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Combining multiple gravitational-wave observations allows for stringent tests of general relativity,
targeting effects that would otherwise be undetectable using single-event analyses. We highlight how the
finite size of the observed catalog induces a significant source of variance. If not appropriately accounted
for, general relativity can be excluded with arbitrarily large credibility even if it is the underlying theory of
gravity. This effect is generic and holds for arbitrarily large catalogs. Moreover, we show that it cannot be
suppressed by selecting “golden” observations with large signal-to-noise ratios. We present a mitigation
strategy based on bootstrapping (i.e. resampling with repetition) that allows assigning uncertainties to one’s
credibility on the targeted test. We demonstrate our findings using both toy models and real gravitational-
wave data. In particular, we quantify the impact of the catalog variance on the ringdown properties of black
holes using the latest LIGO/Virgo catalog.

DOI: 10.1103/PhysRevD.109.L081302

Introduction. Gravitational-wave (GW) detections of
binary compact objects allow for new tests of general
relativity (GR) in the strong-field regime [1,2] adding up to
those performed with other experimental and astrophysical
probes [3,4]. Such tests are limited by the intrinsic
challenges of modeling the strong-field dynamics in the-
ories of gravity beyond GR [5–8], which prevents a
directed, model-dependent search [9]. In this regime, one
primarily relies on testing the null hypothesis that GR is the
underlying theory of gravity [10].
At the individual-event level, tests of GR have been

performed since the very first GW detection of binary black
holes (BHs) [2] and more stringent tests have since then
been reported using the increasing number of detections
during the first three LIGO/Virgo observing runs [10–12].
Combining multiple events is key to measuring effects that
are otherwise undetectable using single sources.
Existing approaches can be categorized as (i) multipli-

cation of the individual likelihoods [13,14], (ii) multiplica-
tion of the individual Bayes factors [15–17], and
(iii) hierarchical inference [18–20]. Multiplication of the
likelihoods assumes that deviations have the same values
across all the events (e.g., constraints on the mass of the
graviton) while multiplication of the Bayes factors assumes
that deviations in multiple events are uncorrelated (e.g.,
constraints on additional BH hair) [18]. Both assumptions
are unrealistic and Ref. [19] first proposed hierarchical

inference as a consistent way of combining observations,
similarly to that of hierarchical Bayesian inference used in
GW population studies [21–23]. In this context, the
consistency of the data with GR can be quantified by
standard metrics such as credible levels and Bayes factors.
Care must be exercised when interpreting the results of

tests of GR, as they can lead to incorrect conclusions in the
presence of unmodeled physics (e.g., environmental effects
[24,25], eccentricity [26,27]), systematics in the waveform
templates [28,29], stealth biases [30], and overlapping
signals [31]. In fact, one could also revert the argument
and use tests of GR as a complementary method to identify
the presence of systematics [32].
In this Letter, we investigate an additional source of

uncertainty when performing catalog tests of GR, namely
the variance originating from the finite size of the catalog
itself. We stress that, even if the null hypothesis is correct, it
could be excluded with arbitrarily large credibility from the
posterior of the deviation parameters when combining
multiple events. The issue would be mitigated if one were
to repeat the experiment multiple times, as large deviations
would only occur in relatively few repetitions. However, by
definition, we are only going to have one catalog that
contains all the observations.
Crucially, our key message is that the catalog variance

does not invalidate the use of null tests of GR, but it must be
accounted for when interpreting the results. First, we show
that using Bayes factors provides a more conservative
evidence against violations of the null hypothesis than the
corresponding credible intervals might suggest. Second, we*costantino.pacilio@unimib.it
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design a mitigation strategy by assigning uncertainties to
credible intervals and Bayes factors. Since one cannot use
multiple realizations, we propose bootstrapping as a partial
remedy [33]. In a nutshell, from the original dataset
d ¼ fd1;…; dNg one resamples a new dataset with the
same size dboot ¼ fdboot1 ;…; dbootN g allowing for repetitions.
When resampling d with replacement, there are ð2N−1

N Þ
distinct combinations and the probability of obtaining the
original dataset is as small as N!=NN [34]. This mimics a
set of repeated experiments to study the distribution of the
chosen estimators (Bayes factors or credible intervals),
which can then be used to extract summary statistics (e.g.
standard deviation, interquantile range), thus providing
uncertainty estimates. A similar strategy consisting of
downsampling the original catalog multiple times was
employed in Ref. [35] to illustrate the variance in the
inspiral-merger-ringdown consistency test of GR.
We focus on hierarchical tests of GR as introduced in

Ref. [19] as they represent the most general case. First, we
perform numerical experiments to show that the catalog
variance holds for arbitrarily large catalogs and it cannot be
mitigated by selecting the observations based on their
signal-to-noise ratio (SNR). Then, we demonstrate the
impact on real GW data by reproducing and extending a
flagship test of GR. In particular, we consider the so-called
PSEOBNR test [36] which targets deviations in the dominant
frequency and damping time of the ringdown portion of the
signal and was recently applied to the GWTC-3 catalog
[12]. We show that, while the hierarchical analysis of the
damping time appears to exclude GR with high credibility,
the corresponding Bayes factor prefers GR and the boot-
strapped distributions have significant support in favor of
the null hypothesis.

Hierarchical inference.We are interested in testing the null
hypothesis (i.e. GR is the true theory) using a deviation
parameter x, which is scaled such that it vanishes when the
null hypothesis H0 is satisfied,

H0∶ H ∧ fx ¼ 0g; ð1Þ
where H is a broader hypothesis. If the null hypothesis H0

is inconsistent with the data, we expect deviations x to
spread away from 0 following unknown patterns that are set
by the system parameters and the nature of the deviations.
GR tests are performed by applying hierarchical population
inference [22] to reconstruct the distribution of x from the
observed events d ¼ fd1;…; dNg. We model the distribu-
tion of x as a normal distribution N with mean μ and
variance σ2,

ppopðxjμ; σ2Þ ¼ N ðxjμ; σ2Þ: ð2Þ

In terms of these hyper-parameters, the null hypothesis
maps to μ ¼ σ2 ¼ 0. The posterior is given by

pðμ; σ2jdÞ ∝ Lðdjμ; σ2Þπðμ; σ2Þ; ð3Þ

where the hierarchical likelihood

Lðdjμ; σ2Þ ¼
YN
i¼1

Z
dxLðdijxÞppopðxjμ; σ2Þ ð4Þ

can be expressed in terms of the likelihoods LðdijxÞ of the
individual observations and πðμ; σ2Þ models the prior.
Equation (4) assumes that all observations are indepen-

dent of each other which would be violated for, e.g.,
overlapping events. Reference [31] estimates the fraction of
overlapping binary BH events detected by next-generation
ground-based GW detectors to be between 5% and 35%
depending on the binary BH merger rate. If one adopts the
method of joint parameter estimation [37], the factors on
the right-hand side of Eq. (4) corresponding to overlapping
events are replaced by joint likelihoods and joint population
priors. The expressions above do not include selection
effects [22,23] because in this context we do not wish to
reconstruct the underlying distribution of x but only
constrain its value using the set of observed sources.
The choice of the population (2) to describe the observed

deviations might seem simplistic. However, in this context
one is less interested in reconstructing the actual functional
form of ppop than in constraining it away from μ ¼ σ2 ¼ 0.
Therefore, the ansatz (2) can suffice to the scope of
detecting deviations from the null hypothesis, even if it
is not faithful to their actual distribution. In particular,
Refs. [19,20] showed that a Gaussian distribution can
identify deviations from the null hypothesis even when
these follow more complex patterns.
The consistency with the null hypothesis can be quanti-

fied using the quantile

Q0 ¼
Z
p≥pð0;0Þ

pðμ; σ2jdÞdμdσ2; ð5Þ

which is defined such that Q0 ¼ 0 (Q0 ¼ 1) indicate full
consistency (full inconsistency).
The Bayes factor B in favor of the null hypothesis H0

over the broad hypothesis H can be estimated using the
Savage-Dickey density ratio [38],

B ¼ pðμ ¼ 0; σ2 ¼ 0jdÞ
πðμ ¼ 0; σ2 ¼ 0Þ ≡ Lðdjμ ¼ 0; σ2 ¼ 0Þ

Z
ð6Þ

where L is the hyper likelihood of Eq. (4) and Z ¼ pðdÞ is
the evidence of the data under H. Bayes factors are often
interpreted using Jeffreys’s scale [39], where B ≥ 102

(B ≤ 10−2) denotes “decisive” evidence in favor of
(against) the null hypothesis.
FromEq. (6), the Bayes factor scales asB ∝ Δ, whereΔ is

the prior volume: wide priors favor the null hypothesis, and
vice versa tight priors favor the alternative hypothesis. This
implies one can artificially increase the odds for either of the
two competing models by restricting or enlarging the prior
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volume [40]. In the following, we fix this ambiguity by
restricting the original prior volume to the (1 − p) posterior
credible interval along each axis. For concreteness, the
fraction of discarded posterior samples is set to
p ¼ 1.973 × 10−9, which corresponds to a 6-σ interval if
these were Gaussian distributions. We then rescale B by the
ratio Δnew=Δold of the restricted and original prior volumes.
The rationale behind our choice is thatΔnew is just as large to
encompass the vast majority of the posterior support and
therefore, the resulting Bayes factor constitutes a somewhat
conservative estimate when testing GR. We denote the
resulting Bayes factor asB⋆ to distinguish it from the generic
expression inEq. (6), where the ambiguity in the prior volume
is not fixed.

Catalog variance. If the null hypothesis is correct, one
would naively expect that the posterior for μ and σ2 would
become sharper around μ ¼ σ2 ¼ 0 as more events are
added to the catalog; vice versa, it would peak away from
zero if the null hypothesis is violated in nature.
It is straightforward to check this expectation using a toy

model where x has Gaussian likelihoods for all the events

LðdijxÞ ∝ N ðxjμobs;i; σ2obs;iÞ ð7Þ
and errors are homoscedastic, i.e., σobs;i ¼ σobs ¼ const.
In the limit of large catalogsN ≫ 1, Eqs. (3) and (4) reduce
to [20]

pðμ; σ2jdÞ ≈ pðμjdÞpðσ2jdÞ; ð8Þ
with

pðμjdÞ ∝ N
�
μ

����meanðμobsÞ;
varðμobsÞ

N

�
ð9Þ

and

pðσ2jdÞ ∝ N
�
σ2
����varðμobsÞ − σ2obs;

2varðμobsÞ2
N

�
: ð10Þ

The true value of x under the null hypothesis is xtrue ¼ 0,
which implies the μobs;i’s are independently sampled from a
normal distribution

μobs;i ∼N ðμobs;ijμtrue ¼ 0; σ2obsÞ; ð11Þ

where the variance σ2obs accounts for the scatter due to noise
in the detector consistently with the assumption of normal
likelihoods [21,41]. The central limit theorem implies

meanðμobsÞ ∼N
�
meanðμobsÞ

����0; σ
2
obs

N

�
; ð12Þ

varðμobsÞ ∼N
�
varðμobsÞ

����σ2obs; 2σ
2
obs

N

�
: ð13Þ

Plugging Eq. (13) into Eq. (9) shows that the μ posterior has
variance ∼σ2obs=N around meanðμobsÞ at leading order in
N−1. By direct comparison with Eq. (12), it follows that
pðμjdÞ is not necessarily consistent with μ ¼ 0 as N
increases, but there is a chance that the particular draw
of fμobs;igNi¼1 from (11) shifts its peak away from the true
value μtrue ¼ σ2true ¼ 0. A similar conclusion applies to the
recovery of σ2 by direct comparison of Eqs. (10) and (13).
This toy model illustrates how the catalog variance is
associated with the finite size N of the catalog, along with a
consistent inclusion of the scattering of measurements due
to noise.
In writing Eqs. (9) and (10) we neglected the effects of

the prior πðμ; σ2Þ, i.e. we have assumed it is uniform and
unbounded. However, the condition that σ2 > 0 induces
boundary effects in pðσ2jdÞ. It follows that the posterior
pðμ; σ2jdÞ lacks a frequentist coverage of credible inter-
vals, that is, it is not true that Q0 > p in a fraction (1 − p)
of similar experiments. The consequent difficulty of the
statistical interpretation of Q0 was already raised
in Ref. [40].
We further highlight the impact of the catalog variance

by considering 1000 catalogs of N ¼ 104 events each, with
Gaussian likelihoods for x as per Eq. (7) and three different
choices for the stochastic uncertainties.

(i) First, we consider the case of homoscedastic like-
lihoods with σobs ¼ 0.1.

(ii) Then, we assume heteroscedastic Gaussian likeli-
hoods with σobs;i¼1=SNRi, where SNR∈ ½10; 1000�
is a random variable distributed according to
pðSNRÞ ∝ SNR−4 to mimic the density of SNRs
expected from realistic GW detections [42].

(iii) Finally, we isolate from the same heteroscedastic
catalogs only the events with SNR ≥ 50, which
mimics a scenario where one performs tests of
GR only on a loud subset of the available GW
catalog.

For each case, we draw the maximum-likelihood estimators
μobs;i from N ðμobs;ijμtrue ¼ 0; σ2obs;iÞ to capture noise
scattering.
We map the ðμ; σ2Þ posterior distribution using the

DYNESTY implementation of nested sampling [43] with
5000 live points and uniform priors over μ∈Uð−0.9; 0.9Þ
and σ2 ∈Uð0; 0.9Þ. While it is generally advised [33] to use
a log-uniform prior on scale parameters such as σ2,
Ref. [44] shows on formal grounds that this causes issues
in the context of hierarchical models if the likelihood has
finite nonzero support for σ2 ¼ 0 (which in our case
corresponds to the null hypothesis). Therefore, we opted
for a uniform prior in σ2.
Figure 1 shows the resulting coverage of Q0. To better

highlight the peculiarity of the null hypothesis, we repeat
the experiments without assuming that μtrue ¼ σ2true ¼ 0,
but instead sample ðμtrue; σ2trueÞ from their uniform priors at
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each catalog realization. As expected, when catalogs are
drawn from uniform priors in ðμtrue; σ2trueÞ, the quantile Q0

has a frequentist coverage. Instead, when drawing from the
null hypothesis, the recovered values of σ2 lie close to the
edge of the prior, which produces an excess of low values
ofQ0, thus pushing its cumulative distribution to the upper-
right portion of Fig. 1—see also the corresponding dis-
cussion in Ref. [35] in the context of tests of GR. That said,
while Q0 lacks a frequentist interpretation, it nonetheless
provides an upper-bound estimate of the false alarm rate
because Q0 > p in less than a fraction (1 − p) of the
catalog realizations. Figure 1 also shows that restricting to
high-SNR events does not reduce the effect of the catalog
variance, in agreement with our interpretation based on the
finite size of the catalog affected by noise realizations.

Bootstrapping. The catalog variance can be mitigated by
assigning uncertainties to the chosen estimator. We show-
case this idea by selecting a homoscedastic catalog reali-
zation with a high null-hypotesis quantile Q0 ¼ 0.98. The
corresponding Bayes factor is log10 B⋆ ¼ −0.65, indicat-
ing substantial but not decisive evidence against the null
hypothesis. After resampling for 1000 catalogs via boot-
strap, we find that Q0 > 0.77 and log10B⋆ ¼ −0.76þ1.37

−2.61 at
90% credibility. In particular, log10 B⋆ > 0 in 23% of the
bootstrapped catalogs, which is a non-negligible fraction
and would suggest great care in claiming that the meas-
urement provides evidence against the null hypothesis. This
toy model shows that our proposed strategy is robust in
mitigating false positives, even for catalogs with large
credible quantiles.

State-of-the-art application. We now apply our findings to
a state-of-the-art test of strong-field gravity with GWs. We
consider the PSEOBNR family [29,32,36,45] of binary-BH
waveforms, which are obtained by augmenting effective-
one-body templates with free parameters corresponding to
fractional deviations in the quasinormal modes of the
remnant BH. In the spirit of BH spectroscopy [46,47],
the PSEOBNR scheme has been used in tests of GR by
allowing for deviations δf̂220 and δτ̂220 in the dominant
frequency and damping time respectively [10,12,36]. The
latest iteration of these tests [12] uses 10 GW events and
indicates a moderate deviation of δτ̂220 from the GR value
δτ̂220 ¼ 0. While insufficient to claim inconsistencies with
GR, the authors themselves indicate this finding deserves
further investigation.
In order to illustrate the role of the catalog variance in the

interpretation of the results, we reproduce the PSEOBNR

analysis of Ref. [12] with a hierarchical combination of the
events. For consistency with Ref. [12], we recover the
ðμ; σÞ posterior and set uniform priors μ∈Uð−0.9; 0.9Þ and
σ ∈Uð0; 0.9Þ, covering a region that is much broader than
the resulting posterior. Quoting median and 90% credi-
bility, we obtain μ ¼ 0.02þ0.04

−0.04 , σ < 0.06 for δf̂220 and
μ ¼ 0.13þ0.13

−0.11 , σ < 0.19 for δτ̂220, which is in agreement
with the analysis of Ref. [12]. Using Eq. (5), we quantify
the consistency between GR and the data as Q0 ¼ 0.32 for
δf̂220 and Q0 ¼ 0.81 for δτ̂220. Using Bayes factors, we
find log10 B⋆ ¼ 1.49 for δf̂220 and log10 B⋆ ¼ 0.70 for
δτ̂220. In particular, we note that in the case of δτ̂220, even if
Q0 ¼ 0.81, the log-Bayes factor is positive and hence it
favors the null hypothesis.
We assign uncertainties toQ0 and log10 B⋆ by generating

1000 bootstrapped catalog realizations. For each of these,
we repeat the hierarchical analysis and extract the corre-
sponding values of Q0 and B⋆. The analysis of Ref. [12]
uses 10 GW events, which implies there are ∼105 ≫ 1000
[34] independent realizations and the probability of dupli-
cations is consequently small. Our results are shown in
Fig. 2. For δf̂220 we find that log10B⋆ ¼ 1.45þ0.25

−0.83 and
Q0 < 0.77 at 90% confidence. For δτ̂220, we find
log10B⋆ ¼ 0.62þ0.70

−1.19 and Q0 > 0.42.
Our bootstrap procedure returns broad histograms for

Q0; in particular, the credible quantile of the null hypoth-
esis for δτ̂220 can be as low as Q0 ¼ 0.42 within the 90%
range. Accounting for the catalog variance mitigates the
significance of the inference performed with the original
observed catalog. Moreover, the distribution of the Bayes
factors for δτ̂220 does not signal any substantial evidence
against the null hypothesis at 90% credibility; rather, 83%
of the samples have log10 B⋆ > 0, indicating support for
the null hypothesis.
Finally, the correlation betweenQ0 and log10 B⋆ shown in

Fig. 2 indicates that Bayes factors provide weaker evidence
against the null hypothesis than the corresponding credible

FIG. 1. Cumulative distribution function of Q0 for three sets of
catalog realizations. We consider Gaussian likelihoods with
homoscedastic errors (solid), heteroscedastic errors (dashed),
and heteroscedastic with an SNR cut (dash-dotted). Orange
and blue curves are produced by either assuming the null
hypothesis μtrue ¼ 0 ¼ σ2true ¼ 0 or drawing ðμtrue; σ2trueÞ from
their prior, respectively.
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level. In particular, while there are individual catalog
realizations with Q0 ≈ 1, the corresponding Bayes factors
barely meet the threshold for decisive evidence.

Discussion. Combining information from multiple obser-
vations is a natural strategy to strengthen one’s statistical
inference on a physical phenomenon. Testing gravity with
GWs is no exception. GR is a fundamental pillar of our
understanding of the Universe and, when the stakes are so
high, our confidence in experimental bounds becomes
critical. The interpretation of tests of GR with GW catalogs
depends on both the statistics (e.g. quantiles and Bayes
factors) as well as the techniques (e.g. hierarchical infer-
ence) used to combine the inferences in favor or against the
null hypothesis. Crucially, one must also quantify the
catalog variance originating from the single realization
of the catalog of GW events at our disposal.
In particular, three key points are worth stressing:
(i) The net effect of accounting for the catalog variance

is to soften one’s claim in favor of violations of GR.
(ii) This is attained by ascribing uncertainties to point

estimators of violations from GR. Uncertainties can
be quantified by producing multiple mock catalogs.
We propose a data-driven approach that does not
rely on assuming a population of sources but instead
resamples the observed catalog with repetition.

(iii) The catalog variance does not vanish as either the
size of the catalog or the SNR of the events increase
(as long as they remain finite).

Points (i) and (ii) are best exemplified on the BH
ringdown test we borrowed from the flagship analysis of
Ref. [12]. We show that, while the current catalog presents
a quantile Q0 that might be interpreted as a moderate
deviation from GR, this evidence turns out to be insignifi-
cant when the original measurement is considered as a part
of a distribution of bootstrapped estimators. We have
illustrated point (iii) with a toy model based on
Gaussian likelihoods.
Our findings lead to the conceptual issue of whether one

should test the null hypothesis using Bayesian model
selection in the context of tests of GR. As pointed out
in Ref. [40], reporting the evidence against GR with
Bayesian estimators using free deviation parameters is
questionable: results are prior dependent and not repar-
ametrization-invariant, while credible intervals lack a
frequentist interpretation. On the other hand, a frequentist
approach based on the p-value only assesses the likelihood
of the experimental outcome given the null hypothesis and
can be considered more resilient. Unfortunately, imple-
menting a pure p-value test in this context is, in practice,
unfeasible because one would need to know the true
population distribution of the events.
Bootstrapping is a possible way out but only provides a

partial solution. Bootstrap samples inevitably inherit the
peculiarities (e.g. outliers) of the specific catalog realization
we have observed.
A safer solution is to settle for weaker but more confident

statements. This can be done trivially by breaking down the
catalogs into chunks, using fewer events to compute the
chosen estimator but obtaining multiple estimates; these
estimates can then be used to construct histograms and
credible quantiles for the estimator. While trivial, this
strategy comes with the drawback that only a limited
number of chunks can be obtained without sacrificing a
significant fraction of the statistical power within the data.
We speculate another promising avenue in this direction is
to incorporate population inference into tests of GR [48]
while relying on the notion of “Bayesian p-values” [49].
While we concentrated on tests of GR, the catalog

variance is a generic effect. For instance, astrophysical
inferences from GW observations of binary populations
[50] and cosmological models [51] are impacted by the
catalog variance in much the same fashion. The consid-
erations put forward in this work are relevant to assess the
statistical significance of some of those findings, especially
when the significance itself is deemed to be weak.
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