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Topologically nontrivial fluctuations control the anomalous interactions for the η and η0 pseudoscalar
mesons. We consider the anomalous interactions for mesons with higher spin, the heterochiral nonets with
JPC ¼ 1þ− and 2−þ. Under the approximation of a dilute gas of instantons, the mixing angle between
nonstrange and strange mesons decreases strongly as J increases, and oscillates in sign. Anomalous
interactions also open up new, rare decay channels. For glueballs, anomalous interactions indicate that the
Xð2600Þ state is primarily gluonic.
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Introduction.Quantum Chromodynamics (QCD) is close to
the chiral limit, where the up, down and strange quarks (u,
d, and s) are very light. Consequently, when the global
chiral symmetry is spontaneously broken in the vacuum,
from SUð3ÞL × SUð3ÞR × UAð1Þ → SUð3ÞV , nine pseudo-
Goldstone bosons should appear. Instead, there are only
eight: the usual octet of pions, kaons, and the η meson,
while the η0 is much heavier than expected.
This occurs because the axial UAð1Þ symmetry of the

classical theory is broken by quantum effects, through
the anomaly of Adler, Bell, and Jackiw [1,2]. This splits
the singlet η0meson from the octetmesons, andgives it amass
through fluctuationswhich are topologically nontrivial [3–7].
The most familiar example are instantons: classical solutions
of the gluon field equations in Euclidean spacetime [3],
whose effects can be computed semiclassically [4,5]. While
instantons dominate at high temperature, in vacuum truly
quantum fluctuations also contribute [7].

While anomalous interactions are especially dramatic for
the pseudoscalar multiplet, it is natural to ask how the axial
anomaly affects other mesons, such as conventional mesons
with higher spin, or unconventional ones, such as glueballs.
As both mesons with nonzero spin and glueballs are
massive, the effects of the axial anomaly are more subtle,
affecting the mass splittings, mixing, and decays of some
fields in these multiplets.
In Ref. [8], mesons are divided into “heterochiral” and

“homochiral.” In the chirally symmetric phase, heterochiral
mesons are a mixture of a left-handed anti-quark and a
right-handed quark (or vice versa), as for the pseudo-
Goldstone bosons. Homochiral mesons are formed just
from a left (or right) handed anti-quark and a quark. These
begin with the vector mesons, JPC ¼ 1−−: the ρμð770Þ,
ωμð782Þ, and ϕμð1020Þ mesons.
The anomalous interactions between heterochiral and

homochiral mesons are very different. Heterochiral mesons
have anomalous interactions with no derivatives, which
directly affect their mass spectrum, and with few deriva-
tives, which affect their decays. In contrast, homochiral
mesons only have anomalous interactions with many
derivatives, through the Wess-Zumino-Witten term [9].
In this paper we construct the anomalous interactions for

the underlying quark operators, and their counterparts for
heterochiral mesons and for the pseudoscalar glueball, in a
dilute gas of instantons (DGI). After reviewing the well
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known case of J ¼ 0, the extension to heterochiral mesons
with spin J ¼ 1 and J ¼ 2, and then with a glueball, is
direct. Because of the axial anomaly, massless quarks have
exact zero modes, so that instanton contributions to
anomalous operators can be computed by saturating these
operators with these zero modes [4,5]. The only change
with nonzero spin is that the vertices which tie the zero
modes differs.
At the outset we acknowledge that the topological

structure of the vacuum is surely more complicated than
a dilute gas of instantons [7]. Nevertheless, the anomalous
operators which we compute in this work are novel, and we
expect a DGI to give a first estimate of their magnitude.
Indeed, a recent analysis of the chiral phase transition near
the chiral limit suggests that a DGI may well underestimate
the effects of topologically nontrivial fluctuations [10].
The present analysis is meant to motivate further study

from numerical simulations on the lattice, and especially
from experiment. Thus we concentrate on phenomenology,
notably the splitting and mixing between mesons in a given
multiplet, and on new decay channels which open up for
mesons and glueballs.

Heterochiral multiplets.Mesons are classified according to
their quantum numbers under spin, parity, and charge
conjugation, JPC. The total spin J ¼ Lþ S is the sum
of angular momentum L and the spin S, with P ¼ ð−1ÞLþ1

and C ¼ ð−1ÞLþS. With massless quarks, classically left
and right handed quarks are invariant the symmetry group
of Gcl ¼ SULð3Þ × SURð3Þ ×UAð1Þ:

qL;R ⟶ e∓iα=2UL;RqL;R: ð1Þ

Here qL;R ¼ PL;Rq, where PL;R ¼ 1
2
ð1 ∓ γ5Þ. UL and UR

are flavor rotations in SULð3Þ and SURð3Þ, respectively,
while expð∓ iα=2Þ is a rotation for axial UAð1Þ. This
transformation relates nonets with the same spin and
opposite parity.
A heterochiral meson with spin zero is proportional to

the quark operator q̄LqR; those of higher spin are given just

by inserting powers of the covariant color derivative, D
↔

μ,
between the quark fields. For J ¼ 0, 1, and 2, these are Φ,

Φμ and Φμν, as shown in Table I. Because D
↔

μ only acts
upon color and not flavor, these mesons all transform
identically under chiral rotations [8].
Typically bosonic fields in an effective Lagrangian have

dimensions of mass. To ensure this it is necessary to
introduce the dimensionful constants M0, M1, and M2 for
J ¼ 0, 1, and 2 in Table I. Since the spin is increased by

inserting more powers ofD
↔

μ, the power ofM increases with
J, ∼1=MJþ2

J . A major concern in the phenomenological
analysis below is the relativemagnitude of thesemass scales.

The unbroken symmetry group of the quantum theory
is not Gcl, but Gqu ¼ SULð3Þ × SURð3Þ [8]. Each SUð3Þ
contains the element U ¼ expð2πi=3Þ, which generates an
abelian Zð3Þ subgroup. Anomalous interactions violate
UAð1Þ, but are invariant under this Zð3Þ. For spin zero,
this begins with the cubic invariant, ∼ detðΦÞ, in Eq. (6).
The anomalous interactions for fields with higher spin,
Eqs. (9), (13), (16), and (17), generalize this term.
We begin by reviewing the experimental evidence for

heterochiral multiplets.
(i) Heterochiral mesons with J ¼ 0: Besides the usual

pions and kaons, there are the flavor eigenstates,
ηN ≡ ffiffiffiffiffiffiffiffi

1=2
p ðūuþ d̄dÞ and ηS ≡ s̄s. Because of the

axial anomaly, Eq. (6), these mix to form the
physical η and η0 states:

�
ηð547Þ
η0ð958Þ

�
¼
�

cosβ0 sinβ0
−sinβ0 cosβ0

��
ηN

ηS

�
; ð2Þ

The mixing angle, β0 ¼ −43.4° [11], is large and
negative. This demonstrates that the axial anomaly
ensures that the physical states are closer to the octet
and singlet configurations, respectively [12,13]. In
all they form a pseudoscalar nonet, Pij ¼ 1

2
q̄jiγ5qi.

The assignment for the scalar mesons, with
JPC ¼ 0þþ, is still under debate [14–21] [22]. In
all, Φ ¼ Sþ iP, Table I.

(ii) Heterochiral mesons with J ¼ 1: The pseudo-
vector mesons with JPC ¼ 1þ− corresponds to
Pμ ¼ fb1ð1235Þ; K̄1B ≡ K1ð1270Þ=K1ð1400Þ [23],
h1ð1170Þ,h1ð1415Þg [26]. Themixing angle between
h1ð1170Þ and h1ð1415Þ takes the same expression
as in Eq. (2), β1. The value of β1 is not yet known,
and is discussed below. Their chiral partners with
JPC ¼ 1−− are the orbitally excited vector mesons
Sμ ¼ fρð1700Þ; K�ð1680Þ;ωð1650Þ;ϕð2170Þg. The
full multiplet is Φμ ¼ Sμ þ iPμ, Table I.

(iii) Heterochiral mesons with J ¼ 2: The pseudotensor
mesons JPC ¼ 2−þ listed in the PDG [26], denoted as
Pμν¼fπ2ð1670Þ;K2P≡K2ð1770Þ=K2ð1820Þ [28],
η2ð1645Þ; η2ð1875Þg, are members of the heterochi-
ral nonet with spin 2. The isoscalar mixing analogous
to Eq. (2) via the angle β2, is under debate, but

TABLE I. Heterochiral fields for multiplets with spin zero, one,
and two.

Chiral nonet Gcl

Φ ¼ q̄LqR=M2
0 eiαU†

LΦUR

Φμ ¼ iq̄LD
↔

μqR=M3
1

eiαU†
LΦμUR

Φμν ¼ q̄LðgμνD
↔2

=4 −D
↔

μD
↔

νÞqR=M4
2

eiαU†
LΦμνUR
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according to the phenomenological studies of
Refs. [30,31], it might be large. The chiral partners
of the pseudotensor mesons are expected to be
the orbitally excited tensor mesons Sμν with JPC ¼
2þþ [32]. The full multiplet is Φμν ¼ Sμν þ iPμν,
Table I.

Instanton induced interactions. It is well known that
instantons generate the interaction [4,5,13]

LJ¼0
eff ¼ −

k0
3!

�
detðq̄LqRÞ þ detðq̄RqLÞ

�
: ð3Þ

Anticipating later results, we introduce the J-dependent
coupling

kJ ¼ ð8π2Þ3
Z

Λ−1
MS

0

dρnðρÞρ9þ2J: ð4Þ

This is a weighted average over the instanton density nðρÞ,
which for three massless quarks and three colors is given
by [34–36]:

nðρÞ ¼ exp

�
−

8π2

g2ðρΛMSÞ
− 7.07534

�
1

π2ρ5

�
16π2

g2ðρΛMSÞ
�

6

:

ð5Þ

The expression for the running coupling constant gðρΛMSÞ
is given in the Supplemental Material [37] to two loop
order, while the instanton density nðρΛMSÞ is illustrated in
Fig. 1. See the Supplemental Material (SM) [37] for further
details. Taking the renormalization mass scale ΛMS ¼
300 MeV [26], for J ¼ 0 we obtain k0 ≈ 2.57 ×
106 GeV−5 [38].
Assuming that the effective bosonic field Φ is propor-

tional to the quark bilinear [13,39,40],

LJ¼0
eff ¼ −a0ðdetΦþ detΦ†Þ: ð6Þ

The bosonic coupling a0 depends on k0 and the constant
M0 in Table I, a0 ¼ k0M6

0=48 > 0.

The mixing angle of Eq. (2) is then [41]

β0 ¼
1

2
tan−1

�
−2.6

ffiffiffi
2

p
a0ϕN

ðm2
η0 −m2

ηÞ cos 2β0

�
< 0; ð7Þ

where the chiral condensate of nonstrange quarks ϕN can
be expressed in terms of the pion decay constant
ϕN ¼ h0jηN j0i ≃ 1.7fπ ≈ 160 MeV. A dilute gas of instan-
tons gives negative β0, in agreement with phenomenology.
Imposing the phenomenological value β0 ¼ −43.6° and
using the parameters of Refs. [42,43],

a0 ¼ 1.3 GeV; M0 ¼ 170 MeV; ð8Þ

so that the value of M0 is close to that for ϕN.
The generic anomalous interaction for three flavors is

illustrated in the left part of Fig. 2. The only change with

higher spin is that as J increases, powers of D
↔

μ are inserted
between the zero modes. This is responsible for the factor
of ρ2J in the anomalous interactions, kJ in Eq. (4).
For spin one, the simplest anomalous interaction is

quadratic in Φμ and linear in Φ:

LJ¼1
eff ¼ −

k1
3!

�
ϵ
h
ðq̄LqRÞðq̄LD

↔

μqRÞ2
i
þ R ↔ L

�

¼ a1ðϵ½ΦΦμΦμ� þ c:c:Þ; ð9Þ

where we introduce the symbol [44]

ϵ½ABC� ¼ ϵijkϵi
0j0k0Aii0Bjj0Ckk0=3!; ð10Þ

with i, j, k and i0; j0; k0 are SULð3Þ and SURð3Þ indices.
Since ϵ½AAA� ¼ detA, ϵ½ABC� represents a type of gener-
alized determinant between dissimilar matrices [45]. Given
the transformation properties of Φ and Φμ in Table I,
Eqs. (6) and (9) are manifestly invariant under SULð3Þ×
SURð3Þ. Similarly, as the product of three heterochiral
fields, these terms are not invariant under UAð1Þ, but Zð3Þ.
These anomalous interactions were first obtained in Ref. [8]FIG. 1. The density of instantons for Nc ¼ Nf ¼ 3.

FIG. 2. Anomalous processes induced by instantons: to left,
cubic couplings between the heterochiral-type, Φ’s, and to the
right, their coupling to a glueball field, G̃.
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entirely from considerations of symmetry. In this paper we
now compute their magnitude, as well as anomalous
glueball interactions, in a DGI.
To relate the kJ to physical processes, we need the values

for the constants of proportionality MJ between quark
and mesonic operators. For spin one, we find k1 ¼
9.91 × 106 GeV−7, which for M1 ¼ M0 gives

a1 ¼ −
k1M6

1M
2
0

48
≈ −0.14 GeV < 0: ð11Þ

The corresponding mixing angle is approximately:

β1≃
1

2
tan−1

�
−

ffiffiffi
2

p
a1ϕN=3

2ðm2
K1B

−m2
b1
Þ− ffiffiffi

2
p

a1ϕS=6

�
> 0: ð12Þ

For a DGI this mixing angle is positive. Using the value for a
strange quark condensate ϕS ¼ h0jηSj0i ≈ 130 MeV, and
assumingM1 ¼ M0 ¼ 170 MeV,we obtain a small value of
β1 ≃ 0.75°; for a larger value ofM1 ¼ 270 MeV, themixing
angle increases to β1 ≃ 10°. As illustrated in Fig. 3 [51],
experimental results favor a positive value [54–57], as do
numerical simulations on the lattice [58].
The anomalous interactions in Eq. (9) also open up new

decay modes. For example, Γðρð1700Þ → h1ð1415ÞπÞ ¼
0.027ðM1=M0Þ6 MeV, which if M1 ¼ M0 is rather small.
Other anomalous decays are discussed in the Supplemental
Material [37]. Measuring such processes can be used to fix
the value of M1.
An interaction term with one J ¼ 0 meson and two

J ¼ 2 heterochiral mesons is

LJ¼2
eff ¼ −

k2
3!

ðϵ
h
ðq̄LqRÞ

�
q̄L

�
D
↔

μD
↔

ν − gμνD
↔2

=4
�
qR

�
2
i

þ R ↔ LÞ ¼ −a2ðϵ½ΦΦμνΦμν� þ c:c:Þ: ð13Þ

We find k2 ¼ 4.05 × 107 GeV−9, so when M2 ¼ M0,

a2 ¼
k2M8

2M
2
0

48
≈ 0.017 GeV > 0: ð14Þ

The mixing angle for the pseudotensor multiplet is
negative [59],

β2≃
1

2
tan−1

�
−

ffiffiffi
2

p
a2ϕN=3

2ðm2
K2P

−m2
π2Þ−

ffiffiffi
2

p
a2ϕS=6

�
< 0: ð15Þ

Assuming that M2 ¼ M0, the DGI gives a small mixing
angle, β2 ≈ −0.05°. This agrees with lattice QCD [61], but
not with the large value of β2 ≃ −42° extracted in Ref. [30]
from the decay rates. To fit such a large mixing angle
requires M2 ¼ 2.4M0.
We see that anomalous terms generate mixings between

the octet and singlet for all (pseudo-)heterochiral mesons.
These mixing angles do decrease strongly with J, for
two reasons. First, comparing the values in Eqs. (8), (11),
and (14), each aJ decreases by about ≈1=10 as J increases
by one (assuming that M0 ¼ M1 ¼ M2). This is because
anomalous coupling kJ in Eq. (4) involves ρ2J, and a DGI
peaks at small ρΛMS ∼ 0.5, Fig. 1. Second, tan βJ is
proportional to the inverse of the mass squared of the
mesons, Eqs. (7), (12) and (15). For J ¼ 0, the η and η0 are
pseudo-Goldstone bosons, and so much lighter than ordi-
nary mesons, with J ¼ 1 and 2. The former may be an
artifact of a dilute gas of instantons; the latter is not.
Further, that the sign of βJ flips as J changes is dynamical,
and does not follow just from the chiral symmetry. This is a
nontrivial test of our model, and appears to agree with
experiment.
Besides mixing terms, there are also anomalous terms

which involve derivatives of the spin zero field Φ, and so
exclusively affect decays. For example, a term which
couples heterochiral mesons with J ¼ 0, 1, and 2 is

Lb2 ¼ −b2
�
ϵ
	ð∂μΦÞΦνΦμν


þ c:c:
�
: ð16Þ

In a DGI jb2j ¼ k2M2
0M

3
1M

4
2=48; with M0 ¼ M1 ¼ M2,

jb2j ≈ 0.099.
An anomalous interaction coupling two heterochiral

J ¼ 0 mesons to a J ¼ 2 meson is

Lc2 ¼ −c2
�
ϵ
	ð∂μΦÞð∂νΦÞΦμν


þ c:c:
�
: ð17Þ

For a DGI, jc2j ¼ k2M2
0M

4
2=48, with jc2j ¼ 0.474 GeV−1

when M2 ¼ M0.
Again, numerous anomalous decay channels open up. For

example, Γðη2ð1870Þ → ρð1700ÞπÞ ¼ 1.5 × 10−6M3
1M

4
2=

M7
0 MeV. Measuring such processes will significantly

constrain the values ofM1 andM2, and test the consistency
of our approach.

FIG. 3. β1 in a DGI compared to the experiment [54–57] and
the lattice (LQCD) [58], for M1 ¼ M0 ¼ 170 MeV and
M1 ¼ 270 MeV.
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Besides anomalous mesonic interactions, those involv-
ing glueballs follow immediately, and are illustrated in the
right part of Fig. 2. An anomalous interaction between a
pseudoscalar glueball and heterochiral mesons is given by
the term

Lcg ¼ −icgG̃0ðdetΦ − detΦ†Þ: ð18Þ

In a DGI cg ≈ 11. Then, by using Ref. [62], we obtain
ΓðG̃0→KK̄πÞ≈0.24GeV and ΓðG̃0→ ππη0Þ≈0.05GeV.
In contrast to the anomalous decays between heterochiral
mesons, these are large values. Notably, the BESIII
collaboration has recently seen a pseudoscalar resonance,
denoted as Xð2600Þ, in the ππη0 channel [63]. Our results
support the interpretation of this resonance as mostly
gluonic, with a decay enhanced by the chiral anomaly [64].
Further anomalous decays involving heterochiral mesons

with higher spin follow directly, and include interactions
such as G̃0ðϵ½ΦΦμΦμ� − c:c:Þ.
We conclude by noting that there are many other

anomalous interactions which can be computed with our

techniques. These include baryon decays [66], tetraqu-
arks [67], glueballs and hybrid states [68,69], and the H di-
baryon [70,71]. In summary, the effects of the axial
anomaly merely begin with the η and the η0 mesons, but
most certainly do not end there.
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