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We consider the fermionic (logarithmic) negativity between two fermionic modes in the Schwinger
model. Recent results pointed out that fermionic systems can exhibit stronger entanglement than bosonic
systems, exhibiting a negativity that decays only algebraically. The Schwinger model is described by
fermionic excitations at short distances, while its asymptotic spectrum is the one of a bosonic theory. We
show that the two-mode negativity detects this confining, fermion-to-boson transition, shifting from an
algebraic decay to an exponential decay at distances of the order of the de Broglie wavelength of the first
excited state. We derive analytical expressions in the massless Schwinger model and confront them with
tensor network simulations. We also perform tensor network simulations in the massive model, which is not
solvable analytically, and close to the Ising quantum critical point of the Schwinger model, where we show
that the negativity behaves as its bosonic counterpart.
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Introduction. Entanglement is a defining property of the
quantum world. Understanding its structural impact on
quantum many-body systems and quantum field theories
is key. Thiswas realized in the early days ofmodern quantum
field theory [1]. It has led to a plethora ofworks, starting from
the conjecture of the area law for the entanglement entropy
[2], computation of the entanglement entropy in conformal
field theory (CFT) [3], and in holography [4].More than their
intrinsic interests, these studies have led to reconsidering and
gaining insights into old field theoretic questions and
considering new problems. Examples range from under-
standing high-energy scattering in terms of entanglement
[5–12], entanglement in pair production [13–16], the impact
of entanglement structures on the renormalizationgroup flow
[17–21] and systematic construction of effective field the-
ories [22–26], links to thermalization [27–33], and to partial
and dynamical symmetry breaking and restoration [34–36],
see also [37–39] for reviews on the interface of quantum
information science and field theory.
To fully apprehend entanglement, the study ofmixed states

is crucial. From a many-body perspective, it allows, for
instance, to probe entanglement between subsystems. In this
case, entanglement measures are not unique. The (logarith-
mic) negativity is a useful one as it provides an upper bound
on the amount of distillable entanglement, i.e. the amount

of entanglement that can be recovered using local observables
[40–44]. Its behavior has been extensively studied in
CFTs [45–48] and was also explored in free scalar field
theories [23–25]. Recently, Ref. [49] pointed out that fer-
mionic degrees of freedom can carry more entanglement than
bosonic degrees of freedom. In particular, they exhibited
systems where the fermionic negativity decays only as a
power law. This is in contrast to bosonic systems, as even
close to critical points, the logarithmic negativity decays
faster than any power [45,50]. Having fermionic excitations
potentially more strongly entangled than bosonic excitations
is interesting in relation to confining theories, where the
spectrum of the theory is not made out of trivial excitations of
the microscopic particles. It is suggestive that when a
fermionic theory gives rise only to bosonic excitations, the
spatial distribution of negativity should probe the scale at
which the theory confines. As a result, an intriguing problem
to investigate is the relationship between entanglement
measures and confinement.
This work explores these ideas within the Schwinger

model, quantum electrodynamics in 1þ 1 dimensions:

H ¼
Z

dx½ψ̄ðγ1ð−i∂1 þ A1Þ þmÞψ � þ g2

2
E2; ð1Þ

with A1 the gauge potential, E is the canonically conjugate
operator for the electric field and ψT ¼ ðψ1ψ2Þ is a two
component spinor. Gauss’s constraint supplements it,
∂1E ¼ ψ̄γ0ψ ≡ ψ†ψ with ψ̄ ≡ ψ†γ0. It manifests the
remaining “gauge invariance” of the Hamiltonian formal-
ism. We express the γ matrices in terms of Pauli matrices
as γ0 ¼ σz; γ1 ¼ −iσy; γ5 ¼ γ0γ1 ¼ −σx.
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It is an ideal playground to test these ideas as it is known to
be dual to a bosonic scalar theory and that asymptotic
excitations of the model, “mesons,” are bosons (they are
solitons made out of the scalar field) [51,52]. In other words,
it behaves as a fermionic theory only over the shortest scales
and transitions to a bosonic behavior at larger scales.
Moreover, when the mass parameterm vanishes, the bosonic
theory is simply a massive free scalar field with mass mb ¼
g=

ffiffiffi
π

p
[53]. In this case, the theory is analytically solvable.

We will study a standard fermionic chain that approaches
the Schwinger model in the continuum. It can be con-
structed by introducing “staggered fermions” [54,55]

χ2j ¼
ffiffiffiffiffiffi
2a

p
ψ1ðxjÞ; χ2jþ1 ¼

ffiffiffiffiffiffi
2a

p
ψ2ðxjÞ: ð2Þ

As depicted in Fig. 1, lattice sites are labeled by an integer
n ¼ 1;…; 2N. A physical site is made out of two lattice
sites. The upper component of the continuum spinors lives
on odd sites, while the down component lives on even sites.
Physical distances are measured in units of 1=2a with a the
lattice spacing. We impose open-boundary conditions on
the fermions χ0 ¼ χ2Nþ1 ¼ 0. In this setting, the remaining
gauge freedom allows to set the gauge potential to zero and
express the electric field only in terms of fermionic
operators by solving Gauss law, see for instance [56] for
explicit expressions. The resulting Hamiltonian reads

HL
S ¼ −

i
2a

XN−1

n¼1

½χ†nχnþ1 − χ†nþ1χn� þm
XN
n¼1

ð−1Þnχ†nχn

þ ag2

2

XN−1

n¼1

�Xn
i¼1

Qi

�
2

; ð3Þ

with Qi ¼ nið1 − ð−1ÞiÞ the lattice charge density operator
and ni ¼ χ†i χi the fermion number operator.
We will investigate the two-fermion (logarithmic) neg-

ativity. After defining it and studying its behavior in the
continuum, we show that it indeed transitions from an
algebraic decay at small distances to an exponential decay at
large distances.Moreover, the transition happens precisely at
the de Broglie wavelength of the first bosonic excited state.
We conclude by investigating the behavior of the logarithmic
fermionic negativity at the quantum Ising critical point of the

Schwingermodel.We show that evenwhenusinga fermionic
description, the bosonic expectation of the theory is met, and
the negativity decays exponentially fast.

Two-fermion negativity and the continuum limit. We start
from the simple realization that a tractable expression for the
density matrix for two staggered modes can be written down
explicitly in terms of the staggered fields’ two- and four-point
functions [49,57,58].We consider the reduced densitymatrix
between modes whose physical sites are separated by a
physical distance r and are equally distant from the center of
the lattice, as depicted in Fig. 1. Because of the staggering,
the sites are not related by a reflection symmetry, and we
need a generalization of [49]. Consider the state jψi¼P

i1;…;i2N¼0;1ci1;…;i2N ji1;…;i2Ni. The reduced density matrix
obtained after tracing all sites except j and k reads

ρj↔k ¼
X

i0j;i
0
k;ij;ik¼0;1

Λi0ji
0
k;ijik

ji0ji0kihijikj;

Λi0ji
0
k;ijik

¼
X
filg¼0;1
l≠j;k

c�i1;…ij;…ik;…;i2N
ci1;…ij0;…i0k;…;i2N : ð4Þ

Thematrix elementsΛi0ji
0
k;ijik

can be expressed in terms of the

fermion fields’ two- and four-point functions. We restrict
ourselves to states with zero total chargeQ ¼ 0. As a result,
the density matrix takes the following form

ρj↔k ¼

0
BBB@

Λ00;00 0 0 0

0 Λ01;01 Λ01;10 0

0 Λ�
01;10 Λ10;10 0

0 0 0 Λ11;11

1
CCCA: ð5Þ

Direct computations give

hnjiψ ¼ Λ10;10 þ Λ11;11; hnkiψ ¼ Λ01;01 þ Λ11;11;

hnjnkiψ ¼ Λ11;11; hχ†jχkiψ ¼ Λ01;10; ð6Þ
using the shorthand notation h…iψ ≡ hψ j…jψi. Thus, using
(6) and Trðρj↔kÞ ¼ 1 in the occupation number basis
fj00i; j01i; j10i; j11ig, we have,

Λ00;00 ¼ 1 − hnjiψ − hnkiψ þ hnjnkiψ ;
Λ10;10 ¼ hnjiψ − hnjnkiψ ; Λ11;11 ¼ hnjnkiψ ;
Λ01;01 ¼ hnkiψ − hnjnkiψ ; Λ01;10 ¼ hχ†jχkiψ :

Weneed the fermionic partial transpose of (5) to compute the
negativity. Following [59], it acts on our two-fermion
reduced Hilbert space as

ðji0ji0kihijikjÞT
f
j ¼ ð−1Þαjiji0kihi0jikj;

α ¼ i0jði0j þ 2Þ
2

þ ijðij þ 2Þ
2

þ iki0k þ i0ji
0
k

þ ijik þ ðij þ ikÞði0j þ i0kÞ: ð7Þ

FIG. 1. Staggered set-up in the Schwinger model. Physical sites
are made out of two lattice sites. The difference from a spinful
“electron” is that gauge fields, before being integrated out, also
link fermions within a physical site. We consider here the
negativity between even/odd modes; the same analysis can be
repeated for the odd/odd or even/even correlations.
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It leads to

ρ
Tj
j

j↔k ¼

0
BBB@

Λ00;00 0 0 iΛ�
01;10

0 Λ01;01 0 0

0 0 Λ10;10 0

iΛ01;10 0 0 Λ11;11

1
CCCA; ð8Þ

with eigenvalues λ1; λ2; λþ; λ−:

λ1 ¼ Λ01;01; λ2 ¼ Λ10;10;

λ� ¼ 1

2

�
1 − Λ01;01 − Λ10;10

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−4jΛ01;10j2 þ ð−Λ00;00 þ Λ11;11Þ2

q �
: ð9Þ

The eigenvalues λ1;2 are real and positive. We can take λ� ¼
λR � iλI with λI ≠ 0 as when they are real, they are also
positive, as shown in the Supplemental Material [60]. Then,

N 2f ≡ X
i∈ f1;2;þ;−g

jλij − λi
2

¼ jλ�j − λR; ð10Þ

ϵN 2f ≡ logð1þ 2N 2fÞ ¼ logð1þ 2ðjλ�j − λRÞÞ; ð11Þ
with N 2f the two-fermion negativity and ϵN 2f the corre-
sponding two-fermion logarithmic negativity. These simple
expressions allow us to investigate what happens in the
continuum limit. We focus on the ground state of the
Schwinger model. First, we recover translational invariance.
Then, hnxi ¼ 1=2 as the vacuum state of the field theory
corresponds to half-filling in terms of the staggered fermions.
For the same reason, the correlator that has a continuum limit
is the connected two-point functionof hδnjδnki (equivalent to
“normal ordering” in the continuum theory). Taking xj and xk
the physical points associated with j and k, see Fig. 1, we
write its continuum limit n2ðrÞ, with r ¼ xj − xk (it can be
expressed in terms of the vector charge and the chiral
condensate, but it won’t be used here). Lastly, hχ†jχki
converges to appropriate components of the continuum, full
equal time correlator of the theoryDαβðrÞ. In more detail, we
have, depending on their parity, hχ†2xjχ2xki hχ†2xjχ2xkþ1i
hχ†2xjþ1χ2xki hχ†2xjþ1χ2xkþ1i

!
→

�
D11ðrÞ D12ðrÞ
D21ðrÞ D22ðrÞ

�
:

ð12Þ
This is how the fact that theDirac propagator in the continuum
is a two-by-two matrix manifests itself in the staggered
formulation.
Reinstating thecorrect factorsofa according to (2),wehave

λ1;2 →
1

4
− 2a2n2

λ� →
1

4
− 2a2n2 � 2ia2Dαβ: ð13Þ

Note that, notwithstanding the continuum analysis, it matches
the results of [49] around half-filling.
Now, we are in a position to study the continuum

behavior of the two-fermion negativity. Plugging this in
(10), we find

N 2f
αβ=a

2 → 8jDαβj2 þOða2Þ: ð14Þ
The fact that the two-fermion negativity vanishes as a2 can
easily be explained. The quantity with a continuum limit
without any rescaling by factors of a is the one between two
subsystems of a given physical length.Asa → 0, the number
of modes contained in each subsystem grows as 1=a. By
insisting on computing the negativity between single modes,
we need to pay a factor of 1=a2 in (14). The indices α, β
reflect the fact you can consider the negativity between the
same componentmodes or opposite componentmodes. Note
that this relation to the propagator is reminiscent of the results
of [61], where the quantum Fisher information, another
measure of multipartite entanglement, was successfully
probed using single particle propagators only.
What is insightful is that the continuum limit of N 2f

αβ=a
2

is simply proportional to the square propagator between the
two modes. It gives a new interpretation to the space-like
part of the propagator in this kind of field theory: it
measures the two-mode entanglement in the system. It
also strengthens the speculation made in the introduction.
The two-fermion negativity detects confinement, at least in
one dimension. More generally, it is suggestive that
entanglement measures can be used to probe confinement,
exhibiting different behavior when probing asymptotically
free degrees of freedom with respect to scattering states.

Massless schwinger model. We exemplify these ideas by
studying first the massless Schwinger model. The con-
tinuum theory is dual to the theory of a massive free boson
ϕ of mass mb ¼ g=

ffiffiffi
π

p
[53]. The fermionic propagator is

known explicitly [62,63]

D11ðrÞ ¼ D22ðrÞ≡ d1ðrÞ ¼
mb

4π
eGðrÞþγE ; ð15Þ

D12ðrÞ ¼ D21ðrÞ≡ d2ðrÞ ¼
mb

4π
eGðrÞþK0ðmbrÞþγE ; ð16Þ

GðrÞ ¼ −m2
b

Z
∞

0

dkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

b

q sin2ðkr
2
Þ

k2
ð17Þ

with r ¼ x − y, K0 the 0th Bessel function of the second
kind. They both admit simple asymptotes

d1ðrÞ ∼
� mb

4π e
γE ; r → 0

mb
4π e

1
2
þγE−

mbπr
4 ; r → ∞

; ð18Þ

d2ðrÞ ∼
� 1

2πr ; r → 0

mb
4π e

1
2
þγE−

mbπr
4 ; r → ∞

; ð19Þ
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with γE the Euler-Mascheroni constant. As was pointed out
early on [62], the fermionic propagator captures the
transition from a free constituent fermionic theory at small
distances to a massive bosonic free bosonic theory at large
distances, where the propagator is screened.
We now show that the two-fermion negativity defined

from the lattice model indeed approaches the square
propagator. To compute the negativity from the lattice
model, we performed tensor network simulations using the
ITensor library [64,65]. We compute the ground state using
DMRG and evaluate the negativity with (10). To minimize
finite-size effects, and for all simulations presented in this
work, we use the improved lattice mass parameter of [66].
We show the even/odd negativityN 2f

12 normalized by a2 for
a fixed coupling in Fig. 2. We also fix the physical volume
such that finite-volume effects are negligible. The colored
curves correspond to different lattice spacings and represent
taking the continuum limit (with N ¼ 100, 200, and 400
staggered sites). The gray curve is the analytical prediction
(14). As claimed in the previous section, the negativity
systematically approaches the norm square of the propa-
gator. The transition from the algebraic fermionic behavior
to the exponentially decreasing bosonic one is sharp and
happens at the boson radius 1=mb. Note the deviations from
the analytical prediction at a large radius are due to
approaching the boundaries of our lattice (we use open-
boundary conditions). It is a concrete example where the
two sites’ fermionic negativity transitions from an algebraic
decay to an exponential one. This transition probes confine-
ment. We will see that it still happens in massive case which
is not analytically solvable.
The same analysis can, in principle, be repeated for the

even/even or odd/odd case. In practice, some staggered
discretization artifacts that cancel in the even/odd case make
the even/even and odd/odd negativity zero for the range of
lattice spacings studied here, and non-zero only closer to the
continuum, see Supplemental Material [60] for more detail.
Consequently, wewill restrict ourselves to studying the even/
odd negativity for the rest of this work.

Massive schwinger model.We now move on to the massive
Schwinger model, which is not known to be analytically
solvable. It is dual to an interacting bosonic theory [52]. We
repeat our DMRG simulation for the same g value as in the
massless case for different mass parameters. We show the
resulting negativities in Fig. 3. The transition from an
algebraic behavior to an exponential decay is still clear. It
happens at shorter distances for larger masses. We show the
same data in Fig. 4, rescaling the x and y axis in terms of
the mass gap. For the three smaller ratios of m=g, we used
the values of [67], which we checked against our own
determination of the mass gap obtained by targeting the
first excited state. For the larger mass, the leading pre-
dictionm2

1st ¼ m2
b þm2 is accurate at the percent level [67]

and was used to estimate the gap. We observe a relatively
good collapse, showing that the leading dependence of the
negativity is the mass of the first excited state. In particular,
the transition from an algebraic behavior to an exponential
decay happens in all cases at r ∼ 1=m1st, and thus is
sensitive to the typical confinement length at which the
theory transitions from being fermionic to bosonic.

Massive schwinger model at criticality. The Schwinger
model is critical for negative masses at the critical mass to

FIG. 2. The deviations at small r are lattice artifacts, as
demonstrated by the apparent convergence to the analytical result
as a → 0. The deviations from the analytical prediction at large r
are due to boundary effects. The different lattice spacings
correspond to lattices of N ¼ 100, 200, 400 staggered sites.

FIG. 4. Two-fermion negativity as a function of distance, for
differentm=g ratios, with the axis scaled by appropriate powers of
the mass gap. The curves’ approximate collapse indicates that the
negativity’s main dependence is on the mass gap. The transition
from the algebraic fermionic decay to the bosonic exponential
one happens at r ∼ 1=m1st, indicated by a dotted black line.

FIG. 3. Two-fermion negativity as a function of distance, for
different m=g ratios. All curves transition from an algebraic to an
exponential decay.
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coupling ratiomc=g ≈ 0.3335 [68,69] and is in the 2D Ising
universality class. Reference [49] showed that fermionic
CFTs can exhibit logarithmic negativity that decays
algebraically, in contrast to bosonic CFTs where the
logarithmic negativity is known to decay faster than any
polynomials [45,50]. An interesting feature of the massive
Schwinger model is that it is a fermionic representation of a
bosonic CFT, and it is thus of value to investigate the
behavior of the fermionic logarithmic negativity in this
model. Results are shown in Fig. 5. The system is tuned at
its second-order critical point. The two-fermion logarithmic
negativity is plotted as a function of distance. The different
curves correspond to different volumes. The dashed line is
a fit to an exponential decay. In this case, the fermionic
negativity is also exponentially suppressed at large dis-
tances; it behaves in the same way as the bosonic one. This
matches expectations from universality, as the underlying
CFT has no knowledge of fermionic operators.
We found the small distance behavior to be out of reach

of the specific numerical methods used in this work; we
show the small r behavior of our data in the inset of Fig. 5.
We also plot the universal Ising expectation for very
small r. While far from the regime of applicability of this
prediction, it appears that our data do not contradict this
small distance behavior. This regime can be better studied
using dedicated tensor network simulations more appro-
priate to critical systems [70,71].

Discussion. We studied in this work the two-fermion
(logarithmic) negativity of fermionic spin chains and its
behavior in the continuum limit. In particular, we focused on
the Schwinger model. While expressible purely as a fer-
mionic chain, it has the interesting property of being
fermionic only at short distances, while a bosonic scalar
theory describes its asymptotic spectrum.We showed that the
negativity is sensitive to this “confinement radius,” atwhich it
transitions froman algebraic decay to an exponential one.We
also showed that the fermionic negativity behaves as its
bosonic counterpart at the Ising critical point of the massive
Schwinger model, as universality would suggest.
These results are interesting from two different perspec-

tives. First, it is an explicit example where the fermionic
negativity exhibits a transition from a more entangling, in the
sense of [49], fermionic behavior to a bosonic behavior at
large distances, as would be expected by bosonization. It
shows that the fermionic negativity captures the system’s
fundamental statistics and does notmeasure an artifact related
to the representation of the system’s degrees of freedom.
Second, it further motivates us to think about how confine-
ment relates to entanglement and how entanglement mea-
sures can be used to probe it. Moreover, the explicit relation
between the two-fermion negativity and the full propagator
of the theory is intriguing and invites reflection on how
entanglement measures between physical subregions can be
systematically related to field theoretical n-point functions.
This work opens other natural outlooks. A simple

extension would be to consider how the two-mode neg-
ativity is affected when computed between two full Dirac
fermions (four modes negativity in a staggered formulation
or two-site negativity for Wilson fermions). Considering its
behavior in the presence of localized states is also an
interesting avenue. More challenging, investigating the
two-mode density matrix in the presence of dynamical
gauge fields will be an essential step in generalizing these
results to higher dimensions and more realistic theories.
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FIG. 5. Two-fermion logarithmic negativity at the critical mass.
At large distances, the fermionic negativity still decays exponen-
tially, as expected for the 2D Ising CFT. The dashed line is the
result of a fit to an exponential αe−βgr with α ¼ 0.00786�
0.00023 and β ¼ 0.20051� 0.00075. Inset: while out-of-reach
of the data presented here, the behavior of ϵN also seems
consistent with the small r prediction ϵN ∼ −c=4 logðgrÞ with
c ¼ 1=2 the central charge of the 2D Ising CFT.
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