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The three-body threshold effect, the distinctive and intriguing nonperturbative dynamics in the low-
energy hadron-hadron scattering, has acquired compelling significance in the wake of the recent
observation of the double-charm tetraquark Tþ

cc. This dynamics is characterized by the emergence of
singular points and branch cuts within the interaction potential, occurring when the on-shell condition of
the mediated particle is satisfied. The presence of these potential singularities indicates that the system is no
longer Hermitian and also poses intractable challenges in obtaining exact solutions for dynamical scattering
amplitudes. In this work, we develop a complex scaled Lippmann-Schwinger equation as an operation of
analytical continuation of the T matrix to resolve this problem. Through a practical application to the
DD� → DD� process, we reveal complicated cut structures of the three-body threshold dynamics in the
complex plane, primarily stemming from the one-pion exchange. Notably, our methodology succeeds in
reproducing the Tþ

cc structure, in alignment with the quasibound pole derived from the complex scaling
method within the Schrödinger equation framework. More remarkably, after solving the on-shell T matrix
on the positive real axis of momentum plane, we find an extra new structure in the DD� mass spectrum,
which arises from a right-hand cut at a physical pion mass and should be observable in lattice QCD
simulations and future high-energy experiments.

DOI: 10.1103/PhysRevD.109.L071505

Introduction. Low-energy hadron-hadron interactions offer
a window into the nonperturbative dynamics of the funda-
mental theory of the strong force, i.e., quantum chromo-
dynamics (QCD), which has been one of the most
important issues in particle physics and nuclear physics.
Due to the color confinement of QCD, theorists have come
to realize that hadrons can be treated as an effective basic
freedom in the low-energy strong interaction. Thus, a
modern advanced tool of effective field theory has been
proposed to describe these interactions, such as the chiral
perturbation theory (ChPT) based on the spontaneous
breaking of chiral symmetry in QCD [1–11]. In the
framework of the effective field theory, the strong force
is mediated by the exchange of mesons, particularly pions.
A representative example is the nucleon-nucleon interac-
tion, the attractive and repulsive behaviors of which are
pivotal for comprehending nuclear forces and atomic
nucleus properties [9,10].

The exciting advancement in the realm of low-energy
strong interactions still continues. Very recently, the LHCb
Collaboration observed a double-charm exotic hadron Tþ

cc

in the mass spectrum of D0D0πþ [12,13], in which the
extracted pole information is given by

δmpole¼−360�40 keV; Γpole ¼ 48�2 keV; ð1Þ

with a unitarizedBreit-Wigner parametrization scheme [13].
Here, δm ¼ m −mD0 −mD�þ . It is evident that the pole
position of Tþ

cc lies in extremely close proximity to the
D0D�þ threshold. Consequently, this state has commonly
been regarded as a good candidate of a heavy-flavored
hadronic molecule, formed through the interaction of
charmed mesonsDD� [14–38]. Undoubtedly, the discovery
of Tþ

cc offers an exceptional opportunity to illuminate the
intricate internal dynamics of the hadron-hadron inter-
actions involving heavy quarks.
Similar to the nucleon-nucleon interactions, the heavy-

meson-heavy-meson interactions share a common under-
lying dynamics characterized by the exchange of pions and
heavier isoscalar mesons. However, a unique aspect of the
DD� interaction is the inherent instability of the D� meson,
leading to its decay into Dπ and the possibility of
introducing an on-shell intermediate pion meson in the
pion-exchange interactions. At the leading order, this
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on-shell singularity appearing in the one-pion-exchange
(OPE) potential, results in a nonvanishing imaginary com-
ponent and renders the Hamiltonian non-Hermitian.
According to the optical theorem, this imaginary part of
the OPE potential corresponds to the three-bodyDDπ decay.
Importantly, the final DDπ states is the sole strong decay
mode of Tþ

cc. This underscores the critical role of the three-
body dynamics in unveiling the nature of the special Tþ

cc
state. In previous works [27,28], a revised OPE potential
incorporating the three-body threshold dynamics within a
relativistic pion propagator has been achieved, which effec-
tively explains the observed narrow width of the Tþ

cc state.
In the context of the OPE potential involving the three-

body dynamics, in addition to a unitary cut at the three-
body threshold, more plentiful cut structures exist, which
potentially give rise to intriguing physical phenomena. In
this work, we systematically study the cut structures of the
three-body threshold dynamics in the complex plane,
which include the cases of the on-shell amplitudes and
half-on-shell amplitudes when opening or closing the three-
body dynamics. Subsequently, we concentrate on the
situation of interest to us in which the three-body threshold
dynamics is active, and find that the branch cut of the half-
on-shell amplitude with an imaginary on-shell momentum
always traverses the positive real axis, which may lead to
unavailability of the conventional Lippmann-Schwinger
equation in obtaining the physical on-shell T matrix below
the energy threshold. In order to resolve this problem, we
develop a complex scaled Lippmann-Schwinger equation
(CSLSE) approach, which ensures a logical treatment of
analytical continuation of the T matrix. Additionally, the
another advantage of this method is its high efficiency in
addressing the divergence issue associated with the double
singular points of the potential function along the integral
path when computing the physical on-shell T matrix above
the energy threshold. By taking the isoscalar DD� scatter-
ing as an example, the observed quasi-bound Tþ

cc structure
in LHCb can be clearly reproduced in the CSLSE. More
intriguingly, we find an extra new structure in the DD�
mass spectrum for the first time by solving the physical on-
shell T matrix above the energy threshold, which can be
tested in lattice simulations.

Cut structures in the analytical extension of the three body
DDπ dynamics. In the heavy meson chiral effective field
theory (HMChEFT) [11], the leading order interactions of
the DD� → DD� scattering include the contact term and
OPE potential. In order to introduce the three-body thresh-
old dynamics (see Supplemental Material [39] for more
details), the S-wave OPE interaction of the isoscalar DD�
state (I ¼ 0) can be revised as

VI¼0
OPE¼−

g2

8f2π

ðp2þp02−2pp0zÞðε0 ·εÞ
ðE0 þδÞ2− ðp2þp02−2pp0zÞ−m2

πþ iϵ
;

ð2Þ

where the center-of-mass kinetic energy E0 ¼ k20=ð2μÞ and
δ ¼ mD� −mD. We further define an effective mass square
m2

eff ¼ ðE0 þ δÞ2 −m2
π . Based on this definition, the pion

propogator in Eq. (2) can be written as 1=ðm2
eff − q2Þ. It can

be seen that when m2
eff > 0, there appears an infinity for

q2 ¼ m2
eff , which will induce a three-body DDπ cut and

there are no singularities in the real momentum range for
the case of m2

eff < 0. For the S-wave scattering process, the
partial-wave-projected components of its total potential can
be obtained by

VI¼0
S ðp; p0Þ ¼ 4πCt þ

Z
1

−1
dz2πVI¼0

OPEðp; p0; zÞ: ð3Þ

As the scattering amplitude of the leading-order Born
approximation, VI¼0

S ðp; p0Þ, does not satisfy the unitarity.
In order to ensure the unitarity and produce bound states,
resonances or virtual states [40], the resummation via a
dynamical equation is needed. For the two-particle system,
its dynamical scattering can be described by the Lippmann-
Schwinger equation (LSE) or Schrödinger equation. The
LSE is given by

Tαβðp;p0;k0Þ¼Vαβðp;p0;k0Þþ
X
γ

Z
∞

0

dqq2

ð2πÞ3Vαγðp;q;k0Þ

×Gγðq;k0ÞTγβðq;p0;k0Þ; ð4Þ

with

Gγðq; k0Þ¼
2μγ

k20 − q2 þ iϵ
; ð5Þ

where Vαβðp; p0; k0Þ is the partial-wave-projected potential
of the α channel to the β channel, and p and p0 correspond
to the initial and final momentum, respectively. It is worth
mentioning that the angular integration in LSE has been
absorbed in the partial-wave projected interaction potential
Vαβðp; p0; k0Þ as performed in Eq. (3). The center-of-mass
momentum k0 and the reduced mass μγ are defined by

k20 ¼ 2μγðE −m1 −m2Þ; μγ¼
m1m2

m1 þm2

: ð6Þ

Considering a single channel case DD� → DD� (I ¼ 0),
the Green’s function in the dynamical equation includes a
right-hand unitary cut from the two-body threshold,
i.e., kRh0 ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2μðmD þmD� Þp
.

However, the partial-wave OPE potential involving the
three-body dynamics will induce a new cut structure. For
the on-shell scattering amplitude (p ¼ p0 ¼ k0), the posi-
tion of this branch point can be derived from Eq. (3), i.e.,

ðk0Þ2 ¼ m2
eff=4 ¼ �ðE0 þ δÞ2 −m2

πÞ
�
=4:
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When m2
eff < 0, which could correspond to a larger

unphysical pion mass, the three-body threshold is not
enabled. This cut becomes a left-hand cut below the energy
threshold. However, for a physical mπ (m2

eff > 0), it can be
expected that there exists a right-hand cut above the DD�
threshold.
In fact, we can further make an analytical continuation of

the potential VI¼0
S ðp; p0Þ to study the cut structures of the

three-body dynamics in the complex plane, which is
usually related to the half-on-shell scattering amplitude
(k0 ¼ p). The behaviors of their singularities (branch
points) and branch cuts are obviously distinct according
to the signs of k20 and m2

eff , which are shown in Fig. 1 by
taking the constant m2

eff ¼ �8.43 × 10−4 GeV2 (ignore
the dependence of k0 in m2

eff ) as an example. Here, this
absolute value of m2

eff is obtained by the input of
mD ¼ 1.867; mD� ¼ 2.009, mπ ¼ 0.139 GeV. The main
contents and conclusions of four cases are summarized

(i) For the case of m2
eff > 0, which corresponds to the

physical pion mass, and center-of-mass energy E
below the threshold (k0 ¼ p ¼ iκ with real κ), it has
four branch points ðmeff þ iκÞ, ðmeff − iκÞ, ð−meff þ
iκÞ and ð−meff − iκÞ in the complex plane of p0. It
can be found that the branch cuts are transversely
symmetrical and the path along the real axis will
encounter branch cuts.

(ii) For the case of m2
eff > 0 and E above the threshold

(k0 ¼ p ¼ κ with real κ), it has four branch points
ðκ þmeff þ iϵÞ, ðκ −meff − iϵÞ, ð−κ þmeff þ iϵÞ
and ð−κ −meff − iϵÞ on the real axis. When κ is
relatively small, its branch cut is a line segment.
However, an interesting phenomenon is that each of
the two branch points near the origin crosses the
imaginary axis and moves to the opposite half-plane
as κ gradually increasing till a critical point

κ ¼ jmeff j. At this point the branch cut will change
drastically, whose closed behavior covers almost
every possible path from the origin. It is worth
noting that the real axis is the only path which does
not encounter branch cuts after considering an
infinitesimal imaginary part iϵ.

(iii) For the case of m2
eff < 0, which is usually related to

the unphysical pion mass as in lattice QCD simu-
lation, and E below the threshold, it has four branch
points ððκ þmeffÞiþ ϵÞ, ððκ −meffÞi − ϵÞ, ðð−κ þ
meffÞiþ ϵÞ and ðð−κ −meffÞi − ϵÞ on the imaginary
axis. As κ increases, the behaviors of the branch
points are similar to the above case. The only
difference is that they are aligned along the imagi-
nary axis. The imaginary axis is the only path which
will not encounter branch cuts when κ > jmeff j.

(iv) For the case ofm2
eff < 0 and E above the threshold, it

has four branch points ðκ þ imeffÞ, ðκ − imeffÞ,
ð−κ þ imeffÞ and ð−κ − imeffÞ. It can be found that
the branch cuts are longitudinally symmetrical and
the path along the real axis will not encounter
branch cuts.

The complex scaled Lippmann-Schwinger equation.Due to
the intricate cut structures arising from the three-bodyDDπ
effect, its dynamical resummation within the framework of
LSE is also expected to be more complicated. The conven-
tional Lippmann-Schwinger equation is

Tðp; p0; k0Þ ¼ Vðp; p0; k0Þ þ
Z

∞

0

dqq2

ð2πÞ3 Vðp; q; k0Þ

×Gðq; k0ÞTðq; p0; k0Þ; ð7Þ

where the integral path along the loop momentum q follows
a physical positive real axis. For the solution of the on-shell
T matrix with E below the threshold and physical pion
mass, as depicted in Fig. 1, it is evident that the path along
real axis always intersects the branch cut of the potential.
Such a phenomenon does not happen in the case of the on-
shell T matrix with E above the threshold. Additionally, for
Vðp; q; k0Þ ¼ VI¼0

S;OPEðκ; q; κÞ with physical pion mass, as
shown in Fig. 1, it introduces two singular points precisely
on the integral path along the positive real axis, and the
resulting divergence poses challenges in accurately com-
puting the on-shell amplitude Tðκ; κ; κÞ using the dynami-
cal equation. Although it is still feasible to directly
encompass the contribution of this divergence using an
alternative scheme within the conventional LSE framework
(as detailed in the Supplemental Material [39]), such a
formalism demands sufficiently high numerical accuracy.
In this work, we develop a complex scaled Lippmann-

Schwinger equation to effectively address these issues and
challenges brought about by the cut structures of the three-
body dynamics. One significant advantage of this approach
lies in its remarkable efficiency in resolving the divergence

FIG. 1. The cut structures of the half-on-shell scattering
amplitudes from the OPE potential involving the three-body
dynamics under different cases. The red, green, orange and purple
singularities correspond to κ ¼ 0.01, 0.03, 0.07 and 0.1 GeV,
respectively and the dashed line denotes the branch cuts.
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issue associated with the singular points in both the
potential and Green’s function. In order to avoid the
singularities of the potential, one can extend the integral
path of the LSE to the complex plane to ensure an identical
integral result. Let us begin with the case involving a
physical pion mass. When p ¼ κ is not larger than the
critical point κ ¼ jmeff j, the branch cut locates on real axis.
Then a complex scaling rotation transformation q → qe−iθ

is introduced and the LSE becomes

Tðp;p0;k0Þ¼Vðp;p0;k0Þþ
Z

∞

0

dqq2

ð2πÞ3e
−i3θ

×Vðp;qe−iθ;k0ÞGγðqe−iθ;k0ÞTðqe−iθ;p0;k0Þ:
ð8Þ

However, for p > jmeff j, this path will cross the circular
branch cut and enter another Riemann surface of the
potential function and thus is no longer applicable.
Hence, the only available integral path is along the positive
real axis. On the unphysical pion mass conditions, the
situation becomes more manageable because the singular
points of the potential are distant from the real axis.
Moreover, the complex scaled path remains applicable
and offers a distinct benefit by automatically incorporating
the discontinuity component from the Green’s function. A
more detailed discussion can be found in Supplemental
Material [39]. It is worth emphasizing that the LSE in
Eq. (8) is no longer an iterative equation and cannot be
directly solved. Therefore, a key issue revolves around the
analytical continuation of the T matrix.
In Fig. 2, we show the evolution of the branch points of

the OPE potential involving the three-body dynamics in the
complex plane when performing a complex scaling trans-
formation p ¼ κ → κe−iϕ and p ¼ κ → κeiϕ. For the
clockwise transformation p ¼ κe−iϕ, the hollow circle
branch points move to the lower half-plane and solid circle
branch points move to the upper half-plane, and vice versa.
From Fig. 2, it is evident that certain branch points will
traverse the positive real axis, consequently altering the
relative positioning of the branch points with respect to the
integral path along the positive real axis. To maintain
analyticity and continuity of the T matrix when extending it
to the complex plane, a complex scaling transformation
should also be applied to the integral path in LSE. For the
clockwise transformation, the complex scaled Lippmann-
Schwinger equation (CSLSE) can be written as

Tðκe−iϕ; p0; k0Þ ¼ Vðκe−iϕ; p0; k0Þ þ
Z

∞

0

dqq2

ð2πÞ3 e
−3iϕ

× Vðκe−iϕ; qe−iϕ; k0Þ
×Gγðqe−iϕ; k0ÞTðqe−iϕ; p0; k0Þ; ð9Þ

where Tðκe−iϕ; p0; k0Þ can be numerically solved
through an iterative equation. For the counterclockwise

transformation p ¼ κ → κeiϕ, the corresponding analytical
continuation will become complicated. For κ < jmeff j on
the physical pion mass condition, the solid circle branch
point will traverse the positive real axis when
p ¼ κ → κeiϕ. The transformation of the integral path
should be q → qe−iϕ instead of q → qeiϕ and the corre-
sponding CSLSE is

Tðκeiϕ; p0; k0Þ ¼ Vðκeiϕ; p0; k0Þ þ
Z

∞

0

dqq2

ð2πÞ3 e
−3iϕ

× Vðκeiϕ; qe−iϕ; k0ÞGγðqe−iϕ; k0Þ
× Tðqe−iϕ; p0; k0Þ: ð10Þ

While κ exceeds a critical point, the hollow circle branch
point, originating from the negative real axis as shown in
Fig. 2, can cross the positive real axis and move faster than
the rotational transformation. As a result, a logical path
transformation of q → qe−ið180−ϕÞ should be carried out.
The similar conclusion can also be reached for a large κ on
an unphysical pion mass condition. Finally, it is worth
noting that the analytic continuation operations mentioned
above require simultaneously ensuring the continuity of the
integrated T matrix.
Through the CSLSE approach, a half-on-shell T matrix

Tðpeiθ; k0; k0Þ can be derived, which can be subsequently
reintroduced into the integral in Eq. (8) by setting
p ¼ p0 ¼ k0. This allows for the successful calculation

FIG. 2. The evolution of the branch points in the OPE potential
with the three-body dynamics using complex scaling trans-
formations: p ¼ κ → κe−iϕ (upper plot) and p ¼ κ → κeiϕ

(lower plot). The red (yellow) and green points correspond to
κ ¼ 0.01 and 0.1 GeV, respectively, and points with the cross
mark denotes ϕ ¼ 0°.
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of the physical on-shell T matrix. Of course, one of the
most important deduction derived from the CSLSE is that
the on-shell T matrix below the energy threshold
Tðiκ; iκ; iκÞ should be computed using the integral path
near the negative imaginary axis, just as iκ corresponds to
ϕ ¼ 90°. This implies that a straightforward extension of
p → iκ in the conventional LSE in Eq. (7) may be
inadequate for dealing with this special interaction involv-
ing the three-body dynamics. This insight will be sub-
stantiated through a practical example later.

Applications and conclusion. We now present a practical
calculation of the isoscalar DD� scattering with the isospin
symmetry by the CSLSE approach. In order to validate
the reliability of our computed results, we focus on the
pole information of Tþ

cc, which was previously investigated
in Ref. [27] using the complex scaling method for
Schrödinger equation. This method does not involve the
branch cut complexities of the three-body dynamics and
conveniently allows us to extract the dynamical pole
position. Since ChEFT only works at the small momentum
regions and the CSLSE also requires the convergence at
infinity of the integral, a Gaussian form factor is introduced
to regularize the effective potential, which reads

F ðp; p0Þ ¼ exp

"
−
p2

Λ2
−
p02

Λ2

#
: ð11Þ

The physical on-shell T matrix of the isoscalar DD�
scattering below the threshold are shown in Fig. 3, in which
two different integral paths are adopted, i.e., the positive real
axis and negative imaginary axis, which correspond to the
path of crossing and not crossing the branch cut, respec-
tively, as shown in Fig. 1. In fact, there is flexibility to choose
alternative rotation angles according to the Cauchy integral
theorem, as long as the chosen paths consistently conform to
either crossing or avoiding the branch cut. In the specific
scenario, we have confirmed that the computation results are
independent of the choice of the rotation angle.
From Fig. 3, it can be seen that the line shape distribution

of the Tþ
cc state in the scattering amplitude can be accurately

replicated, with the pole information matching that
obtained through the complex scaling method of the
Schrödinger equation [27]. This provides compelling
evidence for the validity of the CSLSE approach.
Furthermore, we find that there is an unexpected diver-
gency of the T matrix at the two-body threshold for the
integration scenario along the positive real axis, which is
not caused by the precision of numerical calculation. A
proof is presented as follows,

VI¼0
OPEðiκ; pÞ ∝

Logð1þ ð4κpiÞ=ðp2 − 2κpi −m2
eff þ iϵÞÞ

κp
;

ð12Þ

when κ ∼ ϵ is a small quantity (close to the threshold). In
the limit of κ → 0, if the value of momentum p traverses the
branch cut, this expression can be further simplified as

VI¼0
OPEðiκ; pÞ ∝

−4i
ðm2

eff − p2 − iϵÞ −
2πi
κp

ð13Þ

∼
ð2πiÞ
κp

→ ∞: ð14Þ

Obviously, this divergency at the DD� threshold should be
unphysical. Hence, this point reinforces our conclusion that
the accurate solution of the physical on-shell T matrix
below the threshold should be conducted within the CSLSE
framework.
Furthermore, we calculate the physical on-shell T matrix

of the isoscalar DD� scattering above the threshold, which
is presented in Fig. 4. Very interestingly, the obtained T
matrix shows the existence of an extra new structure in
addition to the reported Tþ

cc state. This new structure is
due to the right-hand cut effect of the OPE potential
involving the three-body dynamics. In order to further
test our theoretical predictions, we also study the depend-
ence on the cutoff parameter by changing Λ between
0.5 ∼ 0.7 GeV. The existence of this structure is robust
as shown in Fig. 4. The detection of this enhancement in
experiments may necessitate the on-shell DD� beam
scattering, a technology that could be explored in future
high-energy experiments. In the current experimental setup
involving the inclusive DD� production [12,13], detecting
this structure is challenging since the initial DD� is
unnecessarily on-shell. From another perspective, the
promising validation of this structure can be pursued
through Lattice QCD simulations. In recent years, several
lattice groups have already studied DD� scattering at
different nonphysical pion masses [41–46]. We notice that
the recent study of HAL QCD on Tþ

cc has extracted the

FIG. 3. The physical on-shell T matrix of the isoscalar DD�
scattering below the threshold.
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S-wave scattering phase shifts of the DD� scattering at a
nearly physical pion mass mπ ¼ 146.4 MeV [46]. The
S-wave scattering phase shift δ0 is directly related to the
on-shell Tðk0Þ matrix by

k0 cot δ0 ¼ −
8π2

μ
T−1ðk0Þ þ ik0: ð15Þ

The phase shift k0 cot δ0=mπ obtained by lattice QCD con-
firms a linear relationship with the variable k20=m

2
π [46]. This

behavior can be ascribed to the lack of the three-body
dynamics at an unphysical pion mass mπ ¼ 146.4 MeV
used in their lattice simulations, where the trivial interaction
enables the representation of the T matrix through the
effective range expansion, i.e., T−1 ∝ ð1=a0 þ 1=2rk20Þ.

Interestingly, when the three-body threshold dynamics is
activated, the k0 cot δ0=mπ is no longer pure real numbers
and the linear relation of its real part with the k20=m

2
π is

seriously distorted (see predicted results in Supplemental
Material [39]). This newly predicted structure arising from
the right-hand cut is also manifested in both the real and
imaginary parts of k0 cot δ0=mπ , providing an opportunity
for future verification through Lattice QCD simulations.
In conclusion, we have developed a complex scaled

Lippmann-Schwinger equation to address the complicated
three-body threshold dynamics in low-energy hadron-
hadron scatterings. The methodology is practically ap-
plied to the isoscalar DD� scattering process under a
physical pion mass, and succeeds in reproducing the Tþ

cc
structure, aligned with the pole derived from the complex
scaling method in the Schrödinger equation framework.
Moreover, by solving the on-shell T matrix along the
positive real axis of the momentum plane, a new structure
stemming from a right-hand cut in the DD� mass spectrum
is discovered for the first time. It is worth emphasizing
that a similar novel structure is expected to exist in

other systems such as DD̄�;ΛcΣ
ð�Þ
c ;ΛcΣ̄

ð�Þ
c , and more,

serving as a distinctive indicator and presenting a valuable
opportunity to explore the role of the three-body threshold
dynamics in low-energy heavy-hadron-heavy-hadron
interactions.
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