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We propose a novel method for renormalization group improvement of thermally resummed effective
potential. In our method, β-functions are temperature dependent as a consequence of the divergence
structure in resummed perturbation theory. In contrast to the ordinary MS scheme, the renormalization
group invariance of the resummed finite-temperature effective potential holds order by order, which
significantly mitigates a notorious renormalization scale dependence of phase transition quantities such as a
critical temperature even at the one-loop order. We also devise a tractable method that enables one to
incorporate temperature-dependent higher-order corrections by fully exploiting the renormalization group
invariance.
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Introduction. Thermal effective potential has been widely
used to analyze phase transitions such as electroweak phase
transition (EWPT). As is well known, the perturbative
method to evaluate the effective potential suffers from bad
high-temperature behavior even in a theory with small
coupling constants [1,2]. One of the remedies is to
incorporate the most dominant part of the higher-order
terms at high temperatures, that is, the mass corrections
which are proportional to T2, into the lower-order con-
tributions in a systematic manner. This is the so-called
resummation of the thermal mass, or, simply, the thermal
resummation. The resummation also cures the infrared
divergence originating from the zero Matsubara frequency
mode in bosonic-loop contributions.1 The renormalization-
group (RG) improvement of the effective potential is
another method to rearrange the perturbation series, in
which some of higher-oder contributions are taken into the
lower-order terms in perturbation theory [3–6]. It is based
on the fact that the bare Lagrangian, hence, the all-order

results including the counterterms (CTs), be independent of
the renormalization scale. Although the perturbative effec-
tive potential has an explicit scale dependence at some
fixed order, the scale invariance is improved by introducing
the running parameters. Once the effective potential is
made scale invariant at some order, the scale can be fixed in
such a way that some of the higher-order terms vanish. The
running parameters defined by use of β-functions have
been often determined by renormalizing the theory with the
MS-scheme. At finite temperatures, a new scale-dependent
term arises, which cannot be taken care of by the running
parameters defined by the MS-scheme. This situation is
made more serious, when one executes the thermal resum-
mation, leading to violation of the order-by-order RG
invariance of the effective potential (for other approaches,
see, e.g., Refs. [7,8]).
In this paper, we propose a novel RG improvement

method for the resummed effective potentials in which the
RG invariance holds order by order. In our method,
β-functions are properly defined in resummed perturbation
theory instead of using those in the MS scheme. As a
consequence, our β-functions of the dimensionful param-
eters are temperature dependent. For illustrative purpose,
we first work in the ϕ4 theory and explicitly show the RG
invariance of the resummed one- and two-loop effective
potentials in our scheme. Moreover, we further refine the
effective potential by incorporating a series of dominant
temperature-dependent higher-order terms by taking advan-
tage of the RG invariance. To apply our scheme to a case
of first-order phase transition as needed for electroweak

*Corresponding author: eibunsenaha@vlu.edu.vn
†funakubo@cc.saga-u.ac.jp

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

1Since the smallest frequency of a fermion is πT, the effect of
the fermionic thermal resummation is much weaker than the
bosonic one, so one usually considers only the bosonic thermal
resummation.

PHYSICAL REVIEW D 109, L071901 (2024)
Letter

2470-0010=2024=109(7)=L071901(7) L071901-1 Published by the American Physical Society

https://orcid.org/0000-0002-7735-8962
https://orcid.org/0000-0002-4647-4311
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.109.L071901&domain=pdf&date_stamp=2024-04-12
https://doi.org/10.1103/PhysRevD.109.L071901
https://doi.org/10.1103/PhysRevD.109.L071901
https://doi.org/10.1103/PhysRevD.109.L071901
https://doi.org/10.1103/PhysRevD.109.L071901
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


baryogenesis [9] (for reviews see, e.g., Ref. [10]), we extend
the ϕ4 theory by adding another real scalar field. We make
numerical comparisons between the MS and our schemes
and show that the latter yields much less renormalization
scale dependence on a critical temperature even at the one-
loop level. At the two-loop level, however, not much
numerical differences are observed between the two schemes
unless hard thermal loops are significantly sizable. Our
numerical study also shows that our refined RG-improved
one-loop effective potential can capture the two-loop order
effects properly. This would be particularly useful when the
two-loop effective potential is not available.

β-functions in the resummed theory. We first clarify
differences between β-functions in the MS and those in
our scheme. To make our discussion simpler, we focus
on scalar theories. The derivation of β-functions in more
general theories is given in Ref. [11] (see also Ref. [12]).
Let us collectively denote scalar fields and couplings as
ϕiðxÞ and gk and scalar masses as m2

a. We also define a
vacuum energy as Ω. As we see in the next section, Ω is
also needed to show the RG invariance of the effective
potential.
In this work, we adopt the dimensional regularization in

which the spacetime dimension is analytically continued to
d ¼ 4 − ϵ dimension. Since the β-functions of the dimen-
sionless parameters are not affected within the scope of our
discussion here, we derive only those of dimensionful
parameters. In the MS scheme, the bare parameters are
expressed in terms of the renormalized ones and ϵ poles as

m2
Ba ¼

 
δab þ

X∞
n¼1

bðnÞab ðgÞ
ϵn

!
m2

b; ð1Þ

ΩBμ
ϵ ¼ Ωþ

X∞
n¼1

ωnðgÞ
ϵn

; ð2Þ

where μ is an arbitrary scale. From the μ independence of
the bare parameters, one can define the β-functions of each
parameter as

m2
aβm2

a
¼ lim

ϵ→0
μ
dm2

a

dμ
¼
X
k;b

bð1Þab;kgkm
2
b; ð3Þ

βΩ ¼ lim
ϵ→0

μ
dΩ
dμ

¼ ω1; ð4Þ

where bð1Þab;k ¼ dbð1Þab =dgk. It is important to note that the
β-functions are given by the coefficients of the single ϵ
pole, which implies that if those coefficients are modified
by thermal resummations, the β-functions would no longer
remain the same for the theoretical consistency. This is
exactly the case we consider in the following.

In resummed perturbation theories, the Lagrangian is
reorganized as [13]

LB ¼ LR þ LCT

¼
�
LR −

1

2
ΣaðTÞϕ2

a

�
þ
�
LCT þ

1

2
ΣaðTÞϕ2

a

�
; ð5Þ

where ΣaðTÞ denotes the thermal mass of the scalar ϕa. At
the leading order, ΣaðTÞ ¼ OðgiT2Þ with gi representing
scalar quartic couplings. Even though nothing has changed
in the bare Lagrangian, ΣaðTÞ in the first square brackets is
regarded as the zeroth order in the resummed perturbation
theory while that in the second ones is part of the counter-
term (CT) which is one order higher in this perturbative
expansion (referred to as thermal counterterm hereafter).
Because of this reorganization, the propagators of the
scalars are temperature dependent, and one encounters
temperature-dependent divergences when computing effec-
tive potentials at loop levels. Although such divergences
must be canceled in the all-order calculation, they inevi-
tably appear at a fixed order in the resummed perturbation
theory. With this consideration, we modify Eq. (1) as

m2
Ba ¼

 
δab þ

X∞
n¼1

bðnÞab ðgÞ
ϵn

!
m2

b þ
X∞
n¼1

b̃ðnÞab ðgÞ
ϵn

ΣbðTÞ: ð6Þ

The order-by-order RG invariance is another concern after
the thermal resummation. There may exist resummed
perturbation theories in which ΣaðTÞ is self-consistently
determined [14]. In our approach, however, ΣaðTÞ is
predetermined as a solution to the gap equation, and not
by the perturbation theory considered here [11]. For a
practical purpose, we use ΣaðTÞ that is shown to be scale
invariant up to the two-loop level in the MS scheme (for
details, see Appendix B in Ref. [11]). The residual scale
dependence of ΣaðTÞ is a matter of precision in its
computation and can be improved by including higher-
order terms in the gap equation. From our perspective, this
is a separate matter from the scale dependence issue of the
effective potential that we will discuss below, and we do not
combine the two different scale dependencies for consis-
tency. By virtue of the scale invariance of ΣaðTÞ, we can
choose the couplings at a particular fixed scale giðμfixedÞ for
ΣaðTÞ. For simplicity, we employ initial values of the RG
running for ΣaðTÞ and a high-temperature approximation,
which is explained in detail in Appendix B of Ref. [11]. We
refer to dΣaðTÞ=dμ ¼ 0 as the consistency condition and
prove the order-by-order RG invariance of the resummed
effective potentials up to the two-loop level. Following the
same procedure as in the MS scheme with the consistency
condition, one obtains

m2
aβm2

a
¼
X
k;b

�
bð1Þab;km

2
b þ b̃ð1Þab;kΣb

�
σkgk: ð7Þ

KOICHI FUNAKUBO and EIBUN SENAHA PHYS. REV. D 109, L071901 (2024)

L071901-2



We note that although the vacuum energy is also modified
by the thermal resummation, the relation βΩ ¼ ω1 still
holds under the aforementioned consistency condition.

ϕ4 theory. We demonstrate how our RG scheme works
using the ϕ4 theory. The bare Lagrangian is given by

LB ¼ 1

2
∂μΦB∂

μΦB − VBðΦBÞ; ð8Þ

VBðΦBÞ ¼ ΩB −
ν2B
2
Φ2 þ λB

4!
Φ4

B: ð9Þ

As mentioned in Sec. II, after decomposing LB into LR and
LCT, we subtract and add ΣðTÞ in each part. The explicit
forms of CTs are summarized in Ref. [11]. With the
resummed Lagrangian, we evaluate the effective potential
up to the two-loop level. Denoting the classical background
field as φ, the tree-level effective potential has the form

V0ðφÞ ¼ Ωþ 1

2

�
−ν2 þ ΣðTÞ�φ2 þ λμϵ

4!
φ4: ð10Þ

The field-dependent mass is defined as

M2 ¼ ∂
2V0

∂φ2
¼ m2 þ ΣðTÞ; ð11Þ

with m2 ¼ −ν2 þ λμϵφ2=2. Using a propagator with M2,
one can obtain the one-loop correction to the effective
potential [13]

μϵV1ðφÞ ¼
M4

4ð16π2Þ
�
−
2

ϵ
þ ln

M2

μ̄2
−
3

2
þOðϵÞ

	
; ð12Þ

where μ̄ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4πe−γE

p
μ ≃ 2.66μ with γE being the Euler

constant. In our renormalization scheme, we remove the
divergences including the temperature-dependent pieces by
the one-loop CTs, resulting in

δð1ÞΩ ¼ 1

ϵ

ðν2 − ΣÞ2
32π2

; δð1Þν2 ¼ 1

ϵ

λðν2 − ΣÞ
16π2

;

δð1Þλ ¼ 1

ϵ

3λ2

16π2
: ð13Þ

The bare ν2B is expressed as

ν2B ¼ Z−1
Φ ðν2 þ δð1Þν2Þ; ð14Þ

where ZΦ denotes the wave function renormalization
constant of Φ, and ZΦ ¼ 1 at the one-loop level. From
Eq. (14), the coefficient of the single ϵ pole is found to
be b1ðλÞ ¼ −b̃1ðλÞ ¼ λ=16π2. Plugging them into the
formula (7), one obtains

ν2βð1Þ
ν2

¼ λðν2 − ΣÞ
16π2

: ð15Þ

By doing the same step, one can find the β-functions of the
remaining parameters and γ-function as

βð1ÞΩ ¼ ðν2 − ΣÞ2
32π2

; βð1Þλ ¼ 3λ2

16π2
; γð1ÞΦ ¼ 0: ð16Þ

Note that the β-functions in our scheme are reduced to
those in the MS scheme by taking Σ ¼ 0, which implies
that differences between our scheme and MS scheme could
be sizable when Σ dominates over ν2. We also note that in
the MS scheme, the temperature-dependent divergences
appearing in Eq. (12) remain at this order, and higher-order
loop contributions are needed to cancel them [15] (See also
Ref. [16]).2

After the renormalization, the resummed one-loop effec-
tive potential is given by

VeffðφÞ ¼ V0ðφÞ þ V1ðφÞ; ð17Þ

where

V0ðφÞ ¼ Ωþ 1

2
ð−ν2 þ ΣðTÞÞφ2 þ λ

4!
φ4; ð18Þ

V1ðφÞ ¼
M4

4ð16π2Þ
�
ln
M2

μ̄2
−
3

2

	
þ T4

2π2
IBðA2Þ − 1

2
ΣðTÞφ2;

ð19Þ

with A2 ¼ M2=T2 and the thermal function of the boson
(IB) is defined as

IBðA2Þ ¼
Z

∞

0

dx x2 ln
�
1 − e−

ffiffiffiffiffiffiffiffiffiffi
x2þA2

p �
: ð20Þ

The last term in V1ðφ;TÞ is nothing but the thermal CT. In
the high-T expansion, the þΣðTÞφ2=2 term arises from
T4IB=ð2π2Þ, which is canceled by the thermal CT, avoiding
the double counting of ΣðTÞφ2=2.
As is the one-loop level, we regularize the two-loop

effective potential by requiring that all the divergences be
absorbed by the CTs, As a result, the two-loop contribu-
tions to the β-functions of the model parameters in our
scheme are, respectively, given by

2If LR and LCT are defined as in Refs. [17,18] instead of the
way they are defined in Eq. (5), the order-by-order renormaliza-
tion with the MS scheme also holds by regarding the thermal
mass term as one-order higher.
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γð2ÞΦ ¼ λ2

12ð16π2Þ2 ; ð21Þ

βð2ÞΩ ¼ ðν2 − ΣÞΣ
16π2

; ð22Þ

ν2βð2Þ
ν2

¼ λ2ð−ν2 þ ΣÞ
ð16π2Þ2 þ λΣ

16π2
þ 2ν2γð2ÞΦ ; ð23Þ

βð2Þλ ¼ −
6λ3

ð16π2Þ2 þ 4λγð2ÞΦ : ð24Þ

We should note that βð2Þ
ν2

contains the λΣ=ð16π2ν2Þ term that
is only one-loop suppressed. This is exactly the same form
as the thermal correction term in Eq. (15) with an opposite
sign. Therefore, they are seemingly canceled with each
other in the sum of the one- and two-loop β-functions

βν2 ¼ βð1Þ
ν2

þ βð2Þ
ν2
. However, when we evaluate βν2 pertur-

batively, λΣ=ð16π2ν2Þ in βð2Þ
ν2

should be treated as the one-

order higher term than that in βð1Þ
ν2
. In contrast to the MS

scheme, βð2ÞΩ is nonzero in our scheme.
After the renormalization, the two-loop correction to the

resummed effective potential is cast into the form

V2ðφÞ ¼
λ

8
Ī2ðMÞ − λ2φ2

12
H̃ðMÞ − 1

2
ΣðTÞĪðMÞ; ð25Þ

where the thermal functions H̃ðMÞ and ĪðMÞ are defined in
Ref. [11]. The last term comes from the thermal CT which
plays a role in eliminating the double counting and linear-
like terms in φ such as OððM2Þ1=2T3Þ [19].
Now we scrutinize the RG invariances of the resummed

effective potentials obtained above. The effective potential
satisfies RGE

0 ¼ μ
dVeff

dμ
≡DVeff

¼
�
μ
∂

∂μ
þ ν2βν2

∂

∂ν2
þ βλ

∂

∂λ
− γΦφ

∂

∂φ
þ βΩ

∂

∂Ω

�
Veff :

ð26Þ

Let us check the RG invariance of the resummed
effective potential at the one-loop level. Applying (26)
to V0 and V1 respectively, one finds

DV0jone-loop ¼ βð1ÞΩ −
ν2

2
βð1Þ
ν2
φ2 þ βð1Þλ

4!
φ4 ¼ M4

32π2
; ð27Þ

DV1jone−loop ¼ μ
∂V1

∂μ
¼ −

M4

32π2
þO

�
1

ð16π2Þ2
	
; ð28Þ

where the consistency condition DΣ ¼ 0 is used. There-
fore, one gets DðV0 þ V1Þ ¼ 0þOð1=ð16π2Þ2Þ, and the
error is the two-loop order. On the other hand, if one uses
the MS scheme, the error is estimated as DðV0þV1ÞMS¼
ð−2m2þΣÞΣ=ð32π2ÞþOð1=ð16π2Þ2Þ→−λφ2Σ=ð32π2Þþ
Oð1=ð16π2Þ2Þ, where the φ-independent terms are sup-
pressed after the right arrow. Note that despite the lack of
the RG invariance in the MS scheme, the scale dependence
could be unexpectedly smaller than that in our scheme due
to an accidental cancellation between the two different
errors. An example is given in Ref. [11]. However, such a
less scale dependence has no robust footing.
The proof of the RG invariance at the two-loop level

is also straightforward. Applying the derivative operator
D to the resummed effective potentials (18), (19), and (25),
respectively, we can verify that DðV0 þV1 þV2Þjtwo-loop ¼
0þOð1=ð16π2Þ3Þ. We here emphasize again that the order-
by-order RG invariance holds by virtue of the modified
β-functions in our scheme.
Now we consider a further refinement that fully exploits

the RG invariance to incorporate a series of temperature-
dependent higher-order terms. The explicit form of the
resummed one-loop effective potential that satisfies
RGE (26) is

V̄effðφ̄; tÞ ¼ V̄0ðφ̄; tÞ þ V̄1ðφ̄; tÞ

¼ Ω̄þ 1

2
ð−ν̄2 þΣÞφ̄2 þ λ̄

4!
φ̄4 þ M̄4

4ð16π2Þ

×

�
ln

M̄2

e2tμ̄20
−
3

2

	
þ T4

2π2
IBðĀ2Þ− 1

2
Σφ̄2; ð29Þ

with Ā¼ M̄=T, and M̄2 ¼−ν̄2þΣðTÞþ λ̄φ̄2=2. The barred
parameters Ω̄, ν̄2, λ̄, and φ̄ are the running parameters as
functions of t ¼ lnðμ̄=μ̄0Þ with μ̄0 being an initial scale.
Hereafter, the unbarred parameters are defined at t ¼ 0.
Because t is arbitrary, it would be preferable to determine it
in such a way that dominant higher-order terms are incorpo-
rated into the potential (29). At zero temperature, we could
choose tðφÞ ¼ lnðm̄2=μ̄20Þ=2 to absorb logarithmic terms
that could ruin the validity of perturbativity in some
domain [4,5]. At finite temperature, however, this choice
is not able to tame dominant temperature-dependent terms
arising from

ĪðM̄Þ ≃
T≫M̄

T2

12
: ð30Þ

For this reason and because the truncation error of RGE at
this order is given by

dV̄effðφ̄; tÞ
dt

¼ ∂V̄effðφ̄; tÞ
∂t

¼ 0þ 1

2

∂M̄2

∂t
ĪðM̄Þ; ð31Þ
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we choose t to eliminate this error at each φ, yielding

tðφÞ ¼ 8π2

M̄2
ĪðM̄Þt¼0: ð32Þ

In this scheme, the higher-order terms in ĪðM̄Þ appearing
beyond the one-loop order can be taken into (29) through
the t-φ relation in Eq. (32). In the zero temperature limit,
Eq. (32) is reduced to tðφÞ ¼ lnðm̄2=eμ̄20Þ=2. Therefore,
our scheme in this limit is related to the aforementioned
scheme tðφÞ ¼ lnðm̄2=μ̄20Þ=2 by changing the input scale μ̄0
to μ̄0=

ffiffiffi
e

p
.

Let us denote the RG-improved potential (29) with

l-loop order β-functions as V̄ðlÞ
eff ðφ; tðφÞÞ, which contains

some of the higher-order terms beyond the l-loop, arising
from the running parameters even including the vacuum

energy Ω̄ðtÞ. It is easy to check that V̄ð1Þ
eff ðφ; tðφÞÞ include

ĪðM̄Þ terms in the two-loop effective potential (25) using
the t expansion of (29)

V̄effðφ̄; tÞ ¼ V̄effðφ; 0Þ þ
∂V̄effðφ̄; tÞ

∂t

����
t¼0

t

þ 1

2

∂
2V̄effðφ̄; tÞ

∂t2

����
t¼0

t2 þ � � � ð33Þ

and the t-φ relation (32). From those expressions, for
example, it follows that

V̄ð1Þ
eff ðφ̄; tðφÞÞ ¼ V̄ð1Þ

eff ðφ; 0Þ þ
λðM2 þ λφ2Þ

8M2
Ī2ðMÞt¼0: ð34Þ

The second term is exactly the same as OðĪ2ðMÞÞ terms in

V2ðφÞ given in Eq. (25). On the other hand, V̄ð2Þ
eff ðφ̄; tðφÞÞ

contains even OðĪðMÞÞ terms including the thermal CT in
V2ðφÞ. This appears analogous to the leading and next-to-
leading logarithmic resummations at zero temperature [4,5].

An important difference is that t-expanded V̄ð2Þ
eff ðφ̄; tðφÞÞ

includes more terms that are not present in the fixed-order
(t ¼ 0) V2ðφÞ in Eq. (25) [11]. Since the ϕ4 theory does not
accommodate the first-order phase transition, we will con-
sider a multiscalar theory in the next section.

ϕ4 theory with additional scalar.As the simplest extension,
another real scalar field is added to the ϕ4 theory in order to
compare quantities related to first-order phase transition in
both MS and our schemes. For illustration, we consider a
simplified potential by imposing two Z2 symmetries. The
bare potential of the extended model has the form

V0ðΦB1;ΦB2Þ ¼ ΩB þ ν2B1
2

Φ2
1 þ

ν2B2
2

Φ2
B2 þ

λB1
4!

Φ4
B1

þ λB2
4!

Φ4
B2 þ

λB3
4

Φ2
B1Φ2

B2; ð35Þ

which is invariant under Z2 symmetries ΦB1 → −ΦB1 and
ΦB2 → −ΦB2. As in the ϕ4 theory, we subtract and add
the thermal masses of Φ1 and Φ2 (denoted as Σ1 and Σ2) in
the renormalized Lagrangian and CTs, respectively. In this
study, we assume that only Φ1 develops the vacuum
expectation value while Φ2 does not. For later use, the
classical background field of Φ1 is denoted as φ. It is
straightforward to show that the finite temperature effective
potentials up to the two-loop level satisfy RGE by virtue of
the temperature-dependent β-functions in our scheme [11].
To improve the potentials further, we choose t in order to
incorporate a series of temperature-dependent higher-order
terms. For instance, at the one-loop order, we impose

∂V̄effðφ̄; tÞ
∂t

¼ 0þ 1

2

X
i

∂M̄2
i

∂t
ĪðM̄iÞ ¼ 0; ð36Þ

where M̄2
1 ¼ ν̄21 þΣ1ðTÞ þ λ̄1φ̄

2=2 and M̄2
2 ¼ ν̄22 þΣ2ðTÞ þ

λ̄3φ̄
2=2 with Σ1ðTÞ ¼ ðλ1 þ λ3ÞT2=24 and Σ2ðTÞ ¼

ðλ2 þ λ3ÞT2=24. With this condition, the RG-improved
effective potential is given by

V̄effðφ̄; tðφÞÞ ¼ V̄0ðφ̄; tðφÞÞ þ V̄1ðφ̄; tðφÞÞ

¼ Ω̄þ 1

2
ðν̄21 þ Σ1ðTÞÞφ̄2 þ λ̄1

4!
φ̄4

þ
X
i¼1;2

�
M̄4

i

4ð16π2Þ
�
ln

M̄2
i

e2tμ̄20
−
3

2

	

þ T4

2π2
IBðĀ2

i Þ
�
−
1

2
Σ1ðTÞφ̄2; ð37Þ

where Āi ¼ M̄i=T, and the explicit form of tðφÞ is

tðφÞ ¼ 8π2
P

i
∂M̄2

i
∂t ĪðM̄iÞt¼0P

i M̄
2
i
∂M̄2

i
∂t

: ð38Þ

Expanding (37) in powers of t, V̄ð1Þ
eff ðφ̄; tÞ is cast into the

form

V̄ð1Þ
eff ðφ̄; tðφÞÞ ¼ V̄ð1Þ

eff ðφ; 0Þ þ
�P

i αiĪðMiÞt¼0

�
2

8
P

i αiM
2
i

; ð39Þ

where αi ¼ 16π2∂M̄2
i =∂tjt¼0. Unlike the ϕ4 theory, the

form of the second term does not coincide with that in the
fixed-order two-loop effective potential V2. Such a mis-
match between the RG-improved and fixed-order effective
potentials is peculiar to the multi-field case, which is
attributed to the fact that the single parameter t alone
cannot incorporate two different ĪðMiÞ terms correctly in
principle. We investigate to what extent our scheme can
capture the higher-order effects by comparing with the two-
loop order result.
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In this model, there are 5 parameter in the scalar
potential, i.e., ðν21; ν22; λ1; λ2; λ3Þ. Using vacuum and mass
conditions, we convert them into ðv; ν22; mϕ1

; λ2; mϕ2
Þ. As

an example of the first-order phase transition, we take
vðμ̄0Þ ¼ 200, mϕ1

ðμ̄0Þ ¼ 5.0, mϕ2
ðμ̄0Þ ¼ 125, ν22ðμ̄0Þ ¼

85.02, λ2ðμ̄0Þ ¼ 5.0, where ν21ðμ̄0Þ and λ1ðμ̄0Þ are deter-
mined by the first and second derivatives of the effective
potentials at a given order while λ3ðμ̄0Þ at the tree level. μ̄0
is fixed by the condition tðφ ¼ vÞ ¼ 0. At the both one-
and two-loop levels, μ̄0 ≃ 75.81. The dimensionful param-
eters are given in units of any mass scale. Because of the
smallness of mϕ1

, the appearance of the imaginary parts of
the effective potentials is only limited to low temperature,
and the effective potentials are all real and well-defined
near critical temperatures TC, where the potentials have two
degenerate minima.
In Fig. 1, vðTÞ=T are shown as a function of the

temperature T in the MS (left) and our (right) schemes,
respectively. The dotted and dashed curves in blue re-
present the results obtained by using the one-loop effective
potential (37) in the cases of t ¼ 0 and ln 5, respectively.
The intersections between the horizontal axis and each
curve represent TC. As clearly seen, the renormalization
scale dependence on TC in the MS case is much larger than
that in our scheme. This is due to a large violation of RG
invariance in the former. On the other hand, the dot-dashed
and two-dot-dashed lines in red correspond to the results
using (37) and the two-loop effective potential V̄2ðφ̄; tÞ [the
RG-improved version of Eq. (25) but with the two scalars]
with t ¼ 0 and ln 5, respectively. In those cases, the re-
normalization scale dependence is even milder than that
in the one-loop result with our scheme. Note that the

improvement in the MS scheme is because of the partial
restoration of the RG invariance. One can explicitly check
that the effective potential follows the RG invariance up to
theOðλ2i T2Þ order in the high-temperature limit [19]. In this
parameter set, the residual RG-noninvariant terms are
numerically small and the truncation errors become dom-
inant, which explains the two-loop results. We also overlay

the results by use of the effective potentials V̄ð1Þ
eff ðφ̄; tðφÞÞ

and V̄ð2Þ
eff ðφ̄; tðφÞÞ with the t-φ relation (38). The former is

denoted by the solid line in gray while the latter by thick
solid line in black. One can see that vðTCÞ=TC using

V̄ð2Þ
eff ðφ̄; tðφÞÞ in both schemes yield vðTCÞ=TC ≃ 2.2,

which lies within the two-loop level scale uncertainties,
i.e., 2.1≲ vðTCÞ=TC ≲ 2.3 (MS scheme) and 2.2≲
vðTCÞ=TC ≲ 2.3 (our scheme), while in the cases using

V̄ð1Þ
eff ðφ̄; tðφÞÞ, it is found that vðTCÞ=TC ≃ 1.9ð2.1Þ in our

(MS) scheme, respectively. This demonstration suggests

that V̄ð2Þ
eff ðφ̄; tðφÞÞ can give the results closer to those at the

two-loop order.

Conclusion. We have proposed the novel method for re-
normalization group improvement of thermally resummed
effective potential. In our method, the RG invariance of the
resummed finite-temperature effective potential holds order
by order since the β-functions are correctly defined in
resummed perturbation theory. Taking the extended ϕ4

theory as an example, we showed that the renormalization
scale dependence of the first-order phase transition quan-
tities, especially TC in our scheme is much smaller than that
in the MS scheme even at the one-loop level. At the two-
loop level, however, no significant differences are observed
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FIG. 1. vðTÞ=T as a function of T in the MS scheme (left) and our scheme (right). We take vðμ̄0Þ ¼ 200, mϕ1
ðμ̄0Þ ¼ 5.0,

mϕ2
ðμ̄0Þ ¼ 125, ν22ðμ̄0Þ ¼ 85.02, λ2ðμ̄0Þ ¼ 5.0, where ν21ðμ̄0Þ and λ1ðμ̄0Þ are determined by the first and second derivatives of the

effective potentials at a given order while λ3ðμ̄0Þ at the tree-level. μ̄0 is fixed by the condition tðφ ¼ vÞ ¼ 0. At the both one- and two-
loop levels, μ̄0 ≃ 75.81. The dimensionful parameters are expressed in units of any mass scale.
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in both schemes. This is because that the RG invariance in
the MS is restored up to Oðλ2i T2Þ order in the high
temperature limit and the residual RG-noninvariant terms
are numerically unimportant. We also devised the tractable
method that enables one to incorporate a series of temper-
ature-dependent higher-order corrections utilizing the RG

invariance in our scheme. Applying this method to RG-
improved one-loop effective potential, vðTCÞ=TC in the

case of V̄ð2Þ
eff ðφ̄; tðφÞÞ falls within the errors of the two-loop

order renormalization scale dependence, suggesting that
our refined method could be a practical choice when the
two-loop effective potential is not available.
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