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The singly Cabibbo-suppressed decay A — Kz is observed for the first time with a statistical

significance of 5.4¢ by using 4.5 fb~! of e* e~ collision data collected at center-of-mass energies between
4.600 and 4.699 GeV with the BESIII detector at BEPCIL. The absolute branching fraction of A —
I K*z*t is measured to be (3.8 4 1.2, 0.24) ¥ 10~* in a model-independent approach. This is the
first observation of a Cabibbo-suppressed Al decay involving X~ in the final state. The ratio of branching
fractions between A — X"KTz" and the Cabibbo-favored decay A — X~z z*" is observed to be
(0.4 £0.1)s2, where s, = sin@, = 0.2248 with . the Cabibbo mixing angle.
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Understanding the nonfactorization contribution is criti-
cally challenging for advancing our knowledge of the
hadronic weak decays of charmed baryons, as W exchange
and inner W emission are no longer subject to helicity and
color suppression [1]. The evaluation of nonfactorizable
terms is far more difficult than that of factorizable ones and
thus the constraints with experimental results are essential.
Studies on the charmed baryon decays in experiment have
promoted the understanding on the mechanism of charmed
baryon decays. Nevertheless, there are still some puzzles
needed to be understood. For example, why does the
breaking effects arising from m; > m,; under SU(3)
flavor symmetry significantly exist in the decays of Z2 [2],
but much smaller in A decays [3,4]? Furthermore, the
discrepancy between the experimental results and the theo-
retical prediction for the branching fraction (BF) of the
decay A — pzn° may indicate the significant contribution
of a nonfactorization component and the interference
between nonfactorization and factorization contributions
[5-7]. Therefore, correctly estimating the nonfactorization
contribution is still one of core tasks in the charm baryon
physics.

Extensive studies on Cabibbo suppressed (CS) decays
of charmed baryon in both experiment and theory have
been conducted for two-body decays [8,9], because
both the factorization and nonfactorization contributions
are involved. But the majority of them could not be well
described by phenomenological models [5-7,10-15]. This
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indicates the current description of the nonfactorization
contribution is still not fully reliable. More experimental
information is desirable, especially for the decays with
hyperons, because the experimental results of CS processes
with a hyperon in the final state are still limited. Until now,
data for three-body CS decays exist only for the =. The
decay Af — X~K*z" is the simplest singly CS process
with a X~ directly in the final state, where the W-exchange
and inner W-emission diagrams are expected to play the
dominant role, as shown in Fig. 1. Therefore, the obser-
vation of the CS process Al — X~K'z" and the com-
parison with the Cabbibo favored (CF) decay A} —
X ztxt will open a new window for probing SU(3),
breaking effects and the nonfactorization contribution in
Al decays.

According to recent constraints provided by the reported
branching fraction of the inclusive decay Al - n+ X
[16], there is large room to probe experimentally for decays
with a neutron in the final state, including the A} decays to
X7, as X~ — na~ almost saturates the branching fraction.
At present, two-body CS processes involving the lighter
baryons (p [17,18], n [10], A [4,19]) or /0 hyperon
[19,20] from A/ decays have already been confirmed and
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FIG. 1. Feynman diagrams for the CS decay Af - XK'z ™.
(a) internal W emission, (b) W exchange.
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studied extensively in experiment. However, no CS decays
with a X~ have been observed.

Processes with X~ can be investigated by reconstructing
the neutron signal through its missing energy under energy-
momentum conservation at BESIII. Starting from threshold
for A pair production at 4.600 GeV, in this Letter, the first
observation of the singly CS decay Al — X K'z" is
reported using 4.5 fb~! of ete™ collision data collected
with the BESIII detector at seven center-of-mass (c.m.)
energies between 4.600 and 4.699 GeV [21]. Throughout
this Letter, charge-conjugate modes are implicitly included.

Details about the design and performance of the BESIII
detector can be found in Ref. [22]. Simulated samples are
produced with a Gean4-based [23] Monte Carlo (MC)
toolkit, which includes the geometric description [24] of
the BESIII detector. Signal MC samples of e*e™ — ATAZ
with A7 decaying into ten hadronic modes and A} to
S Ktrt, BE-Ktrt, and E*0K* are used to determine the
detection efficiencies, where the intermediate states are
required to be X~ — nz~ and E¥ —» E-xt with E-
subsequently decaying through any allowed process. The
ten hadronic decay modes are presented in Table 1. These
samples are generated for the individual c.m. energy by
the generator KKMC [25] incorporating initial-state radia-
tion effects and the beam-energy spread. The inclusive
MC samples, consisting of open-charm states, radiative
return to charmonium (like) y states, and continuum
processes e e” — qq (q = u, d, s), are generated to survey
potential backgrounds. Particle decays are modeled with
EvtGen [26,27] using BFs taken from the Particle Data
Group [3], when available, or otherwise estimated with
LUNDCHARM [28,29]. Final-state radiation from charged
final-state particles is incorporated using PHOTOS [30].

The double-tag (DT) approach is employed to measure
the absolute branching fraction of Al — X~K*z". A data
sample of A7 baryons, referred to as the single-tag (ST)
sample, is reconstructed with ten exclusive hadronic decay
modes, as the aforementioned and listed in Table I
The procedure of selecting the ST A baryon decays is

described in Refs. [10,31,32], where 105249 + 386 ST
events are reconstructed in data. The fit curves for the
beam-constrained mass Mpc of ST modes and their yields
are summarized in Supplemental Material [33]. Those
events in which the signal decay Al - T K'z' is
reconstructed in the system recoiling against the A;
candidates of the ST sample are denoted as DT candidates.

The decay A — X~ Ktz with £~ — nza~ is searched
for among the remaining tracks recoiling against the ST A,
candidates. Particle identification (PID) is implemented by
combining measurements of the ionization energy loss in
the helium-based multilayer drift chamber (MDC) (dE/dx)
and the flight time in the time-of-flight system. Only three
charged tracks, detected in the MDC and reconstructed
within a polar angle (0) range of |cos 8] < 0.93, set by the
drift chamber acceptance, are allowed for a DT signal
candidate event, where € is defined with respect to the
z axis, which is the symmetry axis of the MDC. Two of the
charged tracks, whose distances of closest approach to
the interaction point (IP) must be less than 10 cm along the
z axis (|V,| < 10 cm) and less than 1 cm in the transverse
plane (|V,| <1 cm), are assigned to be K™ and z™,
according to the PID probability. A vertex fit is performed
to the K™ and z ™ candidates, and the momenta updated by
the fit are used in the subsequent analysis. A third track,
identified as a z~, is assigned to originate from the X~
decay if its distance of the closest approach to the IP is
within £20 cm along the z axis (|V.| <20 cm). To
suppress background events containing other long-lived
particles in the final state, the candidate events are further
required to have no extra charged tracks with
|cosf| < 0.93, |V,| <1 cm, and |V,| <20 cm.

The neutron signal could be observed in M. (B"), where
the recoiling mass M. (B°) is calculated as

[Myee(BOP = | Eveam = > Ei]/ *
_‘P'ﬁo_zzf’i 2/62' M)

TABLE I. The DT detection efficiencies (%) for Af — Z"K*a" /Al — E"K*nt /A — E(1530)°K* for each ST mode at c.m.
energies between /s = 4.600 and 4.699 GeV.

Channel/+/s (GeV) 4.600 4.612 4.628 4.641 4.661 4.682 4.699
PK 16.5/8.5/82 15.6/8.0/7.8 15.1/7.7/7.6 15.0/7.7/7.7 14.8/7.4/7.6 14.1/7.4/7.3 14.0/7.2/7.3
pKY 18.7/9.7/9.7 17.5/9.0/9.1 16.9/8.5/82 16.5/8.5/8.6 15.7/83/8.3 15.7/8.0/8.1 15.1/7.8/7.9
K7 4.6/19/1.9  42/23/20 4.1/22/20 44/22/1.8 39/2.1/1.7 43/19/1.6 42/2.1/1.7
PKSA° 6.5/3.3/3.3  6.0/3.0/28 52/27/2.6 53/29/2.8 52/2.8/27 53/28/2.6 52/2.6/2.5
PRt 6.2/3.1/3.1 55/2.8/28 52/28/2.6 55/2.7/27 52/29/29 50/2.6/2.6 49/2.6/2.5
An~ 14.5/7.1/7.1  12.7/7.1/7.2 12.3/6.4/6.6 12.1/6.5/6.7 12.5/6.0/6.0 11.0/6.1/6.0 11.7/5.4/5.5
Arx~n° 5.77/2.8/2.8 5.1/2.5/25 4.7/2.4/24  47/2.4/24  47/23/1.8 45/23/1.6  43/2.1/1.8
Artrn 40/19/19 3.6/1.9/1.8 37/1.7/1.7 3.6/1.7/1.6 33/19/18 3.6/1.8/1.6  3.6/1.8/1.8
207~ 8.2/4.0/40 7.3/37/36 64/32/3.1 7.1/33/3.1 6.8/3.1/3.2  6.8/3.1/3.2  6.0/2.9/2.7
S rtn 6.6/33/33  6.3/3.1/3.0  6.1/3.1/3.0 54/28/29  55/2.9/2.6 55/2.7/2.6 5.5/2.6/2.6
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Here E; and p; represent the energy and momentum,
respectively, of particle i (KT, z*, or zn7), p=
\/Ebeam/c - mA+c and py = —pi-/|Px-| is the unit
direction opposite to the ST A7, where m A+ is the known
A} mass [3]. The X~ signal reconstructed through
M ..(H™), which is as defined in Eq. (1), with the subscript
i now representing the K™ and z™ particles. To suppress the
continuum hadron background (denoted as gg hereafter),

the recoiling mass against the ST A7 in the center-of-mass
frame, defined as

Moeo(R2) = ) QBuam — B /et = B3P/, (2)
is required to fall inside the range (2.275,2.310) GeV/c?,
where Eje,y, is the beam energy, and Ej- and pj;- are the
energy and momentum of the ST A, respectively. To
remove the peaking background due to the process
Al - ZTKtx~, we exclude events with M. (H")€
(1.15,1.24) GeV/c?, where the recoiling mass M,..(H")
is as defined in Eq. (1), with the subscript i now represent-
ing the K™ and 7~ particles. Additionally, to suppress the
potential background from A/ — nK9K" decays, events
satisfying M (ztz~) €(0.48,0.52) GeV/c? are vetoed
where M(z"z~) is the invariant mass of the z"z~ pair.
The requirement M,..(H~) > 1.15 GeV/c? is imposed to
suppress backgrounds due to the ¢ and nonsignal A7 A7
processes.

The two-dimensional (2D) distribution of M ..(H™)
and M, (B°) is shown in Fig. 2(a), where the events
containing both a £~ and a neutron are clustered close to
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FIG. 2. The 2D distribution of M (Ktz") versus
M (K"z*x™) (a), the distributions of M. (KTz"z~) (b),
M (K"7") (c), and M..(K") (d) of the accepted DT candidate
events from data for all energy points. The black points with error
bars are data. The curves represent the fit results, including the
signal and background components, respectively.

the left-bottom corner, indicating the existence of the singly
CSdecay A] —» X K'z" with £~ — nz~. A large number
of events containing a A and Z~ appear in the central region
of the 2D distribution, which originate from the CF decay
Al - Z"K*n~ with 2= - Az~ and A decaying into
neutral particles. These resonances are also observed in
the projected distributions of M,..(B") and M,..(H™), as
shown in Figs. 2(b) and 2(c), respectively. Furthermore, by
selecting the events in the Z~ signal region M..(H™) €
(1.294,1.340) GeV/c?, the E*° signal is observed, origi-
nating from the process A} — E°K* with 20 - E-z7", in
the distribution of M ..(K™) as shown in Fig. 2(d). Here the
variable M ..(K™) is also determined according to Eq. (1),
with the subscript i labeling only the K particle.
Potential backgrounds are classified into two categories:
qq processes, and ete™ — AFA[ events excluding signal
contributions of A} — Z"K*z*, E"K*z", and ZK*
(referred to as ATA7 background hereafter). The gg and
A} A7 backgrounds are investigated with the inclusive MC
samples with an integrated luminosity 40 times higher than
that of data, and they are normalized to the same integrated
luminosity as the data. No peaking background is observed
in these samples. In Figs. 2(b) and 2(c), the components
of gg and AFA; backgrounds are described with the
inclusive MC samples that are normalized with the scale
factor 0.034. The scale factor is obtained by comparing the
number of events between data and inclusive MC samples
in the sideband region M€ (2.10,2.25) GeV/c? of ST A7
The signal yields (N,) of the Al - XK'zt and
E-K 'zt decays are obtained by performing an unbinned
maximum-likelihood fit to the 2D distribution of M ..(H")
and M, (B°), where the 2D signal shapes are modeled
by the simulated shapes for the two decays, respectively,
convolved with the same Gaussian function accounting for
the resolution difference between data and MC simulation.
The 2D shape of ¢g and A} A; backgrounds is modeled
with the product of two third-order Chebyshev polynomial
functions and a Student distribution [34—37] that is used to
describe the dispersion of the backgrounds in the diagonal
direction. Details of the background functions and the
validation are given in the Supplemental Material [33].
Additionally, a fit to the distribution of M ..(K™") is per-
formed simultaneously to determine the yield of the decay
Af = E(1530)°K ™", where its shape is also described from
the simulation convolved with an individual Gaussian
function. Here, the ¢ and AA; backgrounds are
described individually by two third-order Chebyshev poly-
nomials, whose shape parameters are obtained from fits
to the corresponding inclusive MC samples, and whose
magnitudes are determined from the fit to the data. In addi-
tion, the nonresonant three-body decay Af — E- Kz has
a smooth distribution in M .(K™), and is also modeled by
a third-order Chebyshev polynomial with its shape param-
eters obtained from the MC simulation, and its magnitude
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determined from the fit to data. The yield of A} —
E-K'x" decays in the 2D fit is constrained to be equal to
the sum of those of the decay A} — Z(1530)°K* and the
three-body decay Al — E-K Tzt in the fit to the distri-
bution of M,.(K*). The yield of ¢qg and AfA; back-
grounds in the region M,..(H™) € (1.294,1.340) GeV/c?
is fixed to the numbers obtained from the fit to the
distribution of M,..(K™). The resultant fit is depicted in
Fig. 2, and the signal yields are determined to be 12 + 4,
128 + 13, and 54 + 8 for A - X K*z", E-K*xt, and
=OR+ respectively, where the uncertainties are statistical.
The statistical significance of the A} — L~K*z™" signal is
5.40, which is calculated from the change of the likelihood
values between fits with and without the signal component,
accounting for the change in the number of degrees of
freedom and taking into account both statistical and
systematic uncertainties. The details of how to take the
systematic uncertainty into account are shown in the
Supplemental Material [33].
The branching fractions (B) are determined as

Nobs
9
ZijNiSjT : (GBT/GZSJ‘T)

where the subscripts i and j label the ST modes and the
data samples at individual c.m. energies, respectively. The
parameters N ,SJT elsz, and erT are the ST yields, and ST and
DT efficiencies, respectively. The detection efficiencies el-S]-T
and egT are estimated from signal MC samples, where the
key distributions of the ST modes have been reweighted to
agree with those of data. Since the decay A7 - E~Ktza™
has two major components, i.e., AJ — E(1530)°K" and
the nonresonant three-body decay A}l — E-K'z™, its
detection efficiencies combine the contributions from both
of these two components. To take into account potential
intermediate-resonance effects, the signal MC sample of
Al - E" KTzt is reweighted to match the data together
with the A} — E(1530)°K* component, and the DT
efficiencies of the decay A — E~K'z" are derived.
Details of the weights could be found in the Supple-
mental Material [33]. The ST efficiencies can be found
in Supplemental Material [33], whereas the DT efficiencies
are summarized in Table I. The BFs are determined
to be B(Af - T K*zt) = (3.8 £ 1.2 4+ 0.2) x 1074,
B(Af - E"K*z") = (7.74 £0.76 £ 0.54) x 1073, and
B(Af — E(1530)°K*) = (5.03 & 0.77 £ 0.20) x 1073,
where the first uncertainties are statistical and the second
are systematic.

Benefiting from the DT approach, the systematic uncer-
tainties associated with the ST selection efficiency cancel
out in the branching-fraction measurements. Thus, the
systematic uncertainties for these measurements comprise
those associated with the ST yields, the K* and #* tracking
and PID efficiencies, the requirement on the number of

B:

(3)

tracks, the determination of the DT signal yields, the
branching fraction of the intermediate-state decays, and
the statistical uncertainties from the signal MC samples.

The uncertainty in the total ST yields is 0.5% [31,32],
which arises from the statistical uncertainty and fitting
strategy for extracting these yields. The uncertainties asso-
ciated with the K™ and z™* tracking and PID efficiencies are
both assigned to be 1.0%, from studies performed with
control samples of J/y — KYK*#¥, K% — n"z~ [38], and
J/w — ntn~ 7" [39] decays. The uncertainty due to the no
extra charged track requirement is 2.2%, which is assigned
from studies of a control sample of et e~ — ATA7 decays,
with A7 = pK~ 7zt and the A, decaying into the ten
tagged decay modes. The uncertainties from the determi-
nation of the DT yields are 3.7%, 2.1%, and 2.2% for the
decays A} — X K*zt, E"K*z", and E*K™, respec-
tively, including those from the modeling of gg and
AFA7 backgrounds, which are estimated by considering
the uncertainty in the scale factor for the gg estimation and
in the parameters of the Chebyshev polynomial functions
and the students distribution for describing the shape of gg
and AF A7 backgrounds. The uncertainties in the quoted
branching fractions of Z~ and Z*0 are both 1.4% for the
decays Al — E"K*zt and EK*, respectively. The
uncertainty arising from the MC modeling for A —
E-K*n" is investigated by reweighting the MC distribu-
tion to data, and comparing with the results obtained
between the original and reweighted samples. The resultant
uncertainty in the MC modeling is 5.9%. The uncertainties
associated with the finite size of the signal MC samples
are 0.5%. Assuming that all of the sources of bias are
uncorrelated, the total uncertainties are then taken to be the
quadratic sum of the individual contributions, which are
4.9%, 6.9%, and 4.0% for A - " K*z", KTz ™", and
E0K*, respectively.

In summary, the singly Cabibbo-suppressed decay
Al > Z°K*rt is observed for the first time with a
statistical significance of 5.4¢ by analyzing ete™ colli-
sion data samples corresponding to a total integrated
luminosity of 4.5 fb~! collected at c.m. energies between
4.600 and 4.699 GeV with the BESIII detector. The
branching fraction of A7 — X KTzt is measured to be
(3.8 4+ 1.2 & 0.24) x 107* with a model-independent
approach. This is the first observation of the CS A} decay
containing a X~ in the final state. The ratio of branching
fractions between A7 — ™K "z " and the CF decay A} —
> xtzt [3] is observed to be (2.03+0.73)% ~
(0.4 +0.1)s2, which is close to the ratio B(E? - Z=K ")/
B(E? - E-zt) and deviates significantly from 1.0s2,
while 1.0s2 is also consistent with CS/CF ratio of the iso-
spin partner modes B(Af = X K*n™)/B(Af =X nt 7).
This result suggests nonfactorization contribution is domi-
nate over the factorization one or large SU(3) flavor
symmetry breaking effect in three-body decays involving
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a X~ baryon. A prediction based on SU(3), symmetry
gave BPY(AY —» X KTzt) = (3.34£2.3)x 107* [40],
which has a larger uncertainty than our measurement
due to the limited sample sizes of the channels used as
inputs to the calculation. Our measurement provides
direct information to improve the understanding of the
A decay mechanisms. Meanwhile, the branching fractions
of CF decays Af — E-K*z* and A} — E(1530)°K* are
measured to be (7.74 £ 0.764, + 0.54) x 107 and
(5.03 £ 0.77 gto¢ & 0.20) X 1073, respectively, which are
consistent with previous results [3]. The measured A} —
E-K*z" is the sum of nonresonant three-body decay
and Al — E(1530)°K*.
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