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We ask whether Krylov complexity is mutually compatible with the circuit and Nielsen definitions of
complexity. We show that the Krylov complexities between three states fail to satisfy the triangle inequality
and so cannot be a measure of distance: there is no possible metric for which Krylov complexity is the
length of the shortest path to the target state or operator. We show this explicitly in the simplest example, a
single qubit, and in general.
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Introduction. Intuitively, complexity is a measure of how
“hard” it is to prepare a state or operator. Attempts to make
intuition precise have led to several different definitions of
complexity. Can these definitions be unified?
One definition is circuit complexity: the minimum

number of elementary gates from a universal gate set
needed to prepare a given unitary operator, up to some
tolerance. This definition has shortcomings: it depends on
the choice of gate set, it does not apply to continuum
theories, and the minimization step is often impossible
in practice.
Nielsen complexity is a geometrization of circuit com-

plexity and is defined as the length of the shortest path to
the target unitary operator [1–3]. Distances between points
are specified by a cost function and the metric that comes
from the cost function is a Finsler metric, which is a
generalization of Riemannian metrics to nonquadratic
forms. Nielsen complexity is still difficult to apply to
continuum theories and its definition is still ambiguous as it
depends on the choice of metric.
A third definition is Krylov complexity. The Krylov

complexity of a time-evolved pure state jψðtÞi is defined as

CðtÞ ¼
X
n

njhψðtÞjKnij2; ð1Þ

where jKni is the orthonormal, ordered Krylov basis. First
established as a measure of the complexity of time-evolved
operators in [4] and states in [5], it describes the average
position of the time-evolved state or operator along a 1D
chain of Krylov basis states or operators. A significant
advantage of Krylov complexity over other definitions is
that it is unambiguously defined, and it has already found
numerous applications [6–10].
In this paper, we ask whether Krylov complexity is

compatible with the circuit and Nielsen definitions of
complexity. This is important because if we show that,
with a suitable choice of metric, Krylov complexity equals
Nielsen complexity, then we have a unification of defi-
nitions. If they are not compatible, then Krylov complexity
is a fundamentally different object than previous definitions
of complexity that are measures of distance to the target
state or operator.
Our title begs the question: why should Krylov complex-

ity be a measure of distance between states or operators?
We could claim that it is a required property of any
definition of complexity, but we will not go so far because
there is no consensus on what complexity really is or what
properties it must have. On the other hand, being a measure
of distance is a property that is satisfied by both circuit and
Nielsen complexity which, depending on one’s perspective,
are the fundamental definitions of complexity. Complexity
as the length of the shortest path between states or operators
is both intuitive and a powerful tool, so it is at least a highly
desirable property if not a requirement.
What would be the Nielsen geometry for Krylov com-

plexity? For a given Hamiltonian, is there a metric we can
place on a Hilbert space such that Krylov complexity
equals the length of the shortest path between two states
related by time evolution? When calculating Nielsen
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complexity, one specifies a metric on the Hilbert space and
calculates minimal length geodesics between fixed pairs of
points. Our task is essentially the inverse: determine the
metric, assuming that Krylov complexity, which is defined
for any pair of states related by time evolution, equals the
length of the shortest path between the pair.
The connection between geometry and Krylov complex-

ity was previously investigated in [11], but we will take the
opposite approach. The Fubini-Study metric was assumed
and it was shown, for some specific cases, that Krylov
complexity equals a volume of Hilbert space, rather than a
length. Nonetheless, this does not immediately rule out the
possibility that there is a different metric for which Krylov
complexity equals Nielsen complexity. While our results
are not inconsistent with those from [11], we do not assume
a particular metric, instead, we ask if there is any metric for
which Krylov complexity equals the length of a minimal-
length geodesic.
Krylov complexity has also been identified with the

dilaton in JT gravity [12], the relative height for SU(2)
symmetric systems with a planar metric on a deformed
sphere [13], and with wormhole length [14]. These results
also do not rule out the possibility that Krylov complexity
equals distance in a Nielsen geometry.
We will begin by reviewing the definition of Krylov

complexity. We will then show that Krylov complexity fails
to satisfy the triangle inequality

CðtA; tBÞ þ CðtB; tCÞ ≥ CðtA; tCÞ; ð2Þ

where CðtA; tBÞ is defined to be the K-complexity between
two states related by time evolution: e−iHtA jψ0i and target
state e−iHtB jψ0i, with jψ0i a reference state. The triangle
inequality is a fundamental property of distance: the
shortest path from A to C can only increase in length if
one adds an intermediate stop B. Since Krylov complexity
is only defined for states related by time evolution, to be
clear, with the triangle inequality (2), we are comparing
Krylov complexities between three states in the same one-
parameter family of states related by time evolution, and
testing whether they satisfy a defining property of distance.
We explicitly show that (2) is not satisfied in the simplest

nontrivial example, the single qubit, and for general higher
dimensional Hilbert spaces. For an intermediate step, we
prove that Krylov complexity is time-translation invariant,
i.e., that the complexity between two states related by time
evolution is only a function of the time separation:

CðtA; tBÞ ¼ CðtB − tAÞ; ð3Þ

and so CðtÞ, which is shorthand for Cð0; tÞ, must be a
subadditive function of time to satisfy the triangle inequal-
ity (2). We show that Krylov complexity is not generally a
subadditive function of time, by perturbatively solving its
time evolution equation for small time intervals.

Both circuit and Nielsen complexity satisfy the triangle
inequality. The violation of the triangle inequality by
Krylov complexity implies that it cannot be a measure
of distance in any metric space. Krylov complexity and
Nielsen complexity are not mutually compatible.

Review of Krylov complexity. We review the definition of
Krylov state complexity introduced in [5]. Consider the
time evolution of a pure initial state jψðtÞi ¼ e−iHtjψ0i.
Defined by the initial state and the Hamiltonian, the
Krylov basis jKni is an ordered, orthonormal set of states
in the Hilbert space. The zeroth state in this basis is the
initial state jK0i ≔ jψ0i and jKni for n ≥ 1 are defined
recursively through the Lanczos algorithm, with ortho-
normality ensured, by construction, through a Gram–
Schmidt process:

jAnþ1i ≔ ðH − anÞjKni − bnjKn−1i; ð4Þ

jKni ≔ b−1n jAni ð5Þ

where an and bn are the Lanczos coefficients:

an ≔ hKnjHjKni; bn≔ ðhAnjAniÞ1=2; ð6Þ

The Krylov basis jKni is special because it minimizesP
n cnjhψðtÞjBnij2, with cn any monotonically increasing

real sequence, among all orthonormal bases jBni [5].
We can express jψðtÞi in the Krylov basis:

jψðtÞi ¼
XK
n¼0

ψnðtÞjKni; ð7Þ

where K is the Krylov space dimension, which is smaller
than or equal to the Hilbert space dimension. The
Hamiltonian is tridiagonal in the Krylov basis, so the wave
functions obey a simple Schrödinger equation:

i∂tψnðtÞ ¼ anψnðtÞ þ bnþ1ψnþ1ðtÞ þ bnψn−1ðtÞ: ð8Þ

Krylov complexity is defined as

CðtÞ ≔
X
n

npnðtÞ; ð9Þ

where pn is a probability distribution

pnðtÞ ≔ jψnðtÞj2;
X
n

pnðtÞ ¼ 1: ð10Þ

Why is (9) a measure of complexity? Roughly, the complex-
ity of each basis state jKni increases with n because it
involves more applications of the Hamiltonian, jKni≈
Hnjψð0Þi, so Krylov complexity quantifies the average

SERGIO E. AGUILAR-GUTIERREZ and ANDREW ROLPH PHYS. REV. D 109, L081701 (2024)

L081701-2



position along a 1D chain of increasingly complex basis
states.
While Krylov complexity is the average position of a

particle along a 1D chain, which sounds like a measure of
distance, to be a distance in the mathematical sense it must
satisfy the triangle inequality.
In the triangle inequality (2), we used the notation

CðtA; tBÞ for the Krylov complexity between two states
constructed from the same reference state evolved for
different amounts of time. In this notation, CðtÞ as defined
in (9) is shorthand for Cð0; tÞ, and to calculate CðtA; tBÞ,
since we have a different initial state, we have to find the
new Krylov basis starting from jK0i ¼ e−iHtA jψ0i.
Krylov operator complexity is defined in a similar way as

to state complexity, with the replacements (see Ref. [4] for
more details)

H→L; jKni→ jOnÞ; an→ 0 ð11Þ

The results we will show for Krylov state complexity carry
over to operator complexity because our derivation does not
depend on whether the Krylov basis vectors are states or
operators.

Time-translation invariance. Next, we show that Krylov
complexity is time-translation invariant. This is a useful
property to show because the triangle inequality involves
Krylov complexities with initial states that are different but
related by time evolution. The time evolution of a reference
state generates a curve through projective Hilbert space,
and by time-translation invariance we mean that the Krylov
complexity between any pair of points on that curve is a
function of the time separation1:

Cðt; t0Þ ¼ Cðt0 − tÞ: ð12Þ

To see this, let us compare the Krylov bases built
from two initial states that are related by time evolution.
It is straightforward to show, following the Lanczos
algorithm (4), that, if jK0

0i ¼ e−iHtjK0i, then

jK0
ni ¼ e−iHtjKni ð13Þ

for all n, and the Lanczos coefficients are the same for these
two initial states. Next, we use the definition of the Krylov
basis to derive a relation between the amplitudes:

ψ 0
nðt0Þ≔ hK0

njψðt0Þi¼ hKnjψðt0− tÞi¼ψnðt0− tÞ: ð14Þ

This means

Cðt; t0Þ ¼
X
n

njψ 0
nðt0Þj2 ¼

X
n

njψnðt0 − tÞj2; ð15Þ

which then proves (12). A consequence of time-translation
invariance is that the triangle inequality (2) reduces to the
requirement that Krylov complexity is a subadditive
function of time:

CðtB − tAÞ þ CðtC − tBÞ ≥ CðtC − tAÞ: ð16Þ

The Bloch sphere. The simplest setup to consider is a single
qubit with a two-dimensional Hilbert space. We will
determine the Krylov complexity for a time-evolved state,
starting from an arbitrary initial position on the Bloch
sphere. Then, we will try to determine whether there is a
metric on the sphere that would give the K-complexity as
the length of the shortest path between two points on the
sphere.
There is a natural metric on projective Hilbert spaces like

the Bloch sphere, the Fubini-Study (FS) metric [15,16],
which is the unique, up-to-rescaling, homogeneous metric.
However, in the context of Nielsen complexity, it is not
necessary to assume this metric and our approach is to look
for any metric for which Krylov complexity equals Nielsen
complexity on the Bloch sphere.
Take the initial state to be an arbitrary pure state:

jψ0i ¼ cosðθ0=2ÞjE0i þ eiϕ0 sinðθ0=2ÞjE1i ð17Þ

The angles denote the position on the Bloch sphere: 0 ≤
θ0 ≤ π and 0 ≤ ϕ0 ≤ 2π. The Krylov basis is jK0i ¼ jψ0i,
and jK1i is the state that is orthonormal to this.
The position of the time evolved state

jψðtÞi ¼ e−iHtjψ0i ð18Þ

on the Bloch sphere is

θðtÞ ¼ θ0; ϕðtÞ ¼ ϕ0 þ ΔEt ð19Þ

where ΔE ≔ E0 − E1. The trajectory of the time evolution
is shown in Fig. 1. Assuming that there is an underlying
Nielsen geometry, then Krylov complexity equals the
length of the shortest path between any pair of points on
the time-evolution curve. This shortest path need not
coincide with the curve generated by time evolution.
The Krylov complexity of jψðtÞi is

CðtÞ¼
X
n¼0

npnðtÞ¼p1ðtÞ¼ sin2ðθ0Þsin2ðΔEt=2Þ ð20Þ

It is time-translation invariant because it does not depend
on ϕ0. It fails to satisfy the triangle inequality, as can be
explicitly checked for three points at tA, tB, and tC, and
because sin2ðΔEt=2Þ is not a subadditive function of t.

1To reiterate, Cð0; t0 − tÞ, as we define it after (2), is equivalent
to the more commonly used Cðt0 − tÞ.
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Therefore, the Krylov complexity between time-evolved
states on the Bloch sphere cannot be a measure of distance
between the states; there is no metric for which Krylov
complexity can be reformulated as a Nielsen complexity on
the Bloch sphere.

General case. Next, we will show that Krylov complexity
fails to satisfy the triangle inequality, using only its
definition and not assuming anything about the reference
state, the Hamiltonian, or the Hilbert space dimension. We
will do this by Taylor expanding CðtÞ and showing that it is
not a subadditive function for small t. Note that Krylov
complexity is time-reversal invariant, CðtÞ ¼ Cð−tÞ, as
follows from the Schrödinger equation, so the Taylor
expansion only has even powers of t.
We first expand the probabilities of the time-evolved

state in the Krylov basis to express (9) as:

CðtÞ ¼
X

n

�
pnð0Þ þ

1

2
p̈nð0Þt2 þ � � �

�
: ð21Þ

We’ll expand to the fourth order. By definition,
pnð0Þ ¼ δn;0. Using the Schrödinger equation, the second
derivatives of pn are

p̈0ð0Þ¼−2b21; p̈1ð0Þ¼ 2b21; p̈n>1ð0Þ¼ 0; ð22Þ

while the fourth derivatives are

pð4Þ
0 ð0Þ ¼ 2b21

�ða0 − a1Þ2 þ 4b21 þ b22
�
;

pð4Þ
1 ð0Þ ¼ −2b21

�ða0 − a1Þ2 þ 4ðb21 þ b22Þ
�
;

pð4Þ
2 ð0Þ ¼ 6b21b

2
2; pð4Þ

n>2ð0Þ ¼ 0: ð23Þ

The Taylor expansion of the Krylov complexity is then

CðtÞ ¼ b21t
2 þ b21

�
2ðb22 − 2b21Þ − ða0 − a1Þ2

�
12

t4 þOðt6Þ:
ð24Þ

We immediately see that Krylov complexity will fail to
satisfy the triangle inequality for three states separated by
short time intervals because, for small t, CðtÞ ≈ b21t

2, which
is not subadditive. To be more explicit, if we choose
tC − tB ¼ tB − tA ¼ δt, with tA < tB < tC, then the triangle
inequality is violated because

2CðδtÞ − Cð2δtÞ ¼ −2b21δt2 þOðδt4Þ≱ 0: ð25Þ
While it might seem that we could avoid this conclusion if
b1 ¼ 0 if this is true then jψ0i is an energy eigenstate and
this is the trivial case because there is only one Krylov
basis state.
We have not assumed or used anything other than

definitions to show that Krylov complexity always violates
the triangle inequality for three states separated by short
time intervals. Thus, there is no possible metric such that
Krylov complexity equals the length of the shortest path
between states because the triangle inequality is a defining
property of metric spaces.

Modifications: Lastly, for completeness, we will consider a
few simple modifications to the definition of Krylov
complexity, to see if any can be measures of distance in
a metric space.
We could replace n → fðnÞ in the definition, with f any

monotonically increasing function. The motivation for
doing so is that, for any such f, the Krylov basis is still
the special minimizing basis among orthonormal bases ofP

fðnÞjhψðtÞjBnij2 [5]. This replacement does not help
however because Taylor expansion about t ¼ 0 becomes
CðtÞ ¼ fð1Þb21t2 þOðt4Þ which is still not a subadditive
function.
Since the triangle inequality is violated because the

leading order term in (24) is quadratic in t, it is natural to try
taking the square root and modifying the Krylov complex-
ity definition to

ffiffiffiffiffiffiffiffi
CðtÞ

p
¼ b1t −

�ða0 − a1Þ2 þ 2ð2b21 − b22Þ
�

24
t3 þOðt5Þ:

ð26Þ

While triangle inequality for
ffiffiffiffiffiffiffiffi
CðtÞp

is now saturated at
leading order for small t, it is still violated if the sign of the

FIG. 1. The time evolution of a pure state on the Bloch sphere.
The poles of the sphere are the energy eigenstates jE0i and jE1i.
The time evolution of an arbitrary pure state generates the red
curves. By definition, Krylov complexity gives us the complexity
between states related by time evolution, on the same red curve,
and we show that it is inconsistent with a measure of distance
because it fails to satisfy the triangle inequality (2).
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cubic term is positive. The sign of the cubic term is not
definite, it depends on the Lanczos coefficients, but if it can
be positive, then

ffiffiffiffiffiffiffiffi
CðtÞp

is not a measure of distance in a
metric space. We can give an example. For the Hamiltonian
H ¼ αðLþ þ L−Þ, where L� are raising and lowering
operators in an slð2;RÞ algebra, the square root of the
Krylov complexity of the time-evolved highest weight state
is [5]

ffiffiffiffiffiffiffiffi
CðtÞp

∝ sinh αt. This is not a subadditive function of
time and so does not satisfy the triangle inequality.
A third Krylov-type complexity proposal or modification

that we consider is the exponential of the K-entropy [17].
This is defined as

eSKðtÞ ≔ e−
P

n
pn logpn : ð27Þ

This is time-translation invariant, so we only need to check
if it is a subadditive function of t. It is not, because its
Taylor expansion is

eSKðtÞ − eSKð0Þ ¼ −ðlogðb21t2ÞÞb21t2 þ… ð28Þ

where the ellipsis denotes higher powers in t.
We have considered three modifications of Krylov

complexity, and shown that none are distances in a metric
space.

Discussion. Our initial motivation was to ask if Krylov
complexity is a special case of Nielsen complexity, in the
sense that there is a metric for which Krylov complexity is
the length of the shortest path to the target. The hope was to
determine the geometry from the lengths of geodesics.
Instead, we found that Krylov and Nielsen complexity are
incompatible. We have shown that Krylov complexity is
time translation invariant and so it must be a subadditive
function of time to satisfy the triangle inequality and be a
measure of distance between states. We have given some
explicit examples where the triangle inequality between
time-evolved states is violated: the two-energy level quan-
tum system and a particle moving on the SLð2;RÞ
manifold, and studied the general case.
Our results do not imply that other measures of complex-

ity between states related by time evolution need to be
subadditive functions of time. This would be inconsistent
with the expectation that complexity grows exponentially
in time in generic chaotic systems [10,18,19]. The reduc-
tion of the triangle inequality to requiring subadditivity as a
function of time occurred because of the special property
that Krylov complexity is time translation invariant. On
physical grounds, we do not expect complexity to be time
translation invariant; the change in complexity should
depend on both the initial time and the interval of time
elapsed. It may be that a coarse-grained notion of complex-
ity is needed to capture this intuition.
Whether Nielsen complexity is a subadditive function of

time depends on assumptions about the metric, and whether

we are talking about operator or state complexity.
Subadditivity follows from the triangle inequality and
time-translation invariance. If we assume that the metric
on the space of unitary operators is right-invariant, then the
Nielsen operator complexity of the time evolution operator
eiHt for a time-independent Hamiltonian is time translation-
invariant: CðeiHt1 ; eiHt2Þ ¼ Cð1; eiHðt2−t1ÞÞ. So, with a
right-invariant metric, the Nielsen complexity of the time
evolution operator must be a subadditive function of time. In
contrast, Nielsen state complexity does not need to be a
subadditive function of time (see Eq. (159) in [20] for an
explicit example). Since Nielsen state complexity equals
Nielsen operator complexity minimized over all unitaries
that map to the target state from the reference state, the
unitary that minimizes the Nielsen operator complexity
between jψðt2Þi and jψðt1Þi will not generally be the time
evolution operator eiHðt2−t1Þ, and the time translation invari-
ance of the latter does not imply invariance of the former.
Our results are not in conflict with the identification of

Krylov complexity with wormhole length found in [14].
Distance is the length of the shortest path between two
points. The wormhole length is the length of a particular
curve between two points, but it is not the distance
between them.
We have not ruled out Krylov complexity equalling

distance between states in a more exotic geometry, such as
a semimetric space. In semimetric spaces, also known as
distance geometries, distances need not satisfy the triangle
inequality. Nevertheless, we have ruled out Krylov com-
plexity being a continuous version of circuit complexity, or
Nielsen complexity, because those do satisfy the inequality.
Lastly, we comment on a few other interesting future

directions. Our studies could be extended to identifying
other complexity definitions that are not compatible with
complexity being a measure of distance. It may also be that
other inequalities, such as a generalization of the triangle
inequality to volumes, could rule out other geometric
interpretations of Krylov complexity, such as volume.
Recent developments propose a notion of Krylov complex-
ity which unifies the operator and state approaches [19],
and it would be interesting to verify our results with
generalizations of Krylov complexity that allow for the
reference state to be a reduced density matrix of generic
subregions [19]. For Krylov complexity for open quantum
systems [21–25], since our work assumes unitary evolu-
tion, some of our arguments would be modified for these
systems, but we do not expect that this would change the
conclusions about the triangle inequality (2) being violated.
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