
Analytic third-order QCD corrections to top-quark
and semileptonic b → u decays

Long-Bin Chen,1 Hai Tao Li ,2,* Zhao Li,3,4,5 Jian Wang ,2,5,† Yefan Wang ,2,6,‡ and Quan-feng Wu 3,4

1School of Physics and Materials Science, Guangzhou University, Guangzhou 510006, China
2School of Physics, Shandong University, Jinan, Shandong 250100, China

3Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
4School of Physics Sciences, University of Chinese Academy of Sciences, Beijing 100049, China

5Center for High Energy Physics, Peking University, Beijing 100871, China
6Department of Physics and Institute of Theoretical Physics, Nanjing Normal University,

Nanjing, Jiangsu 210023, China

(Received 18 September 2023; accepted 7 March 2024; published 8 April 2024)

We present the first analytic results of next-to-next-to-next-to-leading-order (N3LO) QCD corrections to
the top-quark decay width. We focus on the dominant leading color contribution, which includes light-quark
loops. At next-to-next-to-leading order (NNLO), this dominant contribution accounts for 95% of the total
correction.Byutilizing the optical theorem, theN3LOcorrections are related to the imaginary parts of the four-
loop self-energy Feynman diagrams, which are calculated with differential equations. The results are
expressed in terms of harmonic polylogarithms, enabling fast and accurate evaluation. The third-order QCD
corrections decrease the leading-order decay width by 0.667%, and the scale uncertainty is reduced by half
compared to the NNLO result. The most precise prediction for the top-quark width is now 1.321 GeV for
mt ¼ 172.69 GeV. Additionally, we obtain the third-order QCD corrections to the dilepton invariant mass
spectrum and decay width in the semileptonic b → u transition. The perturbative series in the on-shell mass
scheme exhibits poor convergence behavior. In the MS mass scheme, the scale dependence is greatly
improved. Amore precise determination of the CKMmatrix elementVub could be obtained with such higher-
order corrections.
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The top quark, which is the heaviest elementary particle,
has been discovered for about twenty-eight years. Its mass
has been measured to be mt ¼ 174.41� 0.39ðstatÞ �
0.66ðsystÞ � 0.25ðrecoilÞ GeV [1], and its couplings with
other particles have been probed with high precision. This
provides necessary input parameters for the calculation of
top-quark production processes—e.g., the top-quark pair
productions at the hadron colliders. In realistic simulations
of the top-quark events, the decay has to be taken into
account as well, where the top-quark decay width, denoted
by Γt, is indispensable. Moreover, the top-quark decay
width would be modified in new physics models in which
the top quark can decay to new particles. Therefore, a
precise determination of the top-quark decay width can be

used not only in the precise prediction of the top-quark
production and decays, but also as a probe of new physics.
Generally, the top-quark decay width can be measured

with direct and indirect approaches. The direct measure-
ment exploits a profile likelihood fit of the observed data,
such as the invariant mass of the lepton and b-jet, to the
template distributions corresponding to different top-quark
decay widths. The ATLAS Collaboration has performed a
direct measurement using the top-quark pair events in the
dileptonic channel at the 13 TeV LHC corresponding to an
integrated luminosity of 139 fb−1, obtaining a width of
Γt ¼ 1.9� 0.5 GeV [2].
On the other hand, in indirect measurements, the decay

width is extracted from quantities that depend on Γt. The
CMSCollaboration has measured the branching ratioBðt →
WbÞ=Bðt → WqÞ with q ¼ b, s, d using the tt̄ events in the
dileptonic channel at

ffiffiffi
s

p ¼ 8 TeV. Combined with the
measurement of the t-channel single top-quark cross section,
the top-quark decay width is determined as Γt ¼ 1.36�
0.02ðstatÞþ0.14

−0.11ðsystÞ GeV [3]. Following the idea proposed
to measure the Higgs boson’s width [4], the top-quark width
can also be derived by measuring both the on-shell and off-
shell top-quark productions. The analyses for the single top
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and top-quark pair productions show that an accuracy of
0.3 GeV can be reached [5–7].
The eþe− collider provides a good opportunity to deter-

mine the top-quark mass and width with high precision
because the center-of-mass energy is tunable. The cross
sections near the tt̄ threshold are very sensitive to the top-
quark mass and width. Assuming an integrated luminosity
of 220 fb−1, the determination of the top-quark width can
be carried out with an accuracy at the 2% level [8–10].
To meet the requirements of both theory and experiment,

much effort has been devoted to improving the predictions
for top-quark decay. The next-to-leading-order (NLO) QCD
corrections decrease the decay width by about 9% [11–13].
The next-to-next-to-leading-order (NNLO)QCDcorrections
provide a 2% suppression further [14–16]. The analytical
form of the NNLO total width has been studied in the w≡
m2

W=m
2
t → 0 [17–20] and w → 1 [21] limits, respectively.

The NNLO polarized decay rates have been calculated in
[22,23]. The dependence of the NNLO result on the
renormalization scheme and scales was discussed in [24].
Recently, the three-loop color-planar master integrals [25]
and form factors [26] of the heavy-to-light quark decayswere
obtained. The NLO electroweak (EW) corrections [27,28]
and off-shellW-boson effects [11] have also been computed,
and their contributions almost cancel each other.
The goal of this work is to provide the first analytic results

of next-to-next-to-next-to-leading-order (N3LO) QCD cor-
rections. This is motivated by the fact that the NNLO
corrections are beyond the scale-uncertainty band of the
NLO corrections using the conventional scale variation—
i.e., changing the renormalization scale by a factor of 2. It is
interesting to see whether the N3LO QCD corrections lie
within the scale-uncertainty band of the NNLO corrections.
Moreover, our analytic results present special data about the
multiloop Feynman integrals and scattering amplitudes,
since top-quark decay is the first physical process with
massive colored particles that has been calculated at N3LO
analytically without any expansion of the loop integrals.
In the SM, the top quark decays via electroweak inter-

action toWqwith q ¼ b, s, d at leading order (LO), and the
decay rate of t → Wq is proportional to the square of the
Cabibbo-Kobayashi-Maskawa (CKM) matrix element Vtq.
Since Vtb ≈ 0.999 and Vts; Vtd ≤ 0.04 [29], and the decay
rates of t → Wq differ by a common factor, we consider only
t → Wb in our calculation. Including higher-order QCD
corrections, the top-quark width is written as a series of the
strong coupling αs,

Γt ¼ Γ0

�
X0 þ

αs
π
X1 þ

�
αs
π

�
2

X2 þ
�
αs
π

�
3

X3

�
; ð1Þ

with Γ0 ¼ GFm3
t jVtbj2=8

ffiffiffi
2

p
π. The first two coefficients, X0

and X1, have been calculated analytically thirty years
ago [11–13]. The analytic form of the third coefficient, X2,
was obtained recently by four of the authors [16], and the
result is given in different color structures by

X2 ¼ CF½CFXF þCAXA þ TRnlXl þ TRnhXh�

¼ CF

�
Nc

�
XA þ

XF

2

�
þ nl

2
Xl −

1

2Nc
XF þ

nh
2
Xh

�
; ð2Þ

where we have substituted in the bracket CF ¼ ðN2
c − 1Þ=

2Nc,CA ¼ Nc, andTR ¼ 1=2 in the second line andnl (nh) is
the number of massless (massive) quark species. In our case,
Nc ¼ 3, nl ¼ 5, and nh ¼ 1, and thus we expect that the
terms proportional to Nc or nl, denoted as the leading color
contribution, provide the dominant contributions. We find
that the leading color contribution is significantly dominant,
accounting for around 95% of the full NNLO correction for
w < 0.9. Note that the NNLO correction is almost vanishing
for w > 0.9, and that w ≈ 0.22 in the top-quark decay.
As in Eq. (2), the result of X3 is decomposed in color

structures by

X3 ¼ CF

�
N2

cYA þ ỸA þ ȲA

N2
c
þ nlnhYlh þ nl

�
NcYl þ

Ỹl

Nc

�

þ n2l Yl2 þ nh

�
NcYh þ

Ỹh

Nc

�
þ n2hYh2

�
: ð3Þ

We focus on the leading color coefficients YA, Yl, and Yl2
that give the most dominant contributions. Our goal in this
work is to present their analytic form.
In our method, the top-quark decay width Γt is related

to the imaginary part of the amplitude of the process
t → Wb → t via the optical theorem,

Γt ¼
Im½Mðt → Wb → tÞ�

mt
: ð4Þ

In order to obtain theN3LOQCDcorrections, the calculation
of four-loop self-energy Feynman diagrams is required.
We have used the FeAmGen program [30], which employs

QGRAF [31] to generate four-loop Feynman diagrams and
amplitudes. The amplitudes are manipulated with Form
[32] and FeynCalc [33] to perform the Dirac algebra, and
expressed as linear combinations of scalar loop integrals.
Then, we utilize the FIRE6 package [34], which implements
the LAPORTA algorithm [35] in solving the system of the
integration-by-parts identities [36,37], to reduce all the
scalar integrals into a set of master integrals (MIs). All
the MIs belong to the integral family defined by

In1;n2;…;n14 ¼
1

π
Im

Z
Ddk1Ddk2Ddk3Ddk4
Dn1

1 Dn2
2 Dn3

3 � � �Dn14
14

; ð5Þ

with the propagators D1 ¼ ðk1 þ pÞ2 −m2
t , D2 ¼

ðk2 þ pÞ2 −m2
t , D3 ¼ ðk3 þ pÞ2 −m2

t , D4 ¼ ðk3 þ k4Þ2,
D5 ¼ ðk2 þ k4Þ2, D6 ¼ ðk1 þ k4Þ2, D7 ¼ k21, D8 ¼
ðk1 − k2Þ2, D9 ¼ ðk2 − k3Þ2, D10 ¼ ðk1 − k3Þ2, D11 ¼ k22,
D12 ¼ k23, D13 ¼ k24, D14 ¼ ðk4 − pÞ2 −m2

W , and Ddki ≡
−iπ−d=2e−ϵγm2ϵ

t ddki, d ¼ 4 − 2ϵ.
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The external top quarks satisfy the on-shell condition
p2 ¼ m2

t . Notice that only the integrals with nonvanishing
imaginary parts are relevant in our calculation. For the
leading color contribution, we have about 40 000 scalar
integrals, which are reduced to 185 MIs. These MIs involve
two scales,m2

W andm2
t , and therefore they can be expressed

as functions of a single parameter w. Adopting the differ-
ential equation method [38–40], we remarkably succeed in
constructing the canonical basis B of the MIs, which
satisfies the differential equation

dB
dw

¼ ϵ

�
P
w
þ N
w − 1

�
B; ð6Þ

with P and N being rational matrices. In some low sectors,
the package Libra [41] has been used to transform coupled
integrals to the canonical basis. In some high sectors, it is
important to choose a basis integral with more propagators
than the normal ones in the specified sector in order to
achieve a compact form of the basis.
Solving the above equation recursively, we obtain

analytical expressions for basis integrals in a series of ϵ
with undetermined constants. For most of the integrals,

these constants can be derived using the regularity con-
ditions at w ¼ 0 or w ¼ 1. In practice, we also adopt
another method. The coefficient of each order of ϵ has
been written in terms of harmonic polylogarithms [42]. We
evaluate these expressions in a fixed value of w within the
region (0, 1)—e.g., w ¼ 1=4, using the HPL package [43],
and compare them with the high-precision numerical
results by AMFlow [44,45] to determine the integration
constants. Their analytic form is recovered by making
use of the PSLQ algorithm [46,47]. The expressions of the
master integrals are cross-checked with AMFlow at arbitrary
values of w in 0 < w < 1. Notice that the imaginary part
of each four-loop self-energy diagram has only UV poles
up to 1=ϵ3, since all the IR divergences have canceled.
These UV poles cancel out after including the contribution
from counterterms. As a nontrivial test, the decay rate is
finite and vanishing for w ¼ 1 because no phase space
exists.
The analytical results of YA, Yl, and Yl2 in Eq. (3) are

compact, and their complete forms and expansions around
w ¼ 1 have beenprovided in theSupplementalMaterial [48].
Here, we present the expansion series near the boundary
w ¼ 0:

YA ¼
�
203185

41472
−
12695π2

1944
−
4525ζð3Þ

576
−
1109π4

25920
þ 37π2ζð3Þ

36
þ 1145ζð5Þ

96
þ 47π6

2835
−
3ζð3Þ2

4

�

þ w

�
−
157939

2304
þ 140863π2

20736
þ 5073ζð3Þ

64
−
14743π4

6480
−
169π2ζð3Þ

72
−
45ζð5Þ
16

þ 3953π6

22680
−
15ζð3Þ2

4

�

þ w2

�
logðwÞ

�
851099

27648
−
5875π2

2304
−
33ζð3Þ

8
þ π4

10

�
−
82610233

331776
þ 799511π2

27648

þ 4093ζð3Þ
32

−
5987π4

2880
−
91π2ζð3Þ

16
−
275ζð5Þ

8
þ 347π6

3024
−
9ζð3Þ2

8

�
þOðw3Þ;

Yl ¼
�
18209

20736
þ 60025π2

31104
−
197ζð3Þ
288

−
14π4

405
þ 5π2ζð3Þ

36
−
25ζð5Þ
12

�

þ w

�
−

179

1152
−
3709π2

2592
−
73ζð3Þ

6
þ 46π4

405
þ 19π2ζð3Þ

18
þ 5ζð5Þ

2

�

þ w2

�
logðwÞ

�
−
11077

1152
þ 37π2

96
þ 3ζð3Þ

8

�
þ 49097

648
−
817π2

128
−
2651ζð3Þ

96
þ 17π4

270
þ 5π2ζð3Þ

6
þ 25ζð5Þ

4

�
þOðw3Þ;

Yl2 ¼
�
−

695

2592
−
91π2

972
þ 11ζð3Þ

36
−
2π4

405

�
þ w

�
245

144
−
73π2

648
−
ζð3Þ
3

�

þ w2

�
logðwÞ

�
245

432
−
π2

72

�
−
791

162
þ 85π2

432
þ 3ζð3Þ

4
þ 2π4

135

�
þOðw3Þ; ð7Þ

where ζðnÞ is the Riemann zeta function. We have set
the renormalization scale μ ¼ mt in the above equations,
and the full μ-dependent terms can be easily recovered
from the running equation of the strong coupling. One
can see that there is a single logarithm logðwÞ starting
from Oðw2Þ. This comes from the one-loop tadpole

integral with a scale of mW when expanding the four-
loop integral in the small-w limit with the method of
regions.
To see the impact of the N3LO QCD corrections, we

decompose the decay width according to the perturbative
orders:
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Γt ¼ Γð0Þ
t ½ð1þ δð0Þb þ δð0ÞW Þ þ ðδð1Þb þ δð1ÞW þ δð1ÞEW þ δð1ÞQCDÞ

þ ðδð2Þb þ δð2ÞW þ δð2ÞEW þ δð2ÞQCD þ δð2ÞEW×QCDÞ
þ ðδð3Þb þ δð3ÞW þ δð3ÞEW þ δð3ÞQCD þ δð3ÞEW×QCDÞ�; ð8Þ

where the LO width Γð0Þ
t ¼ 1.486 GeV is obtained with

mb ¼ 0 and on-shell W. The corrections from the finite
b-quark mass effect and off-shellW-boson contribution are

denoted by δðiÞb and δðiÞW , respectively. The higher-order

QCD and EW corrections are labeled as δðiÞQCD and δðiÞEW,
respectively. Adopting the SM input parameters [29]

mt ¼ 172.69 GeV; mb ¼ 4.78 GeV;

mW ¼ 80.377 GeV; ΓW ¼ 2.085 GeV;

mZ ¼ 91.1876 GeV; GF ¼ 1.16638× 10−5 GeV−2; ð9Þ

and choosing jVtbj ¼ 1 and αsðmZÞ ¼ 0.1179, the N3LO

QCD correction is −0.667% of the LO result Γð0Þ
t , as shown

in Table I. Adding all the other higher-order corrections that
have been discussed in detail in our previous paper [16], we
obtain the most accurate prediction for the top-quark width
Γt ¼ 1.321 GeV at mt ¼ 172.69 GeV. The scale uncer-
tainty is reduced to �0.2%, only half of that at NNLO.
Now, the N3LO and NNLO results with uncertainties are
almost adjacent to each other, displaying good convergent
behavior. All the formulas in the calculation are given in
analytic form. The strong coupling αs at different scales is
related by an analytic solution to the three-loop renorm-
alization group evolution equation [51,52]. As a result, our
calculation is efficient and accurate. Readers can perform a
customized calculation using the Mathematica program
TopWidth [53]. In Fig. 1, we show the top-quark decay
width for 170 GeV ≤ mt ≤ 175 GeV. A nearly linear
dependence can be observed. For the convenience of
readers, we provide a fitted function for the top-quark
width within this range:

ΓtðmtÞ ¼ 0.027037 ×mt − 3.34801 GeV: ð10Þ

Our result of the top-quark decay can be applied in the
calculation of the inclusive b-quark semileptonic decay
b → Xueν̄e, which has been used to determine the
CKM matrix element jVubj ¼ ð4.19� 0.17Þ × 10−3 [54].
The dilepton invariant mass spectrum in the on-shell mass
scheme is given by

dΓðb → Xueν̄eÞ
dq2

¼ Γð0Þ
b

X
i¼0

�
αs
π

�
i
Xi

�
q2

m2
b

�
; ð11Þ

with Γð0Þ
b ¼ G2

FjVubj2m3
b=96π

3. An analogous expansion
series in the MS mass scheme can be derived using the
three-loop relation between the two schemes [55]. We show
such a distribution at different perturbative orders in Fig. 2.
The higher-order QCD corrections significantly improve

170 171 172 173 174 175
  [GeV]tm

1.2

1.3

1.4

1.5

1.6

 [
G

eV
]

t
�

 LO  NLO  NNLO LO L.C. 3 N

FIG. 1. Top-quark width at different values of mt. The black
line shows the LO result. The NLO, NNLO, and N3LO
predictions with QCD scale uncertainties are represented by
the blue, red, and green bands, respectively.

TABLE I. Top-quark width up to N3LO and various higher-
order corrections in percentage (%) with respect to the LO width

Γð0Þ
t ¼ 1.486 GeV. The values of δð1Þb and δð1ÞEW are calculated

using the formulas in [11,27,49,50]. The notation “�” represents a
correction that has not been calculated. The numbers in the last
column show the decay width with all the available corrections up
to that order. The scale uncertainties are also shown explicitly.

δðiÞb δðiÞW δðiÞEW δðiÞQCD Γt [GeV]

LO −0.273 −1.544 � � � � � � 1.459
NLO 0.126 0.132 1.683 −8.575 1.361þ0.0091

−0.0130
NNLO � 0.030 � −2.070 1.331þ0.0055

−0.0051
N3LO � 0.009 � −0.667 1.321þ0.0021

−0.0025

0 0.2 0.4 0.6 0.8 1
2
b/m2q

0

0.5

1

1.5

2

)2 b
/m2

d(
q

) e�e u
 X

�
(b

�d
(0

)
b

�1

 LO  NLO  NNLO LO L.C. 3 N

FIG. 2. The q2=m2
b distribution for b → Xueν̄e in the MS

mass scheme normalized by Γð0Þ
b . The bands denote the scale

uncertainties.
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the theoretical uncertainties caused by the variation of the
renormalization scale μ by a factor of 2. For example, the
scale uncertainties are around �12%, �9%, and �6% at
NLO, NNLO, and N3LO, respectively, at q2=m2

b ¼ 0.2.
In particular, the N3LO corrections lie almost in the NNLO
uncertainty band, indicating that the perturbative series
converges fast in the MS mass scheme.
The inclusive b-quark semileptonic decay width can be

expanded in αs,

Γðb → Xueν̄eÞ ¼
G2

FjVubj2m5
b

192π3

�
1þ

X
i¼1

�
αs
π

�
i
bi

�
: ð12Þ

The NLO and NNLO coefficients, b1 and b2, have been
calculated in [56]. Integrating X3 in Eq. (3) over w in the
region [0, 1], we obtain the result for b3,

b3 ¼ CF

�
N2

c

�
9651283

82944
−
1051339π2

62208
−
67189ζð3Þ

864

þ 4363π4

6480
þ 59π2ζð3Þ

32
þ 3655ζð5Þ

96
−
109π6

3780

�

þ nlNc

�
−
729695

27648
þ 48403π2

15552
þ 1373ζð3Þ

108
þ 133π4

1728

−
13π2ζð3Þ

72
−
125ζð5Þ

24

�
þ n2l

�
24763

20736
−
1417π2

15552

−
37ζð3Þ
216

−
121π4

6480

�
þ subleading color

�

¼ ð−195.3� 9.8ÞCF: ð13Þ

In the last line, we give a numerical estimate of the sub-
leading color contribution, which is about 5% of the leading
color result as indicated at NNLO. Our result is con-
sistent with the estimation in [57], b3 ¼ ð−202� 20ÞCF,

which is obtained by taking the expansion in terms of
δ ¼ 1 −mu=mb. In Fig. 3,we show theb-quark semileptonic
decay width with scale dependence in both the MS and
on-shell mass schemes. The higher-order corrections are
prominent in both schemes. In the on-shell mass scheme, the
N3LO correction decreases the NNLO result by 15%–10%
when the scale varies from 2 to 10 GeV, and the scale
uncertainty changes from þ5%

−14% at NNLO to þ7%
−17% at N3LO.

Such poor behavior of the perturbative series with on-shell
mass is due to its sensitivity to infrared effects [58]. In
contrast, the scale dependence is greatly improved in theMS
scheme, changing from�20% at NNLO to�11% at N3LO.
The N3LO result can be larger or less than the NNLO result
depending on the scale, and the correction is about þ6% at
μ ¼ 4.78 GeV. The predictions in the two schemes become
close to each other with more and more higher-order
corrections included. Given that the current world average
of the CKM matrix element Vub from inclusive determi-
nation has an uncertainty of about 8% [54], smaller than or
comparable to the N3LO correction, the extracted value of
Vub in future analysis would be affected after including this
N3LO correction.
To summarize, we have obtained the first analytic N3LO

QCD leading color corrections to the top-quark decay
width. This is accomplished by applying the optical
theorem. The imaginary parts of four-loop integrals have
been calculated with the differential equation method. All
the divergences cancel out after renormalization. The final
result of the decay width is vanishing if setting mW ¼ mt
and exhibits a single logarithmic dependence on mW when
expanded around mW ¼ 0. These features serve as non-
trivial checks. The N3LO QCD corrections decrease the LO
result by −0.667%. Combining with the other higher-order
corrections, such as the EW corrections and off-shell W
effects, we get the most precise theoretical prediction of the
top-quark width, Γt ¼ 1.321 GeV at mt ¼ 172.69 GeV,
with a scale uncertainty of �0.2%.
Furthermore, we derive the analytic third-order QCD

leading color predictions for the semileptonic b → u
decay width and the dilepton invariant mass spectrum.
Compared to the NNLO result, the N3LO correction is
about 10%–15% for different scales in the on-shell mass
scheme. In the MS scheme, the N3LO correction can be
positive or negative depending on the scale, and the scale
uncertainties are reduced significantly. The difference
between the two schemes also decreases once the N3LO
correction is taken into account. Our reliable and accurate
prediction allows for a more precise determination of the
CKM matrix element Vub, and it may help to resolve the
long-standing discrepancy between the inclusive and exclu-
sive determination of Vub [54].
Our calculation can be extended to more differential

observables, such as the invariant mass of hadronic final
states or the decay into polarized W bosons. It is also

2 4 6 8 10
 [GeV]�

0.5

1) e�e u
 X

�
(b

O
S

 L
O

�

) e�e u
 X

�
(b

�

 LO  NLO 

 NNLO LO L.C. 3 N

MS

OS

FIG. 3. Scale dependence of the b-quark semileptonic decay
width normalized by the LO width in the on-shell mass scheme.
The solid and dashed lines represent the results in the MS and on-
shell mass schemes, respectively.
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interesting to understand the simple analytic structure of
four-loop integrals with massive propagators in our case.
Especially, we are curious about the explanations of the
symbol letters with Landau equations [59], intersection
theory [60], or some other methods.

Note added. Recently, we became aware of the result by
L. Chen, X. Chen, X. Guan, and Y.-Q. Ma [61], which
was obtained by numerical calculation with AMFlow. We
have compared the leading color results and found
perfect agreement. Their results confirm that the leading

color contribution accounts for 95% of the N3LO
correction, similar to the case at NNLO.

This work was supported in part by the National Natural
Science Foundation of China under Grants No. 12005117,
No. 12075251, No. 12175048, No. 12275156,
No. 12321005, and No. 12375076. The work of L. B. C.
was also supported by the Natural Science Foundation of
Guangdong Province under Grant No. 2022A1515010041.
The work of J. W. was also supported by the Taishan
Scholar Project of Shandong Province (tsqn201909011).

[1] G. Aad et al. (ATLAS Collaboration), J. High Energy Phys.
06 (2023) 019.

[2] ATLAS Collaboration, Report No. ATLAS-CONF-2019-
038 (2019).

[3] V. Khachatryan et al. (CMS Collaboration), Phys. Lett. B
736, 33 (2014).

[4] F. Caola and K. Melnikov, Phys. Rev. D 88, 054024 (2013).
[5] P. P. Giardino and C. Zhang, Phys. Rev. D 96, 011901

(2017).
[6] A. Baskakov, E. Boos, and L. Dudko, Phys. Rev. D 98,

116011 (2018).
[7] C. Herwig, T. Ježo, and B. Nachman, Phys. Rev. Lett. 122,

231803 (2019).
[8] T. Horiguchi, A. Ishikawa, T. Suehara, K. Fujii, Y. Sumino,

Y. Kiyo, and H. Yamamoto, arXiv:1310.0563.
[9] Z. Li, X. Sun, Y. Fang, G. Li, S. Xin, S. Wang, Y. Wang, Y.

Zhang, H. Zhang, and Z. Liang, Eur. Phys. J. C 83, 269
(2023); 83, 501(E) (2023).

[10] H. Abramowicz et al. (CLICdp Collaboration), J. High
Energy Phys. 11 (2019) 003.

[11] M. Jezabek and J. H. Kuhn, Nucl. Phys. B314, 1 (1989).
[12] A. Czarnecki, Phys. Lett. B 252, 467 (1990).
[13] C. S. Li, R. J. Oakes, and T. C. Yuan, Phys. Rev. D 43, 3759

(1991).
[14] J. Gao, C. S. Li, and H. X. Zhu, Phys. Rev. Lett. 110,

042001 (2013).
[15] M. Brucherseifer, F. Caola, and K. Melnikov, J. High

Energy Phys. 04 (2013) 059.
[16] L.-B. Chen, H. T. Li, J. Wang, and Y. Wang, Phys. Rev. D

108, 054003 (2023).
[17] A. Czarnecki and K. Melnikov, Nucl. Phys. B544, 520

(1999).
[18] K. G. Chetyrkin, R. Harlander, T. Seidensticker, and M.

Steinhauser, Phys. Rev. D 60, 114015 (1999).
[19] I. R. Blokland, A. Czarnecki, M. Slusarczyk, and F.

Tkachov, Phys. Rev. Lett. 93, 062001 (2004).
[20] I. R. Blokland, A. Czarnecki, M. Slusarczyk, and F.

Tkachov, Phys. Rev. D 71, 054004 (2005); 79, 019901
(E) (2009).

[21] A. Czarnecki and K. Melnikov, Phys. Rev. Lett. 88, 131801
(2002).

[22] A. Czarnecki, J. G. Korner, and J. H. Piclum, Phys. Rev. D
81, 111503 (2010).

[23] A. Czarnecki, S. Groote, J. G. Körner, and J. H. Piclum,
Phys. Rev. D 97, 094008 (2018).

[24] R.-Q. Meng, S.-Q. Wang, T. Sun, C.-Q. Luo, J.-M. Shen,
and X.-G. Wu, Eur. Phys. J. C 83, 59 (2023).

[25] L.-B. Chen and J. Wang, Phys. Lett. B 786, 453 (2018).
[26] S. Datta, N. Rana, V. Ravindran, and R. Sarkar,

arXiv:2308.12169.
[27] A. Denner and T. Sack, Nucl. Phys. B358, 46 (1991).
[28] G. Eilam, R. R. Mendel, R. Migneron, and A. Soni, Phys.

Rev. Lett. 66, 3105 (1991).
[29] R. L. Workman et al. (Particle Data Group), Prog. Theor.

Exp. Phys. 2022, 083C01 (2022).
[30] Q.-f. Wu and Z. Li, arXiv:2310.07634.
[31] P. Nogueira, J. Comput. Phys. 105, 279 (1993).
[32] J. Kuipers, T. Ueda, J. A. M. Vermaseren, and J. Vollinga,

Comput. Phys. Commun. 184, 1453 (2013).
[33] V. Shtabovenko, R. Mertig, and F. Orellana, Comput. Phys.

Commun. 256, 107478 (2020).
[34] A. V. Smirnov and F. S. Chuharev, Comput. Phys. Commun.

247, 106877 (2020).
[35] S. Laporta, Int. J. Mod. Phys. A 15, 5087 (2000).
[36] F. V. Tkachov, Phys. Lett. 100B, 65 (1981).
[37] K. G. Chetyrkin and F. V. Tkachov, Nucl. Phys. B192, 159

(1981).
[38] A. V. Kotikov, Phys. Lett. B 254, 158 (1991).
[39] A. V. Kotikov, Phys. Lett. B 267, 123 (1991); 295, 409(E)

(1992).
[40] J. M. Henn, Phys. Rev. Lett. 110, 251601 (2013).
[41] R. N. Lee, Comput. Phys. Commun. 267, 108058 (2021).
[42] E. Remiddi and J. A. M. Vermaseren, Int. J. Mod. Phys. A

15, 725 (2000).
[43] D. Maitre, Comput. Phys. Commun. 174, 222 (2006).
[44] X. Liu, Y.-Q. Ma, and C.-Y. Wang, Phys. Lett. B 779, 353

(2018).
[45] X. Liu and Y.-Q. Ma, Comput. Phys. Commun. 283, 108565

(2023).
[46] H. Ferguson and D. Bailey (1992), A polynomial time,

numerically stable integer relation algorithm, Report
No. RNR-91-032, NASA Ames Research Center.

CHEN, LI, LI, WANG, WANG, and WU PHYS. REV. D 109, L071503 (2024)

L071503-6

https://doi.org/10.1007/JHEP06(2023)019
https://doi.org/10.1007/JHEP06(2023)019
https://doi.org/10.1016/j.physletb.2014.06.076
https://doi.org/10.1016/j.physletb.2014.06.076
https://doi.org/10.1103/PhysRevD.88.054024
https://doi.org/10.1103/PhysRevD.96.011901
https://doi.org/10.1103/PhysRevD.96.011901
https://doi.org/10.1103/PhysRevD.98.116011
https://doi.org/10.1103/PhysRevD.98.116011
https://doi.org/10.1103/PhysRevLett.122.231803
https://doi.org/10.1103/PhysRevLett.122.231803
https://arXiv.org/abs/1310.0563
https://doi.org/10.1140/epjc/s10052-023-11421-1
https://doi.org/10.1140/epjc/s10052-023-11421-1
https://doi.org/10.1140/epjc/s10052-023-11650-4
https://doi.org/10.1007/JHEP11(2019)003
https://doi.org/10.1007/JHEP11(2019)003
https://doi.org/10.1016/0550-3213(89)90108-9
https://doi.org/10.1016/0370-2693(90)90571-M
https://doi.org/10.1103/PhysRevD.43.3759
https://doi.org/10.1103/PhysRevD.43.3759
https://doi.org/10.1103/PhysRevLett.110.042001
https://doi.org/10.1103/PhysRevLett.110.042001
https://doi.org/10.1007/JHEP04(2013)059
https://doi.org/10.1007/JHEP04(2013)059
https://doi.org/10.1103/PhysRevD.108.054003
https://doi.org/10.1103/PhysRevD.108.054003
https://doi.org/10.1016/S0550-3213(98)00844-X
https://doi.org/10.1016/S0550-3213(98)00844-X
https://doi.org/10.1103/PhysRevD.60.114015
https://doi.org/10.1103/PhysRevLett.93.062001
https://doi.org/10.1103/PhysRevD.71.054004
https://doi.org/10.1103/PhysRevD.79.019901
https://doi.org/10.1103/PhysRevD.79.019901
https://doi.org/10.1103/PhysRevLett.88.131801
https://doi.org/10.1103/PhysRevLett.88.131801
https://doi.org/10.1103/PhysRevD.81.111503
https://doi.org/10.1103/PhysRevD.81.111503
https://doi.org/10.1103/PhysRevD.97.094008
https://doi.org/10.1140/epjc/s10052-023-11224-4
https://doi.org/10.1016/j.physletb.2018.10.035
https://arXiv.org/abs/2308.12169
https://doi.org/10.1016/0550-3213(91)90530-B
https://doi.org/10.1103/PhysRevLett.66.3105
https://doi.org/10.1103/PhysRevLett.66.3105
https://doi.org/10.1093/ptep/ptac097
https://doi.org/10.1093/ptep/ptac097
https://arXiv.org/abs/2310.07634
https://doi.org/10.1006/jcph.1993.1074
https://doi.org/10.1016/j.cpc.2012.12.028
https://doi.org/10.1016/j.cpc.2020.107478
https://doi.org/10.1016/j.cpc.2020.107478
https://doi.org/10.1016/j.cpc.2019.106877
https://doi.org/10.1016/j.cpc.2019.106877
https://doi.org/10.1142/S0217751X00002159
https://doi.org/10.1016/0370-2693(81)90288-4
https://doi.org/10.1016/0550-3213(81)90199-1
https://doi.org/10.1016/0550-3213(81)90199-1
https://doi.org/10.1016/0370-2693(91)90413-K
https://doi.org/10.1016/0370-2693(91)90536-Y
https://doi.org/10.1016/0370-2693(92)91582-T
https://doi.org/10.1016/0370-2693(92)91582-T
https://doi.org/10.1103/PhysRevLett.110.251601
https://doi.org/10.1016/j.cpc.2021.108058
https://doi.org/10.1142/S0217751X00000367
https://doi.org/10.1142/S0217751X00000367
https://doi.org/10.1016/j.cpc.2005.10.008
https://doi.org/10.1016/j.physletb.2018.02.026
https://doi.org/10.1016/j.physletb.2018.02.026
https://doi.org/10.1016/j.cpc.2022.108565
https://doi.org/10.1016/j.cpc.2022.108565


[47] H. Ferguson, D. Beiley, and S. Arno, Math. Comput. 68,
351 (1999).

[48] See Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevD.109.L071503 for the
complete analytical results of the leading color N3LO
QCD corrections.

[49] M. Bohm, H. Spiesberger, and W. Hollik, Fortschr. Phys.
34, 687 (1986).

[50] A. Denner and T. Sack, Z. Phys. C 46, 653 (1990).
[51] E. Gardi, G. Grunberg, and M. Karliner, J. High Energy

Phys. 07 (1998) 007.
[52] A. Deur, S. J. Brodsky, and G. F. de Teramond, Nucl. Phys.

90, 1 (2016).
[53] The program can be downloaded from https://github.com/

haitaoli1/TopWidth or the Supplemental Material.

[54] Y. S. Amhis et al. (HFLAV Collaboration), Phys. Rev. D
107, 052008 (2023).

[55] K. Melnikov and T. van Ritbergen, Phys. Lett. B 482, 99
(2000).

[56] T. van Ritbergen, Phys. Lett. B 454, 353 (1999).
[57] M. Fael, K. Schönwald, and M. Steinhauser, Phys. Rev. D

104, 016003 (2021).
[58] M. Beneke and V. M. Braun, Nucl. Phys. B426, 301

(1994).
[59] C. Dlapa, M. Helmer, G. Papathanasiou, and F. Tellander,

J. High Energy Phys. 10 (2023) 161.
[60] J. Chen, B. Feng, and L. L. Yang, Sci. China Phys. Mech.

Astron. 67, 221011 (2024).
[61] L. Chen, X. Chen, X. Guan, and Y.-Q. Ma, arXiv:

2309.01937.

ANALYTIC THIRD-ORDER QCD CORRECTIONS TO TOP-QUARK … PHYS. REV. D 109, L071503 (2024)

L071503-7

https://doi.org/10.1090/S0025-5718-99-00995-3
https://doi.org/10.1090/S0025-5718-99-00995-3
http://link.aps.org/supplemental/10.1103/PhysRevD.109.L071503
http://link.aps.org/supplemental/10.1103/PhysRevD.109.L071503
http://link.aps.org/supplemental/10.1103/PhysRevD.109.L071503
http://link.aps.org/supplemental/10.1103/PhysRevD.109.L071503
http://link.aps.org/supplemental/10.1103/PhysRevD.109.L071503
http://link.aps.org/supplemental/10.1103/PhysRevD.109.L071503
http://link.aps.org/supplemental/10.1103/PhysRevD.109.L071503
https://doi.org/10.1002/prop.19860341102
https://doi.org/10.1002/prop.19860341102
https://doi.org/10.1007/BF01560267
https://doi.org/10.1088/1126-6708/1998/07/007
https://doi.org/10.1088/1126-6708/1998/07/007
https://doi.org//10.1016/j.ppnp.2016.04.003
https://doi.org//10.1016/j.ppnp.2016.04.003
https://github.com/haitaoli1/TopWidth
https://github.com/haitaoli1/TopWidth
https://github.com/haitaoli1/TopWidth
https://doi.org/10.1103/PhysRevD.107.052008
https://doi.org/10.1103/PhysRevD.107.052008
https://doi.org/10.1016/S0370-2693(00)00507-4
https://doi.org/10.1016/S0370-2693(00)00507-4
https://doi.org/10.1016/S0370-2693(99)00407-4
https://doi.org/10.1103/PhysRevD.104.016003
https://doi.org/10.1103/PhysRevD.104.016003
https://doi.org/10.1016/0550-3213(94)90314-X
https://doi.org/10.1016/0550-3213(94)90314-X
https://doi.org/10.1007/JHEP10(2023)161
https://doi.org/10.1007/s11433-023-2239-8
https://doi.org/10.1007/s11433-023-2239-8
https://arXiv.org/abs/2309.01937
https://arXiv.org/abs/2309.01937

