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We discuss a novel effective-field-theory-based approach for extracting two-body scattering information
from finite volume energies, serving as an alternative to Lüscher’s method. By explicitly incorporating one-
pion exchange, we overcome the challenging left-hand cut problem in Lüscher’s method and can handle
finite volume energy levels both below and above the left-hand cut. Applied to the lattice data for DD�

scattering at a pion mass of 280 MeV, as an illustrative example, our results reveal the significant impact of
the one-pion exchange on P-wave and S-wave phase shifts. The pole position of the Tccð3875Þþ state,
extracted from the finite-volume energy levels at this pion mass while taking into account left-hand cut
effects, range corrections and partial-wave mixing, is consistent with a near-threshold resonance. This
study demonstrates, for the first time, that two-body scattering information can be reliably extracted from
lattice spectra including the left-hand cut.
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Introduction. Over the last two decades, numerous exotic
hadronic states have been discovered in the heavy quark
sector, challenging conventional quark models. Quantum
chromodynamics (QCD), with its color confinement, is
compatible with a wide range of color-neutral hadrons,
such as multiquarks, hadronic molecules, hybrids, glueballs
etc., see Refs. [1–8] for the review articles. Yet, the specific
configurations that are realized in nature remain enigmatic.
Consequently, experimental searches for exotic hadrons
and the analysis of data in a manner consistent with
unitarity and analyticity, allowing for the appropriate
extraction of pole positions, are fundamental for enhancing
our understanding of the strong interaction in the Standard
Model. Additionally, the pertinent information can be
gained from lattice simulations—a first principle approach
to solve QCD in a nonperturbative regime, see Refs. [9–14]
for recent reviews.
Recently, LHCb observed the first manifestly exotic

doubly charmed narrow resonance Tccð3875Þþ, whose
minimal quark content is ccūd̄ [15,16]. With its mass
being just a few hundreds keV below the D�þD0 threshold
and the width almost completely dominated by the
only available strong decay to DDπ, this state has been
extensively analyzed using low-energy effective field

theories (EFT) [17–22] and phenomenological models,
see, e.g., [7] and references therein.
The Tcc has also been recently investigated in lattice

QCD [23–25]. In the first two studies, the Lüscher method
was employed to determine theDD� phase shifts (step 1) at
pion masses of 280 and 350 MeV, respectively. The
extracted infinite-volume phase shifts were then parame-
trized using the effective-range expansion (ERE) (step 2),
leading to the determination of low-energy parameters for
DD� scattering, namely the scattering length and effective
range. Furthermore, the pole position determined in
Ref. [23] is consistent with the Tcc being a virtual state,
indicative of its molecular nature [26]. However, the
analyses of Refs. [23,24] were questioned in a recent study
[27], which highlighted the important role of the one-pion
exchange (OPE), which brings a new scale into the problem
from a nearby left-hand cut (lhc). The presence of the lhc
restricts the ERE, commonly used for analyzing infinite
volume phase shifts at step 2, to a very narrow energy
range, rendering it unsuitable for accurate pole extractions
[27]. Moreover, the validity of the Lüscher formula
[28–31], which is the cornerstone for extracting infinite
volume amplitudes from finite volume (FV) energy levels
at step 1, becomes questionable in the presence of a nearby
lhc [32–34].
In this study, we resolve the challenging lhc problem

inherent in Lüscher’s method, which is fundamental for
extracting two-body scattering information from finite
volume energy spectra. This achievement is made possible
by employing a chiral EFT-based approach, which explic-
itly incorporates the longest-range interaction from the
OPE.We can, therefore, extract infinite volume observables
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from finite volume energy levels both below and above the
lhc. Our method also naturally accounts for range effects
and exponentially suppressed corrections related to the
OPE [35]. Additionally, the formulation of chiral EFT
using the plane wave basis [36] enables us to investigate
and understand the impact of partial-wave mixing in a finite
volume on the extracted phase shifts.
In parallel to our work, a modified Lüscher formula was

proposed to address the lhc problem in Ref. [32]; however,
no practical implementations of this approach to lattice data
were conducted. To demonstrate our method, we undertake
a thorough analysis of lattice energy levels from Ref. [23]
to extract, for the first time, the pole of the Tcc state while
considering all the effects above and quantifying the
uncertainties. Our method is general and applicable to
the analysis of a wide range of hadronic reactions utilizing
lattice energy levels.

Framework. In the 1990s, Lüscher established a method
that connects the infinite-volume scattering matrix TðEÞ to
the discrete energy levels EFV of a system in a periodic box
[28,29]. The Lüscher formula, also known as Lüscher’s
quantization conditions (LQCs) can be schematically
expressed as [9,13]

det½F−1ðE;P; LÞ − 8πiTðEÞ� ¼ 0; ð1Þ

where F−1ðE;P; LÞ is a known quantity that captures the
kinematics of the finite volume. It depends on the box size
L, the total momentum of the two-body system P and the
total energy E. Equation (1) determines a set of lattice
energy levels EFV if the infinite-volume scattering ampli-
tude TðEÞ is known. However, to obtain observables in the
infinite volume, a solution of the inverse problem is
required, where TðEÞ is extracted from EFV. The method
is applicable to two-body scattering, including various
partial waves and coupled hadron-hadron channels below
the lowest three-body threshold. However, while this
approach is generally model-independent, it is valid under
certain conditions. First, the box size L is required to be
significantly larger than the interaction range R, in order to
justify the neglect of exponentially suppressed corrections
∼e−L=R. Yet, for not very large volumes, these exponen-
tially suppressed terms, governed by the longest-range OPE
interaction, can be numerically significant [35]. Another
complication stems from breaking the rotational symmetry
in cubic boxes, which results in energy levels typically
receiving contributions from multiple partial waves
[29,37]. Partial wave mixing is sometimes disregarded at
very low energies due to the threshold suppression of
higher partial waves, Tl ∼ El, ensuring a one-to-one cor-
respondence between the phase shifts and the FV energy
levels. However, for more general cases where the partial
wave mixing effect is significant, this correspondence is
lost, and a more complex formalism involving appropriate

parameterization of the T-matrix is required to determine
scattering information, see, e.g., [38,39] and references
therein. One option for parameterization is the ERE [40],
which, however, is only valid in a very narrow energy range
limited by the lhc [27]. Finally and most importantly,
Lüscher’s quantization conditions fail in the presence of
the nearby lhc [32,33,41]. Indeed, because the amplitude
TðEÞ is complex below it, while the function F−1ðE;P; LÞ
remains real, Eq. (1) can not be applied at least below the lhc.
In this work, we advocate an alternative approach (see

also [36]), which allows one to account for all effects
discussed above, thereby avoiding the complexity of
solving the inverse problem, see Fig. 1 for a schematic
illustration. Specifically, we start from the effective
Hamiltonian, which incorporates the long-range dynamics
due to the OPE and involves contact interactions in relevant
partial waves. We then calculate the FV energy spectrum
using the plane wave basis with discrete momentum modes
and adjust the low-energy constants (LECs), accompanying
the contact terms, to achieve the best description of the FV
energy levels EFV. The resulting effective Hamiltonian,
with all the LECs being fixed to EFV, is then used to
calculate the scattering amplitude in the infinite volume.

Application to Tcc. In Ref. [23], the FV energy levels of
isospin-0DD� scatteringwere extracted in latticeQCDusing
the lattice spacing of a ≈ 0.08636 fm at mπ ≈ 280 MeV,
corresponding to the D and D� meson masses of MD ¼
1927 MeV and MD� ¼ 2049 MeV, respectively, and two
spatial lattice sizes L ¼ 2.07 fm and 2.76 fm, as shown in
Fig. 2. Following Ref. [23], we consider the nine lowest-
lying energy levels in the irreducible representations (irreps)
Tþ
1 ð0Þ; A−

1 ð0Þ, and A2ð1Þ of the point groups as input in our
calculations. The integer numbers d in the parentheses are
related to the total momentum of two particles P ¼ 2π

L d
with d∈Z3.
Starting from theLippmann-Schwinger-type integral equa-

tions (LSE) in the FV, TðEÞ ¼ VðEÞ þ VðEÞGðEÞTðEÞ, the
FV energy levels are obtained by solving the determinant
equation,

det ½G−1ðEÞ − VðEÞ� ¼ 0: ð2Þ

The matrix in the argument of the determinant can be
block-diagonalized according to the lattice irreps. Here, the
discretized propagator G is defined as

FIG. 1. Schematic illustration of the approach employed in this
study. V denotes the effective potential in chiral EFT, involving
the OPE and contact interactions; EFV stands for the finite volume
energy levels in lattice simulations, used here as input.

MENG, BARU, EPELBAUM, FILIN, and GASPARYAN PHYS. REV. D 109, L071506 (2024)

L071506-2



Gn;n0 ¼ J
1

L3
Gðp̃n; EÞδn0;n; ð3Þ

where J is the Jacobi determinant arising from the trans-
formationbetween the box and the center-of-mass frames, see
Ref. [41] for details, while p̃n are the discretized momenta.
Further, the Green function G reads,

Gðp̃; EÞ ¼ 1

4ω1ω2

�
1

E − ω1 − ω2

−
1

Eþ ω1 þ ω2

�
; ð4Þ

where ωi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

i þ p̃2
p

with m1 ¼ MD and m2 ¼ MD� . To
solve Eq. (2) in a finite volume, we use the plane wave basis
instead of expanding it in partial waves. This allows us to
naturally account for all partial wave mixing effects arising
from rotational symmetry breaking in a cubic box [36].
The effective potential V is constructed in chiral EFT up

to OðQ2Þ, with Q ∼mπ being the soft scale of the
expansion, and reads,

V ¼ Vð0Þ
OPE þ Vð0Þ

cont þ Vð2Þ
cont þ � � � ; ð5Þ

where the two-pion exchange contributions at the consid-
ered value of mπ are assumed to be saturated by the contact
terms. Truncating the contact interactions to OðQ2Þ, the

most relevant contact potentials contributing to the irreps
Tþ
1 ð0Þ; A−

1 ð0Þ, and A2ð1Þ read,

Vð0Þþð2Þ
cont ½3S1� ¼ ðCð0Þ

3S1
þ Cð2Þ

3S1
ðp2 þ p02ÞÞðϵ · ϵ0�Þ

Vð2Þ
cont½3P0� ¼ Cð2Þ

3P0
ðp0 · ϵ0�Þðp · ϵÞ; ð6Þ

where p ðp0Þ and ϵ ðϵ0Þ denote the center of mass system
momentum and polarization of the initial (final) D� meson,
respectively. While the irreps Tþ

1 ð0Þ and A2ð1Þ can also
receive contributions from the S- to D-wave short-range
interactions as well as from the 3P2 partial waves atOðQ2Þ,
in what follows, we consider fits with three parameters
from Eq. (6) as our main results and use the additional
contributions from other partial waves to estimate system-
atic uncertainties in [41]. The longest-range interaction
between the D and D� mesons is driven by the OPE, which
in the static approximation reads,

Vð0Þ
OPE ¼ −3

MDMD�g2

f2π

ðk · ϵÞðk · ϵ0�Þ
k2 þ μ2

; ð7Þ

where μ2 ¼m2
π −ΔM2, ΔM ¼ MD� −MD and k ¼ p0 þ p.

The pion mass dependence of the pion decay constant fπ is
considered along the lines of Ref. [27,42], which gives
fπ ¼ 105.3 MeV for mπ ¼ 280 MeV. The value of the
coupling constant g is extracted from the fits to its physical
value and the lattice data of Ref. [42]. For the given lattice
spacing of a ≈ 0.086 fm and mπ ¼ 280 MeV, we found
g ¼ 0.517� 0.015 [41]. When both p and p0 are on shell,

p ¼ p0 ¼ λðE2;M2
D;M

2
D� Þ1=2

2E (λ is the Källén function), the OPE
and, consequently, the on shell DD� partial wave ampli-
tudes, exhibit the lhc with the closest to the threshold
branch point given by [27]

ðp1π
lhcÞ2 ¼ −

μ2

4
¼ −ð126 MeVÞ2 ⇒

�
p1π
lhc

EDD�

�
2

≈ −0.001;

ð8Þ

where EDD� ¼ MD þMD� . In principle, the OPE may also
have the three-body right-hand cut, corresponding to the on
shell DDπ state. However, for mπ ¼ 280 MeV, it starts at
momenta far away from the threshold, p2

rhc3
¼ ð552 MeVÞ2

[27], which makes it irrelevant for the current analysis. It
should be noticed that all partial waves are included in
Eq. (7), as no partial wave expansion and truncation is
made for the OPE in our plane wave expansion method.
The contact interactions in the LSE are supplemented

with the exponential regulators of the form e
−ðpnþp0nÞ

Λn with
n ¼ 6. The regularization of the operators with the single
pion propagator preserving long-range dynamics is worked
out in Ref. [43] and can be implemented by a substitution,

2.07 2.76
0.99

1.00

1.01

1.02
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2.07 2.76 2.07 2.76 2.07 2.76

FIG. 2. Fit results for the center-of-mass energy Ecm ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 − P2

p
of the DD� system normalized by EDD� ¼

MD þMD� , for the heavier charm quark mass and two different
volumes from Ref. [23] in various FV irreps. The lattice energy
levels are shown by open circles, squares and triangles; the blue
and green points in the irreps Tþ

1 ð0Þ; A−
1 ð0Þ, and A2ð1Þ are used as

input in this analysis as well as in the scattering analysis of
Ref. [23]. The orange symbols, slightly shifted to the right for
transparency, represent the results of our full calculation (Fit 2),
including pions. For each irrep, we indicate the lowest partial
waves, which contribute to it. Our results in the irrep A2ð4Þ are
predictions. The solid and dot-dashed lines correspond to the
noninteracting DD� and D�D� energies, respectively.
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1

k2 þ μ2
→

1

k2 þ μ2
e
−ðk2þμ2Þ

Λ2 : ð9Þ

In what follows, we present the results for the cutoff Λ ¼
0.9 GeV and consider the cutoff variation from 0.7 GeV to
1.2 GeV to estimate systematic uncertainties in [41].
To see the impact of the OPE on the results, we perform

two calculations: In Fit 1, we start from a pure contact
potential without the OPE and adjust the LECs Cð0Þ

3S1
; Cð2Þ

3S1
,

andCð2Þ
3P0

to obtain the best χ2 fit to EFV. In Fit 2, we include,

in addition to the contact interactions, also the OPE; the
corresponding results for the energy levels are shown in
Fig. 2. For both fits partial wave mixing is included when
calculating EFV in different lattice irreps. The OPE, how-
ever, induces additional mixing between S and D waves
due to the long-range tensor interactions. Furthermore, the
OPE introduces a new momentum scale related with the
branch point of the lhc in Eq. (8), which has several
important consequences on the observables: (i) It modifies
the analytic structure of the scattering amplitude, making,

in particular, the phase shifts complex when analytically
continued below the lhc; (ii) It controls the energy
dependence of the scattering amplitude in the near-thresh-
old region and (iii) It governs the leading exponentially
suppressed corrections ∼e−μL, neglected in the Lüscher
approach.
With the LECs fixed from the best fits to EFV, we are in

the position to calculate the infinite volume observables and
confront them with the results of the Lüscher analysis of
Ref. [23]. In Fig. 3, the results are shown for the phase
shifts in the 3S1 and 3P0 partial waves. In the vicinity of the
threshold, the phase shifts can be expanded employing the
ERE,

p2lþ1 cot δðl;JÞ ¼ 1

aðl;JÞ
þ 1

2
rðl;JÞp2 þ…: ð10Þ

The predictions of Fit 1 for δ3S1 (upper left panel) are
consistent with the analysis of Ref. [23] using the ERE (10)
and also yield very similar values for the ERE parameters
and the pole position of the Tcc state, as summarized in

(a) (b)

(c) (d)

FIG. 3. Phase shifts in the 3S1 (left panel) and 3P0 (right panel) partial waves extracted from the FV energy levels EFV calculated in
lattice QCD. Red bands represent the results of our 3-parameter fits to EFV without the OPE (Fit 1, upper panel) and with the OPE (Fit 2,
lower panel), including the 1σ uncertainty. Green dots in the left panel are the phase shifts extracted from EFV using the single-channel
Lüscher quantization conditions in Ref. [23]. Green dots in the right panel are extracted in this study using the same method. Blue bands
are the results of the 4-parameter fits of EFV using the ERE in Ref. [23]. Orange lines in the left panel correspond to ip ¼ �jpj from
unitarity, normalized to EDD� . The gray vertical dashed line denotes the position of the branch point of the left-hand cut nearest to the
threshold.
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Table I. This is not surprising since both analyses involve
two parameters in this partial wave, which can be matched
to the scattering length and effective range. On the other
hand, the contact fit results for the δ3P0

are unable to
describe all the data points since the low-energy behavior of
the phase shifts can not be captured with a single-parameter
fit. To account for the range corrections, the two-parameter
fit was introduced in Ref. [23] in line with Eq. (10). This is,
however, not needed, since the range corrections in this
channel are almost completely driven by the OPE (see our
Fit 2 in the lower right panel). The effect of the OPE on δ3S1
is also very substantial. The nontrivial interplay of the
repulsive OPE and attractive short range interactions results
in the appearance of a pole in p cot δ3S1 in the vicinity of the
lhc, in line with the results of Ref. [27]. This significantly
impacts the validity range of the ERE, the extracted values of
the scattering length and effective range, as well as the Tcc
pole position, which, in our calculation, is highly likely to be
a resonance state (see Table I for details). In addition,
comparing the phase shifts extracted using the Lüscher
approach (green points) with our Fit 2 reveals discrepancies,
in particular, for the two lowest-energy datapoints, which are
strongly influencedby the lhc.On theother hand, theLüscher
method is consistent with our analysis above the DD�
threshold for both δ3S1 and δ3P0

phase shifts within errors.

Summary and outlook. We discuss a novel approach based
on effective field theory to extract information on two-body
scattering from finite-volume energies relying on the chiral
expansion at low energies. Its main advantage as compared
to the Lüscher method consists in the explicit account for the
longest-range interaction including the leading left-hand cut,
which is crucial for maintaining the appropriate analytic
structure of the scattering amplitude near the threshold.
Using this method, the finite-volume energy levels can be
directly calculated as solutions of the eigenvalue problem
both below and above the left-hand cut. It also addresses
range effects and the leading exponentially suppressed
corrections from the longest-range interaction in a model-
independent way. The efficacy of our calculation benefits
from using the plane wave basis expansion and the eigen-
vector continuation; the modern computational technique to
fully incorporate the partial-wave mixing effects on lattice

and to effectively solve the eigenvalue problem with the
small computational cost.
The practical advantages of the approach are demonstrated

by making a comprehensive analysis of the lattice energy
levels on DD� scattering from [23] in connection to the
doubly charm tetraquark, understanding the properties of
which is of fundamental importance in the context of the
XYZ exotic states. The long-range interaction from the OPE
is demonstrated to significantly influence the understanding
of infinite volume observables. Its presence governs the
range effects in the 3P0 channel and, contrary to the Lüscher
method, allows one to properly calculate amplitudes in the
vicinity of the left-hand cut. The systematic corrections
related to the truncationof theEFTexpansion are shown to be
small compared to statistical uncertainties. The extracted
pole position of the Tþ

cc state appears to be most likely a
below-threshold resonance shifted to the complex plane due
to the OPE. If the uncertainty of the energy levels is
substantially reduced, our approach can be used to directly
extract the strength of theOPE, represented by the ratio g=fπ ,
from lattice data. The incorporation of three-body (DDπ)
right-hand cuts is also straightforward and expected to play
an important role for analyzing lattice data for lower values of
the pion masses (see also [44]).
Our approach is applicable to a wide range of hadronic

systems at unphysical pion masses, where finite volume
energy levels are already available or will be computed in
lattice simulations. For instance, it can enhance our under-
standing of nucleon-nucleon scattering, where partial wave
mixing effects are expected to be important at the physical
values of the quark masses and the effects from the lhc are
significant [36], and can shed light on hyperon-nucleon and
hyperon-hyperon scattering, difficult to obtain otherwise.
Consequently, the effect of the lhc is expected to be relevant
for probing nuclear structure, neutron stars, Σ hypernuclei,
D-mesic nuclei, etc., but also for understanding exotic
hadrons—tetraquarks [23,45], pentaquarks [12], and even
six-quark states [34]. These investigations provide impor-
tant insights into QCD dynamics and its manifestations in
the hadron spectrum and reactions.
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