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We present a lattice QCD calculation of the transverse-momentum-dependent wave function (TMDWF)
of the pion using large-momentum effective theory. Numerical simulations are based on one ensemble with
2þ 1þ 1 flavors of highly improved staggered quarks with lattice spacing a ¼ 0.121 fm from the MILC
collaboration, and one with 2þ 1 flavor clover fermions and tree-level Symanzik gauge action generated
by the CLS collaboration with a ¼ 0.098 fm. As a key ingredient, the soft function is first obtained by
incorporating the one-loop perturbative contributions and a proper normalization. Based on this and the
equal-time quasi-TMDWF simulated on the lattice, we extract the TMDWF. The results for both lattice
ensembles are compatible and a comparison with a phenomenological parametrization is made. Our studies
provide a first attempt of ab initio calculation of TMDWFs which will eventually lead to crucial theory
inputs for making predictions for exclusive processes under QCD factorization.

DOI: 10.1103/PhysRevD.109.L091503

Introduction. Light-front wave functions (LFWFs) are an
important quantity for hadrons in particle physics. They
characterize the nonperturbative structure of hadrons, and
enter the prediction of a wide variety of measurable
observables using quantum chromodynamics (QCD) fac-
torization. While searching for new physics beyond the
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standard model (SM) requires a dedicated study of high-
energy processes at colliders, this goal can partially be
achieved by investigating low-energy processes, among
which the flavor-changing-neutral-current (FCNC) in a
heavy quark system is an ideal probe [1]. A key input
for calculating the SM contributions to the FCNC for
LFWFs includes the collinear distribution amplitudes
(LCDAs) and the transverse-momentum-dependent wave
functions (TMDWFs). LFWFs in fact play an essential role
in light-front quantization. In particular, the parton distri-
bution functions can be expressed in terms of the square of
the TMDWFs [2,3]. The TMDWFs are characterized by
physics at transverse distance scale of a Fermi or equiv-
alently momentum scale of a few hundred MeV, which is
similar to the confinement scale. Therefore, experimental
determinations and theoretical computations of these dis-
tributions may help to reveal the nature of nonperturbative
phenomena such as confinement and chiral symmetry
breaking in QCD.
Although TMDWFs describe important aspects of the

three-dimensional structure of hadrons, they have never
been studied in the literature from first principles QCD with
controlled systematic approximations. Similar to the defi-
nition of transverse-momentum-dependent parton distribu-
tion functions (TMDPDFs), it is nontrivial to present a
rigorous definition of TMDWFs [4]. A key difficulty resides
in the rapidity divergences that show up in regularizing the
soft contributions from a collinear constituent [5]. So far,
most applications of TMD factorization to hard exclusive
processes have adopted phenomenological models to para-
metrize the TMDWFs [6–8], which inevitably introduced
uncontrollable systematic uncertainties and compromised
precision tests of the SM and probes for new physics.
Large-momentum effective theory (LaMET) [9,10]

develops a novel way to extract parton physics from lattice
QCD calculations through expansion in large hadron
momentum (see [11] for a review and many references
therein). For TMDWFs, the calculation requires the knowl-
edge on the so-called soft function, which incorporates the
effects of soft gluon radiation from colored collinear
particles from two opposite lightlike directions [12,13].
It was recently discovered that the soft function can be
determined by calculating a large-momentum-transfer
form factor of a light meson and quasi-TMDWFs on the
lattice [14,15], which makes it possible to calculate
TMDWFs from the lattice QCD [11,16].
In this Letter, we report a first lattice QCD calculation of

the pion TMDWF using LaMET. The calculation is
performed for two lattice ensembles with three hadron
momenta up to 2.63 GeV. We obtain the soft function by
incorporating the one-loop perturbative contributions and a
proper normalization. Based on this, we present a first
result for the physical TMDWF. We get compatible results
for both lattice ensembles and a comparison with the
phenomenological model is shown.

Theoretical framework. The TMDWF Ψ�ðx; b⊥; μ; ζÞ pro-
vides the momentum distribution between the quark and
antiquark in the leading pion Fock state. The superscript
“�” denotes that in Ψ� Wilson lines will approach the
positive and negative infinity along the light cone direction.
x denotes the momentum fraction in longitudinal direction,
and b⊥ is the Fourier conjugate of transverse momentum.
In addition, TMDWFs also depend on the renormalization
scale μ and the rapidity scale ζ.
LaMET allows to access the TMDWF Ψ� by simulating

an equal-time quasi-TMDWF Ψ̃� defined in Euclidean
space. The relation between them follows the factorization
formula [15,16]:

Ψ̃�ðx; b⊥; μ; ζzÞS
1
2

Iðb⊥; μÞ
¼ H�ðx; ζz; μÞe½12Kðb⊥;μÞ ln∓ζzþiϵ

ζ �Ψ�ðx; b⊥; μ; ζÞ
þO

�
Λ2
QCD=ðx2ζzÞ;M2=ðPzÞ2; 1=ðb2⊥ζzÞ

�
; ð1Þ

where ζz ¼ ð2PzÞ2. SIðb⊥; μÞ denotes the intrinsic soft
function. Kðb⊥; μÞ is the Collins-Soper kernel and has been
calculated on the lattice in [17–19]. H�ðx; ζz; μÞ represents
a perturbative matching kernel. At one-loop level it is given
by [16,20]

H�ðx; ζz; μÞ ¼ 1þ αsCF

4π

�
−
5π2

6
− 4þ l� þ l̄�

−
1

2
ðl2� þ l̄2�Þ

�
; ð2Þ

where l�¼ ln½ð−x2ζz�iϵÞ=μ2� and l̄�¼ ln½ð−x̄2ζz�iϵÞ=μ2�.
x and x̄ ¼ 1 − x are the momentum fractions of quark and
antiquark. Power corrections in LaMET factorization are
generically suppressed by factors ½Λ2

QCD=ðx2ζzÞ;M2=ðPzÞ2;
1=ðb2⊥ζzÞ�.
For a Euclidean lattice and a pseudoscalar meson,

the equal-time quasi-TMDWF in momentum space
Ψ̃�ðx; b⊥; μ; ζzÞ can be extracted from a large Pz meson-
to-vacuum matrix element of a nonlocal bilinear operator:

Ψ̃�ðx;b⊥;μ;ζzÞ ¼ lim
L→∞

1

−ifπPz

Z
dzPz

2π
eixzP

z

×
h0jq̄ðzn̂zþb⊥n̂⊥Þγtγ5Uc�qð0ÞjπðPzÞiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ZEð2Lþjzj;b⊥;μÞ
p

ZOð1=a;μÞ
;

ð3Þ

where we choose γtγ5 to project onto the leading-twist
TMDWF, which may suffer from operator mixing
effects [21–23]. As an estimate of these effects in the
following we include 10% uncertainties to the final results.
The staple-shaped Wilson line between the quark fields
Uc� is required:
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Uc� ¼ U†
zðzn̂z þ b⊥n̂⊥;−L̄�ÞU⊥ðL̄�n̂z þ zn̂z; b⊥Þ

× Uzð0n̂z; L̄� þ zÞ; ð4Þ

where Uμðx;lÞ≡Uμðx;xþ ln̂μÞ and L̄�≡�maxðL;L∓ zÞ,
see Fig. 1. L is the length of path-ordered EuclideanWilson
lines along the z direction. In principle we have to take
the L → ∞ limit, but in lattice calculations, we have shown
in [18] the L ≃ 0.7 fm is sufficient, which is what we use.
The bare matrix element in the numerator in Eq. (3)

contains both a pinch pole singularity and a linear
divergence which can be removed by the Wilson loop
ZEð2Lþ jzj; b⊥; μÞ [15]. The logarithmic divergences
arising from the end points of the Wilson line need an
additional quark Wilson line vertex renormalization factor
ZOð1=a; μÞ. A straightforward way to determine ZO is
to evaluate the quotient of the renormalized quasi-
TMDWF calculated on the lattice in the small b⊥ region
and the quasi-TMDWF perturbatively calculated in the MS
scheme, as discussed in [21]. In practice, we adopt ZO ¼
f0.917ð2Þ; 0.903ð2Þg for MILC and CLS ensembles in this
work; for details see the Supplemental Material [24].

Lattice simulation. We use one ensemble of the hyper-
cubic (HYP)-smeared clover valence fermions action on
2þ 1þ 1 flavors of highly improved staggered sea quarks
(HISQ) [25] generated by MILC [26] at the lattice spacing
a ¼ 0.121 fm, and one ensemble of 2þ 1 flavor clover
fermions generated by the CLS collaboration at a ¼
0.098 fm with the unitary valence fermion action. The
rest of the simulation setups are collected in Table I. To
improve the signal-to-noise ratio, we adopt hypercubic
(HYP) smeared fat links [27] for the staple-shaped gauge
link Uc�, and generate the Coulomb gauge fixed wall

source propagators Sw to build correlation functions.
To access the large-momentum limit, we employ three
different hadron momenta Pz ¼ 2π=ns × f4; 5; 6g ¼
f1.72; 2.15; 2.58g GeV for the MILC ensemble and
Pz ¼ 2π=ns × f6; 8; 10g ¼ f1.58; 2.11; 2.64g GeV for the
CLS ensemble.
To determine the quasi-TMDWF, one can construct the

nonlocal two point correlation function as follows:

C�
2 ðL; z; b⊥; t; PzÞ
¼

X
x⃗

eiP
zx⃗·n̂zhS†wðx⃗þ zn̂z þ b⊥n̂⊥; tÞUc�Swðx⃗; tÞi: ð5Þ

Because of the limited L in lattice simulation discussed in
Eq. (4), we adopt (z > 0) for Cþ

2 and (z < 0) for C−
2 , then

the (z < 0) for Cþ
2 and (z > 0) for C−

2 can be obtained by
isospin symmetry. The symmetry behavior of quasi-
TMDWFs for �z has been numerically studied in [18].
The ground-state contribution to the quasi-TMDWF can

be extracted by the following two-state fit parametrization:

C�
2 ðL;z;b⊥; t;PzÞ

C�
2 ðL;z¼ 0; b⊥ ¼ 0; t;PzÞ ¼ Ψ̃�;0ðz; b⊥; ζz;LÞ

×
1þ c0ðz; b⊥;Pz;LÞe−ΔEt

1þ c1e−ΔEt
;

ð6Þ

where Ψ̃�;0ðz; b⊥; ζz; LÞ is the bare quasi-TMDWF in
coordinate space, while c0;1 and ΔE are free parameters
accounting for excited state contamination. In the large t
limit, this contamination is suppressed exponentially,
which gives the possibility to extract the quasi-TMDWF
through a one-state parametrization. Comparing one- and
two-state fits in the Supplemental Material [24], we find
that the one-state fit gives a more stable result which will be
used in the following analysis.

Numerical results. After renormalization by Wilson loop
ZE and quark Wilson line vertex correction ZO in Eq. (3),
the quasi-TMDWF in coordinate space can be obtained
straightforwardly. As discussed for our hybrid scheme
in [28], a brute-force truncation of the Fourier trans-
formation at finite z will introduce unphysical oscilla-
tions. To avoid these oscillations, we adopt an analytical

FIG. 1. Illustration of quasi-TMDWF in coordinate space with
a staple-shapedWilson line inside. The green and red double lines
represent the Wilson lines in Ψ̃þðz; b⊥; μ; ζzÞ and
Ψ̃−ðz; b⊥; μ; ζzÞ. A corresponding staple-shaped Wilson loop
ZEð2Lþ jzj; b⊥; μÞ is constructed to cancel the linear and cusp
divergences.

TABLE I. The numerical simulation setup. For each ensemble,
we put eight and four source slices in time direction.

Ensemble aðfmÞ n3s × nt
msea

π

(MeV)
mval

π

(MeV) Measure

a12m310 0.121 243 × 64 310 670 1053 × 8

X650 0.098 483 × 48 333 662 911 × 4
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extrapolation at large light-front distance (λ ¼ zPz) for
quasi-TMDWFs in coordinate space:

Ψ̃ðz; b⊥; μ; ζzÞ ¼ fðb⊥Þ
�

k1
ð−iλÞd þ eiλ

k2
ðiλÞd

�
e−

λ
λ0 ; ð7Þ

where k1;2; d are free parameters, λ0 denotes a large
distance parameter [28,29], and the complex parameter
fðb⊥Þ describes the behavior in transverse direction.
After extrapolation and Fourier transformation, we get
the results shown in Fig. 2, for the real part (upper panel)
and the imaginary part (lower panel) of the quasi-TMDWF
in momentum space at Pz ¼ 2.15 GeV for the MILC
ensemble. As can be seen from this figure, the real part
decreases slowly with increasing b⊥, while the imaginary
part increases rapidly with b⊥. Unlike the one dimensional

quasi-distribution amplitude in [29], the quasi-TMDWF
has a sizable nonzero imaginary part.
According to the LaMET factorization in Eq. (1), apart

from the quasi-TMDWF, one requires the intrinsic soft
function and Collins-Soper (CS) evolution kernel to obtain
the TMDWF. In recent years, the CS kernel has been
determined on the lattice [17–19]. A recent analysis for the
MILC ensemble at 0.121 fm that includes the one-loop
perturbative contributions can be found in Ref. [18], while
for the CLS ensemble at 0.098 fm the result is given in the
Supplemental Material [24].
The intrinsic soft function can be determined from the

quasi-TMDWF and the form factor of a pseudoscalar
meson. The calculation of the tree level intrinsic soft
function was performed in [30,31]. Inspired by a detailed
theoretical analysis of normalization condition and twist
combination of the form factor in [20], we present the
intrinsic soft function in Fig. 3 that is based on the one-
loop matching kernel. As can be seen from this figure,
the intrinsic soft functions extracted by Ψ̃þ and Ψ̃− for the
MILC ensemble are consistent with each other, which is in
line with the expectation that the intrinsic soft function is
universal. The result obtained by Ψ̃− on the CLS ensemble
is similar but the soft function decreases more slowly than
the MILC results. A reason for this difference might be
discretization effects, which will be further investigated in
future work. Our lattice results have similar b⊥ dependence
as a one-loop perturbative result in the MS scheme [32]
in both the small and large b⊥ regions. However, it is
necessary to point out that the perturbative result might be
unreliable at large b⊥.

FIG. 2. The real part (upper panel) and the imaginary part
(lower panel) of the quasi-TMDWF in momentum space, with
hadron momentum Pz ¼ 2.15 GeV and for the MILC ensemble.

FIG. 3. The one-loop intrinsic soft function as a function of b⊥.
The gray band corresponds to the one-loop perturbative result in
the MS scheme and the band is obtained by μ0 ¼ 1=b�⊥ varying in
the range b�⊥ ∈ ½1= ffiffiffi

2
p

;
ffiffiffi
2

p �b⊥. The label � in Slat;1 loop� repre-
sents the lattice results extracted for Ψ̃�.
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Together with the quasi-TMDWF, one-loop intrinsic soft
function, and CS kernel, the TMDWF can be obtained
through a perturbative matching; see Eq. (1). In Fig. 4,
we show the final results for TMDWFs Ψ� for the
MILC ensemble (left and central panels) and Ψ− the
CLS ensemble (right panel). Results in this figure contain
both statistical and systematic uncertainties, where the
systematic ones come from the large λ extrapolation and
the infinite momentum extrapolation [24]. The renormal-
ization scale is chosen as μ ¼ 2 GeV and the rapidity scale
as ζ ¼ ð2PþÞ2 ¼ ð6 GeVÞ2. As can be seen from the
figure, the real part of the TMDWF decreases as b⊥
increases, while the imaginary part first increases and
stabilizes for b⊥ > 0.36 fm. The imaginary part shows a
weaker dependence on b⊥ than the real part, because part of
the b⊥ dependence is absorbed into soft function and CS
kernel. The Ψþ and Ψ− show a different behavior as b⊥
increases due to the fact that they describe distinct physical
properties. Similarly it is known that the Wilson lines in
TMD parton distribution functions (TMDPDFs) have
opposite directions, which correspond to semi-inclusive
deep inelastic scattering and Drell-Yan processes, respec-
tively. Similar properties should be expected for TMDWF
in the TMD factorization of the exclusive processes, which
however have not been discussed before.
The LaMET factorization [Eq. (1)] will break down in

the end point region. Therefore, at present, LaMET results
are not under control in the shaded regions (x < 0.2 and

x > 0.8). Furthermore, an estimation for power corrections
of b⊥ with Oð1=ðb2⊥ζzÞÞ indicates that our results are more
reliable at b⊥ ≥ 0.2 fm.
In Fig. 5, we show a comparison of TMDWFs Ψ� at

the momentum fraction x ¼ 0.5 for the MILC and
CLS ensembles with a phenomenological model [33],
which factorizes TMDWF into longitudinal and transverse

FIG. 4. The left two parts are for real (upper panel) and imaginary parts (lower panel) of the TMDWF Ψþ, and the central two
correspond to Ψ− all for the MILC ensemble. The right two parts correspond to Ψ− and the CLS ensemble. These results approach the
infinite Pz limit with ζ ¼ ð6 GeVÞ2 and μ ¼ 2 GeV.

FIG. 5. Comparison of the transverse momentum distribution in
our results with fζ; μg ¼ fð6 GeVÞ2; 2 GeVg and phenomeno-
logical model at x ¼ 0.5.
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momentum distributions. The TMDWFs decay with
increasing b⊥, which is consistent with the phenomeno-
logical model. However, the phenomenological parametri-
zation only contains the real parts and does not include the
difference of Wilson line directions in Eq. (4). These two
features show highly relevant complexities that have never
been discussed in uses of TMD factorization for the hard
exclusive process.
Our numerical results are based ondifferent discretizations

and lattice spacings, thus their difference can be considered
as an estimate of the discretization error in the absence of
further studies at smaller lattice spacings. Besides, our lattice
simulations are performed with pion mass around 670 MeV,
which is far from the physical point. Therefore, our results are
still subject to large systematic uncertainties, and future
calculations with smaller lattice spacings and lighter quark
masses can significantly improve them.

Summary. We present a first lattice calculation of the
transverse-momentum-dependent wave function of the
pion. Numerical simulations are conducted for two ensem-
bles by the MILC and CLS collaborations. The linear and
logarithmic divergences are canceled by Wilson loop and
quark Wilson line vertex correction. The extrapolation
strategy for the pion quasi-TMDWF in coordinate space
follows the hybrid scheme.
Our final results extracted from both ensembles have a

consistent b⊥ dependence, with some differences at small
b⊥, which might come from discretization errors. These are
the first results of an ab initio calculation for a TMDWF
which will eventually lead to crucial theory inputs for
making predictions for exclusive processes in QCD fac-
torization. The difference between Ψ� and the large

imaginary parts of the TMDWF indicates that a more
comprehensive TMD factorization for hard exclusive proc-
esses is needed.
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