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We compute the four-gluon vertex from the Curci-Ferrari model at one-loop order for a collinear
configuration. Our results display a good agreement with the first lattice data for this vertex, released very
recently [Phys. Rev. D 109, 074502 (2024)]. A noteworthy novelty of our work is that we can provide
analytical expressions for the four-gluon vertex in collinear configurations, together with a renormalization
scheme that allows us to perform reliable perturbative computations even in the infrared regime. We
observe an infrared suppression in the form factor associated with the tree-level four-gluon tensor with a
possible zero crossing in the deep infrared which demands new lattice investigations to be confirmed.
Moreover, we report an infrared divergence in the completely symmetric tensor form factor due to the
ghost-loop contributions. These results come as predictions, since previous two-point correlations fix all
the available parameters of the model, up to an overall constant factor.
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Introduction. The infrared regime (IR) of quantum chromo-
dynamics (QCD) poses one of the most challenging open
problems of physics, namely, understanding the mecha-
nism behind color confinement. In addition to this para-
mount question, other phenomena such as the spontaneous
breaking of chiral symmetry and the emergence of funda-
mental mass scales also present major challenges. The use
of different approaches can shed light on distinct aspects of
these problems, and their synergy can help us build a
clearer understanding of such mysteries.
It is well known that the Faddeev-Popov (FP) procedure

[1], although extremely successful in high energies thanks
to asymptotic freedom [2,3], cannot describe the IR regime
of Yang-Mills (YM) theories. In particular, lattice simu-
lations established two remarkable facts that the standard
FP approach cannot explain: (i) It is possible to define a
gauge coupling that remains finite and moderate at all
scales; (ii) the gluon propagator at vanishing momentum
has a finite nonzero value [4]. These striking facts suggest
that perturbation theory can be used to extract information
from the IR regime and that the gluon behaves as if it
develops a screening mass in the IR.

The Curci-Ferrari (CF) model in the Landau gauge [5–7]
is the simplest renormalizable deformation of the FP
Lagrangian that allows for a description of such remarkable
features and whose results have been successfully con-
firmed by lattice data [8]. The main advantage of the CF
model is to provide a reliable and controllable perturbative
approach to investigate the IR regime of YM theories. For
recent achievements, see Refs. [8–12].
A reasonable way to extract information from the IR

regime of YM theories is to compute its correlation
functions. In the past decades, much progress has been
made using many approaches, such as lattice QCD [13–19],
the CF model [5–8], Schwinger-Dyson equations [20–25],
the functional renormalization group [26–30], the scree-
ned mass expansion [31–33], and the refined Gribov-
Zwanziger model [34–38]. Nowadays, it can be safely
said that we have achieved a sensible understanding
of the two-point correlation functions [39–48]. Progress
has also been made in computing higher correlation
functions such as the three-gluon and the ghost-gluon
vertices [49–65].
However, the four-point gluon correlation is still poorly

understood, mainly due to the proliferation of allowed
tensorial structures in this case (more than one hundred for
general kinematics [66]). In fact, there are only a few
semianalytical works on the subject [67–72], and the first
lattice data for this vertex came up just very recently [73]
(for preliminary analysis, see Refs. [74,75]).
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The main goal here is to compute the four-gluon vertex at
one-loop order within the CF model, describing its main
features and comparing our results with the first lattice data
for this quantity [73]. We find a good agreement with lattice
data, with a relatively low computational cost, attesting to
the efficiency of the CF model in describing the IR regime
of YM theories through perturbation theory. Our results are
predictions of the CF model, since the previous evaluation
of the two-point correlation functions fixes all the param-
eters of the model, up to an overall constant factor. We
observe an IR suppression of the tree-level four-gluon
tensor form factor, with an apparent zero crossing in the
deep IR. Moreover, we report an IR divergence in the
totally symmetric tensor form factor due to the ghost-loop
contributions. Finally, we show that we can provide
analytical expressions for any collinear configuration.
This work is organized as follows. In Sec. II, we present

the CF model in the Landau gauge and general aspects of
the four-gluon vertex. Section III addresses the renormal-
ization and the renormalization group improvement. We
present our results in Sec. IV, comparing them with fresh
lattice data [73]. In Sec. V, we state our conclusions. In the
Appendix, we show that we can provide analytical expres-
sions at one loop for any collinear configuration.

The Curci-Ferrari model and the four-gluon vertex. Let us
consider the Curci-Ferrari Lagrangian in the Landau gauge
with Euclidean metric:

L ¼ 1

4
Fa
μνFa

μν þ iha∂μAa
μ þ ∂μc̄aðDμcÞa þ

1

2
m2Aa

μAa
μ; ð1Þ

where the covariant derivative in the adjoint representation is
given byDab

μ ¼ δab∂μ − gfabcAc
μ, the structure constants for

the SUðNÞ group are denoted by fabc, and the bare coupling
and the gluon mass are given by g and m, respectively. The
field strength is given by Fa

μν ¼ ∂μAa
ν − ∂νAa

μ þ gfabcAb
μAc

ν,
the FP ghosts are c and c̄, and ha is the Nakanishi-Lautrup
field enforcing the Landau gauge condition ∂μAa

μ ¼ 0. We
remark that the CF model is renormalizable in four dimen-
sions, it recovers the usual FP theory in the UV regime, and
itsmass term enables the use of reliable perturbation theory at
all scales.
We are interested in computing the four-gluon one-

particle irreducible (1PI) Green function at one loop and
comparing it with the very recent lattice data [73].
However, in the numerical simulations, only the full
Green functions can be accessed. To obtain information
concerning the 1PI Green function from the full Green
function without extra assumptions, the computation must
be restricted to suitable momentum configurations [73].
The full Green function includes a connected part

plus disconnected contributions. Adopting a kinematical
configuration such that pi þ pj ≠ 0; ∀ i; j, where pi is the
momentum associated with the ith external leg, the

contributions due to the disconnected part can be discarded.
Now, the connected part itself can be written as a sum of a
contribution with the four-gluon 1PI Green function plus
contributions containing the three-gluon 1PI Green func-
tion. In the Landau gauge, due to the orthogonality of the
gluon propagator, considering that all external momenta are
proportional, the contributions including the three-gluon
vertex can be safely discarded, allowing to access the four-
gluon 1PI Green function [73].
In this work, for simplicity, we adopt the collinear

configuration ðp1; p2; p3; p4Þ ¼ ðp; p; p;−3pÞ with gauge
group SUð3Þ in four space-time dimensions. Such a con-
figuration already allows us to state the four-gluon vertex
main features and compare with lattice data. However, we
stress that any collinear configuration satisfying the above
restrictions could be chosen. Because of the orthogonality of
the Landau gauge gluon propagator and the simple momen-
tum configuration adopted, the only nonvanishing contribu-
tions of interest to compare with lattice simulations will be
the ones proportional to the product of metrics in the Lorentz
sector. Although there are still many possible tensorial
structures due to the color sector, for the configuration
ðp; p; p;−3pÞ with SUð3Þ at one loop, only two of them
will appear in our computation [68,76].
To compute the four-gluon 1PI Green function in

perturbation theory at one-loop order, one needs to calcu-
late 18 Feynman diagrams1 (see [68] for the relevant
diagrams). For the ðp; p; p;−3pÞ configuration with gauge
group SUð3Þ, the only tensorial structures appearing at one-
loop accuracy are the tree-level four-gluon vertexHabcd

μνρσ and
the totally symmetric tensor Gabcd

μνρσ , defined, respectively, as

Habcd
μνρσ ¼ fadxfcbxðδμρδνσ − δμνδρσÞ

þ fabxfdcxðδμσδνρ − δμρδνσÞ
þ facxfdbxðδμσδνρ − δμνδρσÞ ð2Þ

and

Gabcd
μνρσ ¼ ðδabδcd þ δacδbd þ δadδbcÞRμνρσ; ð3Þ

where we have Rμνρσ ¼ ðδμνδρσ þ δμρδνσ þ δμσδνρÞ. There-
fore, the four-gluon 1PI Green function in this specific
configuration can be written as

Γabcd
μνρσ ðp; p; p;−3pÞ ¼ HðpÞHabcd

μνρσ þ GðpÞGabcd
μνρσ : ð4Þ

It should be remarked that these tensors are orthogonal.

Renormalization and Renormalization Group. Let us
define the renormalized quantities in terms of the bare
ones as

1We evaluated the diagrams using our own code inMathematica
and independently by using the package FeynCalc [77–79].
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Aμ;a
B ¼

ffiffiffiffiffiffi
ZA

p
Aμ;a
R ; caB ¼

ffiffiffiffiffi
Zc

p
caR; c̄aB ¼

ffiffiffiffiffi
Zc

p
c̄aR: ð5Þ

Regarding the coupling and the mass, we can write

gB ¼ ZggR; m2
B ¼ Zm2m2

R: ð6Þ

For the renormalized 1PI four-point Green function, we
have

ðΓRÞabcdμνρσ ðp; μÞ ¼ Z2
AðΓBÞabcdμνρσ ðpÞ; ð7Þ

where the dependence on the renormalization scale μ is
introduced by means of the Z factors.
A distinguishing feature of the CF model is that it allows

for a renormalization scheme in which the renormalization
flow is regular at all scales [6,12]. In the infrared safe (IRS)
renormalization scheme, we have the following renormal-
ization conditions:

D−1
A ðp ¼ μÞ ¼ μ2 þm2ðμÞ; D−1

c ðp ¼ μÞ ¼ μ2; ð8Þ

where DA and Dc are the gluon and ghost propagators,
respectively, as well as the nonrenormalization conditions:

Zg

ffiffiffiffiffiffi
ZA

p
Zc ¼ 1; Zm2ZAZc ¼ 1: ð9Þ

Notice that the above constraints are valid not only for the
divergent part (as the usual nonrenormalization condition),
but also for the finite parts in this scheme.
All the UV divergences are proportional to the tensor

Habcd
μνρσ , as expected by renormalizability arguments, since

this is the only tensor that appears at tree level. The bare
form factor associated with this tensorial structure at one-
loop order can be written as

HðpÞ ¼ g2B

�
1þ g2B

ε
Hdiv þ g2BHfinðpÞ

�
; ð10Þ

where g4BHdiv and g2Bð1þ g2BÞHfinðpÞ correspond to the
divergent and finite parts of HðpÞ, respectively. Con-
sequently, the 1PI Green function (7) at one loop reads

ðΓBÞabcdμνρσ ¼ g2B

�
1þ g2B

ε
Hdivþ g2BHfin

�
Habcd

μνρσ þ g4BGfinGabcd
μνρσ :

ð11Þ

At one-loop order, the renormalization factors can be
written in the following way:

ZA ¼ 1þ g2RδZA; Zg ¼ 1þ g2RδZg: ð12Þ

By inserting the relations (12) and (11) into Eq. (7) and
retaining terms up to the order of g4R, we obtain

ðΓRÞabcdμνρσ ðp; μÞ ¼ g4RGfinGabcd
μνρσ þ

�
g2R þ g4R

�
2δZA þ 2δZg

þHdiv

ε
þHfin

��
Habcd

μνρσ ; ð13Þ

where we have made explicit the dependence of the
renormalized correlation function on the momentum p
and the renormalization scale μ. The quantities δZA and δZc
are fixed by the renormalization of the two-point functions
at one-loop order in the IRS scheme [6]. Needless to say,
the divergent parts perfectly cancel in the above expression.
One can immediately obtain Zg and Zm2 resorting to the
nonrenormalization conditions (9) of the IRS renormaliza-
tion scheme.

To avoid large logarithms of the form logðp2

μ2
Þ in the UV,

which could potentially spoil the use of the perturbative
framework, we must adopt a renormalization scale of the
type μ ≈ p. This choice, nonetheless, is not suitable for
comparisons with lattice simulations, where a fixed
renormalization scale μ0 is required. This obstacle can
be overcome by employing the Callan-Symanzik equation
[80,81], which in the case of a purely gluonic vertex
function with nA external legs reads

�
μ∂μ −

1

2
nAγA þ βg∂g þ βm2∂m2

�
ΓðnAÞ ¼ 0; ð14Þ

where we omitted the subindex “R” to refer to renormalized
quantities, as we will do from now on. We introduced the
usual β functions and the anomalous dimension γA:

βXðg;m2Þ≡ μ
dX
dμ

�
�
�
�
gB;m2

B

; ð15Þ

γAðg;m2Þ≡ μ
d logZA

dμ

�
�
�
�
gB;m2

B

; ð16Þ

with X∈ fg;m2g. The solution for the 1PI four-gluon
correlation function is

Γabcd
μνρσ ðp; μ0; g0; m2

0Þ ¼ zAðμ; μ0Þ−2Γabcd
μνρσ ðp; μ; gðμÞ; m2ðμÞÞ;

ð17Þ

where

zAðμÞ ¼ exp

�Z
μ

μ0

dμ0

μ0
γAðgðμ0Þ; m2ðμ0ÞÞ

�
: ð18Þ

The advantage of the relation (17) is that it enables us to
safely evaluate Γabcd

μνρσ ðp; μ0; g0; m2
0Þ in perturbation theory

even for scales such that p ≫ μ0.
By using the conditions (9) and the independence of the

bare quantities with the scale μ, one can prove that
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γA ¼ 2

�
βm2

m2
−
βg
g

�
; ð19Þ

from which

zAðμ; μ0Þ ¼
m4ðμÞ
m4ðμ0Þ

g2ðμ0Þ
g2ðμÞ : ð20Þ

As a result, we can write

Γabcd
μνρσ ðp; μ0; g0; m2

0Þ ¼
m8ðμ0Þ
m8ðμÞ

g4ðμÞ
g4ðμ0Þ

× Γabcd
μνρσ ðp; μ; gðμÞ; m2ðμÞÞ: ð21Þ

The parameters gðμÞ and m2ðμÞ can be obtained by
integrating the beta functions with initial conditions gðμ0Þ
and m2ðμ0Þ, defined at the scale μ0. To fix such conditions,
we use a one-loop fitting for the lattice data of the gluon and
ghost two-point functions, as was done in [6]. We proceed
in this manner since lattice data for these correlations is far
more precise than for higher correlation functions, allowing
for an accurate fitting. Furthermore, this allows us to make
a prediction for the four-gluon vertex, up to an overall
normalization constant, instead of merely fitting the lattice
data, putting the theory to a more precise and sharp test. In
this work, we opt for the prescription μ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2ðμ0Þ

p

which fulfils the condition μ ≈ p as p2 ≫ m2ðμ0Þ but also
avoids potential large logarithms of the type logðm2

μ2
Þ in the

IR, as explained in [49]. The aforementioned fits lead to the
values gð1 GeVÞ ¼ 3.97 and m2ð1 GeVÞ ¼ 0.352 GeV2,
where we set μ0 ¼ 1 GeV.

Results and discussion. The main goal of this work is to
explicitly compute the four-gluon 1PI Green function (4) at
one-loop order in the CF model for the configuration
ðp; p; p;−3pÞ with gauge group SUð3Þ in four space-time
dimensions and compare it with the brand new lattice data
that were released recently [73]. Our results come as a
prediction of the CF model, since all its parameters were
previously fixed by two-point correlators, up to an overall
normalization constant. This global factor is needed to
compare our results obtained in the IRS renormalization
scheme with the lattice data obtained using a different
scheme. This factor was determined by minimizing a joint
error χ2 ¼ 1

2
ðχ2H þ χ2GÞ, where χ2H and χ2G measure the error

between the lattice data and the CF outcomes. We found the
overall constant forH to beN ¼ 0.10695, which leads to a
factor for G of 10800

3888
N ; see [73].

The four-gluon 1PI Green function in the configuration
ðp; p; p;−3pÞ in SUð3Þ can be written in terms of
analytical expressions for the bare form factors HðpÞ
and GðpÞ, which can be found in Supplemental Material
[82]. The final results for the renormalized form factors

HðpÞ and GðpÞ taking into account the renormalization
group improvement can be found in Figs. 1 and 2, along
with their corresponding lattice data [73]. We show in the
Appendix that our approach can provide analytical expres-
sions for the four-gluon vertex at one loop for any collinear
configuration, showing that this remarkable feature is not a
peculiarity of the simple configuration chosen here.
Let us discuss the main characteristics of our findings.

Two interesting salient features show up in the IR. First, the
form factor HðpÞ is suppressed in the IR in comparison
with its tree-level value, achieving a finite value at p ¼ 0,
with an apparent zero crossing in the deep IR which
demands further investigations to be confirmed. Second,
there is an IR singularity in the form factor GðpÞ. We
remark that the lattice data, although being a pioneering
work, has still a significant error and only a few points
below 1 GeV, where these peculiar aspects are present.
These two features are also present in the three-gluon
correlation [49–51], although in that case both happen in
the tree-level tensor form factor.

FIG. 1. Form factor HðpÞ as predicted within the CF model at
one loop, compared with the SUð3Þ lattice data of [73].

FIG. 2. Form factor GðpÞ as predicted within the CF model at
one loop, compared with the SUð3Þ lattice data of [73].
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The IR suppression of the form factor HðpÞ in com-
parison with its tree-level value is suggested by the lattice
data [73] and was also reported in [67]. The apparent zero
crossing that we observe in the deep IR was not reported
in [67–69], and the present lattice data do not allow for a
conclusion in this matter. However, this peculiar feature
should be taken with a grain of salt, because it could be an
artifact of the approximations adopted here. A zero cross-
ing is also observed in the three-gluon correlation [49–51],
but in that case it comes from the ghost-loop contribution to
the tree-level structure. This is different from the present
case, where the change of sign is not due to ghost-loop
contributions, which can contribute only to GðpÞ, as we
will see. On the other hand, by increasing the momen-
tum, HðpÞ approaches the tree-level value, in agreement
with [67–69], as expected.
The second feature, namely, the IR divergence in GðpÞ,

is due to the masslessness of the ghosts that appear in the
ghost-loop graphs, giving a contribution proportional to the
totally symmetric tensorGabcd

μνρσ that blows up as we go in the
limit p → 0. This feature was also reported in Refs. [67,68].
However, we did not observe a zero crossing in this form
factor as reported in these works, and no change of sign is
suggested by the lattice data [73]. An IR divergence due to
ghost-loop contributions is a feature also present in the
three-gluon correlation [49–51]. In the deep IR, the GðpÞ
behavior due to the ghost-loop contribution is given

by Gðp → 0Þ ≈ 3g4

256π2
logðm2

p2Þ.
Interestingly enough, when considering tensorial struc-

tures accessible to lattice simulations, the above-mentioned
IR divergence can affect only the form factor associated
with the totally symmetric tensor Gabcd

μνρσ at one-loop order,
not only for the simple configuration analyzed here but also
for any collinear configuration. In fact, let us consider the
ghost-loop contributions for the four-gluon vertex at one
loop. By the gluon-ghost vertex structure, there will be
structure constants and an incoming momentum in each
vertex. Now, for collinear configurations ðαp; βp; γp;
−ðαþ β þ γÞpÞ, contributions proportional to the four-
vector p will appear but should be ignored due to the
orthogonality of the Landau gauge gluon propagator of the
external legs, since we aim to compare with lattice
simulations, which can access only the full Green function.
Thus, we will obtain contributions that are proportional to
qμqνqρqσ , where q is the momentum running inside the
loop. This is totally symmetric in the Lorentz indices and,
thus, proportional to Rμνρσ. Being totally symmetric in the
Lorentz indices, the Bose symmetry of the external legs
constrains the color structure to be also totally symmetric.
Notice that the color structure cannot depend on the
specific momentum configuration chosen. Thus, we can
take the limit p → 0 for simplicity and ascertain that the
color structure is of the form ðδabδcd þ δacδbd þ δadδbcÞ.
Therefore, the case p ≠ 0 will have the same color
structure, and we can say that the ghost-loop contributions

(and associated IR divergence) will be proportional
to the totally symmetric tensor Gabcd

μνρσ for any collinear
configuration.
Finally, we close this section by briefly highlighting

some of the previous findings regarding the four-gluon
vertex in the literature. First of all, the recent pioneering
work [73] provides lattice data for the four-gluon vertex in
three collinear configurations (including the one studied
here) for some form factors, reporting a dominance of the
form factor HðpÞ that is essentially constant in the range
accessed, suggesting an IR divergence in GðpÞ but not
suggesting zero crossings for HðpÞ or GðpÞ. The form
factor Fð1Þ in our computation is a mere linear combination
of the already presented form factors, with an associated
plot of the same quality in Figs. 1 and 2.
In Ref. [68], the authors adopted the same collinear

configuration we adopted here, and our analytical results
for the Feynman graphs are compatible with the ones they
report. However, they observed a large peak in the IR for
HðpÞ that we did not observe (nor the authors of [67]), and
it is not suggested by lattice data. In Ref. [69], the authors
focused on the tree-level tensor form factor, discussed more
general kinematical configurations, and provided a com-
parison between decoupling and scaling behaviors for the
propagators. They obtained an IR suppression of HðpÞ like
us, but they reported a prominent peak in the IR which
we did not observe. For the scaling solutions, they observed
IR divergences in HðpÞ that were not observed by us nor
by [67]. The authors of Refs. [70,71] report results in
qualitative agreement with the ones presented in [69].
The very recent work [67] focused on the class of

collinear configurations using lattice data as input, provid-
ing a thorough discussion about the possible tensorial
structures appearing in their setup. Restricting their atten-
tion to a subset of three form factors, the authors did a
robust investigation on the emergence of planar degeneracy
in the IR and discussed the construction of an effective
charge. They reported an IR suppression ofHðpÞ and an IR
divergence in GðpÞ like us, but they observed a zero
crossing in GðpÞ instead of in HðpÞ as we reported here.
They directly compared their results with Refs. [68,69],
discussing the absence of the prominent peak that these
authors found in the IR for HðpÞ, concluding that this
difference could be due to the different approximations they
adopted for the three-gluon vertex.

Conclusions. We computed the four-gluon 1PI Green
function in the Landau gauge at one-loop order using
the Curci-Ferrari model for the kinematical configuration
ðp; p; p;−3pÞ with gauge group SUð3Þ in four dimensions
and compared our results with the first lattice data for this
vertex [73].
Analytical expressions for the form factors HðpÞ and

GðpÞ were provided. After performing the renormalization
group improvement adopting the IRS renormalization
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scheme, we compared our results with the lattice data of
Ref. [73], achieving a good agreement. These results come
as predictions of our model, up to an overall constant factor,
since all the available parameters were fixed beforehand.
Our results exhibit an IR suppression in the form factor
HðpÞ and an IR divergence in GðpÞ. These features were
also reported by other semianalytical works [67,68] and are
also present in the three-gluon vertex, although they affect
the same form factor in that case. Furthermore, we observed
an apparent zero crossing in the form factor HðpÞ taking
place in the deep IR that was not reported elsewhere, but
this prediction should be taken with a grain of salt, since it
could be an artifact of the one-loop approximation or due to
the particular renormalization scheme employed here. It
would be enlightening to have new lattice data accessing
this vertex in the deep IR to confirm these features.
Within our approach, we can provide analytical expres-

sions at one-loop order for the four-gluon vertex for any
collinear configuration ðαp; βp; γp;−ðαþ β þ γÞpÞ and
also that there will be IR divergences in the form factor
associated with the totally symmetric tensor Gabcd

μνρσ for any
collinear configuration at one-loop accuracy due to the
ghost-loop graphs. Furthermore, although we focused on
the particular configuration ðp; p; p;−3pÞ for simplicity,
the same analysis could be done with any collinear
configuration, and preliminary results indicate that they
exhibit quite similar features.
This work comes as a first result for the four-gluon vertex

within the CF model. The pioneering work [73] opens the
doors to more throughout lattice investigations, and we
hope that soon there will be more precise data available for
the IR regime. We plan to exhibit analytical results for other
collinear configurations and investigate the possible emer-
gence of planar degeneracy. We hope to report on these
subjects soon and provide a more in-depth analysis in a
forthcoming paper.
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Appendix: Analytic expression. In general, it is expected
that the four-gluon vertex in arbitrary kinematics cannot
be expressed analytically, even at one-loop order.
However, for the case of collinear configurations,
analytical expressions can be given in the CF model,
because all master integrals can be expressed in terms of
the integrals A and B defined by

Aðm2Þ ¼
Z

q

1

q2 þm2
; ðA1Þ

Bðp;m2
1; m

2
2Þ ¼

Z

q

1

ðq2 þm2
1Þððqþ pÞ2 þm2

2Þ
; ðA2Þ

of which their analytical expression is known. We define

Z

q
≡Λ2ϵ

Z
ddq
ð2πÞd ; ðA3Þ

where Λ2ϵ refers to the mass dimension of the gauge
coupling in d ¼ 4 − 2ϵ dimensions, which has been
absorbed into the master integrals, in this work. Here,
this scale relates to the renormalization scale
as μ2 ¼ 4πe−γΛ2.
Other master integrals appearing at the four-gluon vertex

refer to integrals with three or four propagators such as
C and D:

Cðp1; p2; m2
0; m

2
1; m

2
2Þ ¼

Z

q

1

ðq2 þm2
0Þððqþ p1Þ2 þm2

1Þððqþ p2Þ2 þm2
2Þ
; ðA4Þ

Dðp1; p2; p3; m2
0; m

2
1; m

2
2; m

2
3Þ ¼

Z

q

1

ðq2 þm2
0Þððqþ p1Þ2 þm2

1Þððqþ p2Þ2 þm2
2Þððqþ p3Þ2 þm2

3Þ
: ðA5Þ

In this appendix, we show that in both cases (and, in general, for any number of propagators, when dealing with collinear
configurations) C and D can be expressed in terms of A and B. Therefore, for the class of configurations discussed in this
paper, we can give analytical expressions for the four-gluon vertex form factors.
Let us consider first the case of C in collinear configurations:

C ¼
Z

q

1

ðq2 þm2
1Þððqþ αpÞ2 þm2

2Þððqþ βpÞ2 þm2
3Þ
; ðA6Þ
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where α and β are nonzero real numbers.2 From now on, we are going to define D1 ¼ ðq2 þm2
1Þ to be the first factor in the

denominator and also define D2 ¼ ððqþ αpÞ2 þm2
2Þ and D3 ¼ ððqþ βpÞ2 þm2

3Þ. The integral
R ddq

ð2πÞd
2p:q

D1D2D3
can be

rewritten as

Z

q

2p:q
D1D2D3

¼ 1

α

Z

q

�
D2 −D1 þm2

1 −m2
2 − α2p2

D1D2D3

�

¼ 1

α
ðBðβp;m2

1; m
2
3Þ − Bððβ − αÞp;m2

2; m
2
3Þ þ ðm2

1 −m2
2 − α2p2ÞCÞ: ðA7Þ

Analogously, we can express the scalar product in the numerator in terms of the third propagator, obtaining

1

β
ðBðαp;m2

1; m
2
2Þ − Bððβ − αÞp;m2

2; m
2
3Þ þ ðm2

1 −m2
3 − β2p2ÞCÞ: ðA8Þ

Merging both expressions, we find that

C ¼ αβ

αðm2
1 −m2

3 − β2p2Þ − βðm2
1 −m2

2 − α2p2Þ
�
1

α
ðBðβp;m2

1; m
2
3Þ − Bððβ − αÞp;m2

2; m
2
3ÞÞ

−
1

β
ðBðαp;m2

1; m
2
2Þ − Bððβ − αÞp;m2

2; m
2
3ÞÞ

�
: ðA9Þ

Following a similar procedure, we can obtain the expression of D in the collinear kinematics in terms of C which can be
then expressed in terms of B:

D ¼
Z

q

1

ðq2 þm2
1Þððqþ αpÞ2 þm2

2Þððqþ βpÞ2 þm2
3Þððqþ γpÞ2 þm2

4Þ

¼ αβ

αðm2
1 −m2

3 − β2p2Þ − βðm2
1 −m2

2 − α2p2Þ
�
1

α
ðCðβp; γp;m2

1; m
2
3; m

2
4Þ − Cððβ − αÞp; ðγ − αÞp;m2

2; m
2
3; m

2
4ÞÞ

−
1

β
ðCðαp; γp;m2

1; m
2
2; m

2
4Þ − Cððβ − αÞp; ðγ − αÞp;m2

2; m
2
3; m

2
4ÞÞ

�
: ðA10Þ
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