion,
and Eq. (1) thus provides a rough estimate of the evolution
of initial momentum anisotropy. We quantify the momen-

tum anisotropy from Fðp̂Þ through uðnÞm ≡ VðnÞ
m =Vð0Þ

m , where

VðnÞ
m ≡ R

1
−1 dp̂z

R dϕ
4π ð

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − p̂2

z

p
ÞnFðp̂Þ cosðmϕÞ. For n ¼ 2,

this is the standard definition of the momentum anisotropy.

For instance, uð2Þ1 ∼ T0x=ϵ is related to the rapidity-even

dipole flow, while uð2Þ2 is the momentum eccentricity E2p ∼
ðTxx − TyyÞ=ϵ [41], which has been used as a proxy for the

produced hadron elliptic flow [45]. For higher n, uðnÞm is still
related to anisotropy but with different momentum weights.

The VðnÞ
m are modes in the ðm;þÞ sector. The evolution of

VðnÞ
m is therefore determined by the ground state as

d lnVðnÞ
m =d ln τ ∼ −τEG

mþ; ð8Þ
and we anticipate that arbitrary initial conditions attract to
this evolution. This is verified in Fig. 3, where the rate of

change of VðnÞ
2 quickly approaches −τEG

2þ (given by
Eq. (5), for different initial conditions and independent
of the weight n. This implies an evolution equation for the
initial momentum eccentricity,

∂τ ln E2p ∼ ∂τ ln u
ð2Þ
2 ¼ −

�
EG
2þ − EG

0þ
�
: ð9Þ

Equation (9) is a nontrivial consequence of the attractor

behavior of VðnÞ
m . Furthermore, Eq. (9) has important

implications for the evolution of initial momentum
anisotropy in a far-from-equilibrium plasma. In the free-
streaming case, EG

mþ are degenerate for all m so the
anisotropy in Eq. (9) does not evolve. However, there is
a small difference between the ground states of ðm;þÞ
and ð0;þÞ when m ≥ 2, namely EG

mþ − EG
0þ ∼ 1=τR [see

Eq. (5)]. Consequently, initial momentum anisotropies
should survive up to the relaxation time τR, which is a
main result of this letter. The decay of initial momen-
tum eccentricity is explicitly illustrated in Fig. 3 as an
example. The dominance of slow modes in the even sectors

(a) (b) (c) (d)

FIG. 2. Upper: the time evolution of the ratio of the two lowest moments in each of the sectors ðm; sÞ ¼ ð0;þÞ (a), ð1;þÞ (b), ð0;−Þ
(c) and ð2;þÞ (d) from Fig. 1. Colors show different initial conditions for the distribution function from varying αn, and the dashed black
curve is the ratio of moments for the ground state of Hms. Lower: the evolution of the energy gap of Hms in dashed black, compared to
references of 1=τ and 1 in gray. The discontinuity of the gap in (c) is from the crossing of the real and complex eigen-
values [see Fig. 1(c)].

FIG. 3. Evolution of moments related to the momentum-space

anisotropy uðnÞ2 . Left: rate of change of the generalized VðnÞ
2 as a

function of τ=τR for numerical solutions (lines) and from Eqs. (8)
and (5) (circles). Right: numerical solutions for the evolution

of uðnÞ2 ¼ VðnÞ
2 =VðnÞ

0 .
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additionally implies that Eq. (9) applies to momentum
anisotropies of arbitrary order m ≥ 2. The evolution of the
triangularity m ¼ 3 is similar (see Supplemental Material
[48]), confirming the applicability of our analysis to higher
moments of the distribution function.
In heavy-ion collisions, momentum anisotropy is also

generated from the initial geometry on the timescale
τE ∼ R=cs [45,49] that is determined by the characteristic
transverse size of the medium R and the sound velocity cs.
Therefore the memory of the initial anisotropy described
here could become important by comparison when
τE=τR < 1. Estimating the relaxation time from τR ¼
4πðη=sÞ=T and using the relation between initial entropy
and charged particle multiplicity per rapidity y, dS=dy ∼
νT3τ0πR2 ∼ 7.14dNch=dy [50], gives

τE
τR

∼
�
R
τ0

�
1=3

�
7.14
νπ

dNch

dy

�
1=3 1

4πðη=sÞcs
: ð10Þ

With a ballpark value ν ¼ 40 for the number of effective
degrees of freedom and η=s ¼ 0.2, we conclude that in
small colliding systems with R=τ0 ∼Oð1Þ, the initial
momentum anisotropy can be important for the observed
anisotropic flow when dNch=dy≲ 20.
Discussion. We have studied slow modes in a

longitudinally-expanding plasma using kinetic theory in
the relaxation-time approximation. While late-time slow
modes are unambiguously hydrodynamic modes, the rela-
tion between early-time slow modes and hydrodynamic
ones is rather diverse. At early times when the system is
very far from equilibrium, not all hydrodynamic modes are
slow modes and not all slow modes are hydrodynamic
modes. Importantly, we found early-time slow modes
associated with the momentum anisotropy that dominate
the evolution of the anisotropy and are not related to
hydrodynamic modes. The rate of change of those early-
time nonhydrodynamic slow modes and (parity even)
hydrodynamic modes is degenerate in the early-time limit.

The novel result of these two features is that momentum-
space anisotropy from the initial state survives up to
relaxation time τR.
These features are driven not by collisions but by rapid

longitudinal expansion, so we anticipate that these con-
clusions are general for systems where free-streaming
expansion dominates at early times. In the future it will
be interesting to use this type of approach to study the
early-time phase of strongly-coupled systems. This study
further motivates future work to study the interplay
between momentum anisotropy from the initial state and
generated by spatial gradients.
There are a number of aspects of our results that are of

broader interest. Demonstrating the emergence of non-
hydrodynamic slow modes in rapidly-expanding plasmas
may provide insight into finding slow modes in other
systems. The nonhydrodynamic slow modes discussed
here describe the shape of phase space distribution.
Interestingly, the shape of the Fermi surface is identified
as a slow mode in the effective theory for Fermi liquids [51]
and has recently been proposed as a low-energy degree of
freedom in the extended hydrodynamics for fractional
quantum Hall states [52].
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