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We consider correlation functions in 6D (2,0) theories of two 1
2
-Bogomol’nyi-Prasad-Sommerfield (BPS)

operators inserted away from a 1
2
-BPS surface defect. In the large central-charge limit the leading connected

contribution corresponds to sums of tree-level Witten diagram in AdS7 × S4 in the presence of an AdS3
defect. We show that these correlators can be uniquely determined by imposing only superconformal
symmetry and consistency conditions, eschewing the details of the complicated effective Lagrangian. We
explicitly compute all such two-point functions. The result exhibits remarkable hidden simplicity.

DOI: 10.1103/PhysRevD.109.L061903

Introduction. Adding defects to quantum field theories
(QFTs) greatly enriches the structure of theories. Such
considerations have clear experimental motivations in
representing impurities, domain walls, and boundary
effects in real-world systems. Formally, defects can be
used to diagnose phases of theories [1] and can also be
interpreted as symmetry generators [2].
In the context of conformal field theory (CFT), intro-

ducing defects adds to the operator spectrum and one-pion
exchange (OPE) coefficients, commonly known as the CFT
data, a new infinite set of numbers which defines the defect
and its interaction with the bulk CFT. To access and extract
these new data, it is most convenient to study correlation
functions of local operators, but now in the presence of the
nonlocal defect. This puts correlation functions at the center
stage. For example, they are featured prominently in the
bootstrap approach to defect CFTs [3,4], where nontrivial
constraints on the defect CFT data are extracted from the
crossing equation (see, e.g., [5–11]). Meanwhile, it is also
very important to be able to compute correlators in a given
theory. So far most studies have focused on weak coupling,
where standard techniques such as Feynman diagrams, ϵ
expansion, and large-N expansion apply [12–24]. In the
strong-coupling limit where AdS=CFT gives a useful

dual description, although a number of results exist
[10,11,25–32], they are far from being systematic and
comprehensive. By contrast, for CFTs without defects
significant progress has been made in the modern analytic
bootstrap program of holographic correlators, which was
initiated in [33,34] and has state of-the-art results at six
points [35] and at two loops [36,37] (see [38] for a
recent review). It is natural to ask if the philosophy and
techniques can be adapted to boost the study of correlators
in defect CFTs.
This paper makes progress in this direction. We consider

two-point correlation functions of 1
2
-BPS operators Sk in the

6D N ¼ ð2; 0Þ theory in the presence of a 1
2
-BPS surface

defect V. The 6D (2,0) theory is a strongly coupled
superconformal field theory with no Lagrangian descrip-
tion. The best way to attack this theory is via AdS=CFT,
where it is dual to M theory on AdS7 × S4 and is
approximated by 11-dimensional supergravity at large N.
The operators Sk are dual to an infinite Kaluza-Klein (KK)
tower of scalar fields labeled by the KK level k ¼ 2; 3;…
on S4. Adding the defect amounts to introducing an M2-
brane extended along an AdS3 ⊂ AdS7 × S4, which hosts
localized degrees of freedom interacting with the bulk [39].
In such a setup, the two-point function of bulk operators is
the simplest nontrivial observable. The standard large N
counting gives the following expansion:

hSk1Sk2Vi ¼ hSk1Sk2ifree þ
1

N
hSk1VihSk2Vi

þ 1

N2
hSk1Sk2Vitree þOðN−3Þ; ð1Þ
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where we have explicitly extracted the N dependence. The
first two terms are disconnected contributions and corre-
spond to the free anti–de Sitter (AdS) propagator and the
product of one-point functions, respectively. The leading
nontrivial contribution is the connected part hSk1Sk2Vitree,
which corresponds to a sum of tree-level Witten diagrams
in the presence of a defect; see Fig. 1. These tree-level
correlators are the main focus of this paper. The traditional
diagrammatic approach, albeit viable in principle, requires
inputting the precise details of the AdS effective Lagrangian
which are difficult to obtain. The main result of our paper is
to show that symmetry principles render this unnecessary
and allow us to eschew all such details. We will uniquely
determine all defect two-point functions with arbitrary k1, k2
from superconformal symmetry and consistency conditions.
Moreover, we uncover remarkable simplicity by presenting
a compact expression for general correlators.

Kinematics. The operators Sk have protected conformal
dimensions ΔSk ¼ 2k and transform in rank-k symmetric
traceless representations of the R-symmetry group SOð5Þ.
To keep track of R symmetry, we contract the indices with
null polarization vectors uI:

Skðx; uÞ ¼ SI1…Iku
I1…uIk ; u · u ¼ 0: ð2Þ

The defect operator V breaks OSpð8�j4Þ superconformal
symmetry of the original theory into ½OSpð4�j2Þ�2. In
particular, V divides the coordinates into the parallel part
xa¼1;2 and the transverse part xi¼3;…;6, which are, respec-
tively, acted on by the defect conformal group SOð2; 2Þ and
the orthogonal SOð4Þ rotations. It also breaks the R
symmetry as SOð5Þ → SOð4Þ. The embedding of SOð4Þ ⊂
SOð5Þ can be captured by a polarization vector θ with
θ2 ¼ 1. Then the defect two-point function can be written
as [40]

hSk1Sk2Vi ¼
ðu1 · θÞk1ðu2 · θÞk2

jxi1j2k1 jxi2j2k2
F ðz; z̄; σÞ; ð3Þ

where the z; z̄ cross ratios are defined by

x212
jxi1jjxi2j

¼ ð1 − zÞð1 − z̄Þffiffiffiffiffi
zz̄

p ;
xj1x

j
2

jxi1jjxi2j
¼ zþ z̄

2
ffiffiffiffiffi
zz̄

p ; ð4Þ

and the R-symmetry cross ratio is

σ ¼ u1 · u2
ðu1 · θÞðu2 · θÞ

¼ −
ð1 − ωÞ2

2ω
: ð5Þ

From the definition, it is clear that the correlator is a
polynomial in σ,

F ðz; z̄; σÞ ¼
Xkm
n¼0

σnF nðz; z̄Þ; ð6Þ

where km ≡min ðk1; k2Þ. In (3) we have only exploited the
bosonic part of the unbroken superconformal symmetry. The
fermionic generators impose further constraints known as
the superconformal Ward identity [30]:

ð∂z þ ∂ωÞF ðz; z̄;ωÞjz¼ω ¼ 0; ð7Þ

together with its z ↔ z̄ counterpart. Equivalently, we have

F ðz; z̄; z̄Þ ¼ ζðzÞ; F ðz; z̄; zÞ ¼ ζðz̄Þ; ð8Þ

which is a consequence of the chiral algebra and ζðzÞ is the
chiral correlator [30,41,42]. Themost general solution reads

F ðz; z̄;ωÞ ¼ F protðz; z̄;ωÞ þ RHðz; z̄;ωÞ; ð9Þ

where

R ¼ ðz − ωÞðz̄ − ωÞðz − ω−1Þðz̄ − ω−1Þ
zz̄

; ð10Þ

and F prot is the protected part,

F protðz; z̄;ωÞ ¼
ðz − ωÞðz − ω−1Þ
ðz − z̄Þðz − z̄−1Þ ζðzÞ þ ðz ↔ z̄Þ: ð11Þ

The function H is called the reduced correlator and it is a
polynomial in σ of degree km − 2, given explicitly by

H ¼
Xkm
n¼2

σnðZ − Z̄Þ þ ZnðZ̄ − σÞ þ Z̄nðσ − ZÞ
4ðσ − ZÞðσ − Z̄ÞðZ − Z̄Þ F nðz; z̄Þ;

where Z ¼ −ð1 − zÞ2=ð2zÞ, and similarly for Z̄ with z
replaced by z̄.

Bootstrap algorithm. Following AdS=CFT, the leading
large-N contribution to the connected defect two-point
functions can be computed as a finite sum of tree-level
Witten diagrams. In principle, this can be done by expand-
ing the defect-effective action in AdS to the quadratic order
and extracting the Feynman rules, as has been attempted for
the Wilson-line case [31]. However, in practice this is very
cumbersome and difficult to follow through due to

FIG. 1. The three types of tree-level Witten diagrams. (a) Bulk
exchange, (b) defect exchange, and (c) contact.
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subtleties noted in [31] for contact interactions. A more
efficient strategy is to keep the coefficients unfixed and fix
them using superconformal symmetry. Such a strategy,
originally formulated in [33,34] in the context of correlators
in CFTs without defects and termed the position space
approach, was applied to compute Wilson-line two-point
functions in [31]. Here we extend it to surface defects.
Our starting point is the following ansatz:

F ansatz ¼ F bulk
exchange þ F defect

exchange þ F contact; ð12Þ

with the corresponding diagrams shown in Fig. 1. The
exchange contribution is divided into a bulk part:

F bulk
exchange ¼

X
X

μXE
ΔX ;lX
2k1;2k2

ðz; z̄ÞhRX
k1k2

ðσÞ; ð13Þ

and a defect part:

F defect
exchange ¼

X
Y

μ̂YÊ
Δ̂Y ;sY
2k1;2k2

ðz; z̄ÞĥRY
ðσÞ; ð14Þ

where we sum over all possible exchanged fields X and Y
with unknown coefficients μX and μ̂Y . The bulk exchange
Witten diagram EΔX ;lX

2k1;2k2
has internal conformal dimension

ΔX and Lorentz spin lX and the defect-channel exchange

Witten diagram ÊΔ̂Y ;sY
2k1;2k2

has dimension Δ̂Y and transverse

spin sY . The R-symmetry polynomials hRX
k1k2

and ĥRY

capture the exchange of irreducible representations in the
bulk and defect channels with R-symmetry charges RX and
RY , respectively [43]. They can be obtained by solving
quadratic Casimir equations:

hkk1k2ðσÞ ¼ σ
k1þk2−k

2
2F1

�
k12 − k

2
;
k21 − k

2
;−k −

1

2
;
σ

2

�
;

ĥkðσÞ ¼ σk2F1

�
−k −

1

2
;−k;−2k − 1;

2

σ

�
; ð15Þ

where kij ¼ ki − kj. The set of fields which can be
exchanged is finite and is constrained by a number of
conditions. First of all, R-symmetry selection rules impose
constraints on what representations can appear in the
exchanges. Looking at the spectrum of the theory, this
already ensures the finiteness of the set. Second, all
exchanges must be nonextremal. It means ΔX − lX <
2k1 þ 2k2 in the bulk channel and Δ̂Y − sY < 2 minfk1;
k2g in the defect channel. This condition arises from the
vanishing of extremal couplings, which is needed to have a
finite effective Lagrangian [44]. Third, lX is restricted to
even spins (i.e., lX ¼ 0, 2) because spinning bulk fields are
coupled to the components of the metric transverse to the
defect (e.g.,

R
AdS3

gijϕij). Finally, for any k1, k2,Y in fact can

onlybe two fieldswith Δ̂Y ¼ 2, sY ¼ 0 and Δ̂Y ¼ 3, sY ¼ 1.

This is due to the fact that the defect is an AdS3 inside
AdS7 × S4 and there is no internal manifold to generate
infinite KK modes. The spectrum of exchanged fields is
summarized in Table I.
The ansatz also contains a contact part, which we

parametrize as

F contact ¼
Xkm
n¼0

μ̄nσ
nC2k1;2k2ðz; z̄Þ: ð16Þ

Here CΔ1Δ2
is the zero-derivative contact Witten diagram.

Note that we have included in the ansatz all possible
R-symmetry structures. However, we do not include con-
tact Witten diagrams with more derivatives in the vertex.
Such contact Witten diagrams are more dominant than the
exchange Witten diagrams in the high-energy limit, which
is not expected [45].
The next step is to evaluate the Witten diagrams in the

ansatz. For our theory, the spectrum is such that both the bulk
and defect exchange Witten diagrams can be expressed as a
finite sum of contact Witten diagrams, and the contact
diagrams are also knownexplicitly [31,47]. For convenience,
we collect all these results in theAppendix.Using the explicit
expressions,we can evaluate the full ansatz for any k1, k2. It is
then straightforward to impose the superconformal Ward
identity (7) and we find that all unknown parameters in the
ansatz can be solved up to an overall constant. Since the
parameters can be interpreted as OPE coefficients and
the same coefficients appear in different correlators, by
considering two-point functions with different k1, k2 we
can further reduce the overall constants to just one for
k1 ¼ k2 ¼ 2. This can be fixed in terms of central charges
as in [30]. The bootstrap algorithm then completely deter-
mines all the defect two-point functions.

Defect two-point functions. The result of the bootstrap
calculation becomes more illuminating when expressed
in terms of the Polyakov-Regge superblocks defined
in [31],

Pk ¼ P2k;0
2k1;2k2

hkk1k2 þ αkP
2kþ2;2
2k1;2k2

hk−2k1k2
þ βkP

2kþ4;0
2k1;2k2

hk−4k1k2
;

P̂ ¼ P̂2;0
2k1;2k2

ĥ1 þ
1

2
P̂3;1
2k1;2k2

ĥ0: ð17Þ

HereP, P̂ are rescaledE, Ê andwith contactWitten diagrams
added in the bulk channel case to improve the Regge

TABLE I. Spectrum of exchanged fields in bulk and defect
channels.

Bulk Δ l R charge Defect Δ̂ s R charge

Sk 2k 0 k ϕ 2 0 1
Φμν

k 2kþ 2 2 k − 2 ρi 3 1 0
Tk 2kþ 4 0 k − 4
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behavior [9,31] (see the Appendix for details). The coef-
ficients αk and βk are fixed by the Ward identity (7) to be

αk ¼
ðk2 − k212Þððkþ 1Þ2 − k212Þ
8ð2k − 1Þð2kþ 1Þ2ð2kþ 3Þ ; βk ¼ αkαk−2:

Each Polyakov-Regge superblock corresponds to the con-
tribution from exchanging a particular supermultiplet. In
terms of these building blocks, the tree-level defect two-point
functions read

F ¼
X
k

λk1k2kakPk þ bk1Dbk2DP̂ þ ck1ck2ð1 − 2σÞC2k1;2k2 ;

ð18Þ

where the sum over k runs from kmin ¼ jk12j þ 2 to kmax ¼
k1 þ k2 − 2 in steps of 2. Note that the contact part becomes
particularly simple. To manifest the physical meaning of the
coefficients, let us factor out in the bulk channel the bulk
three-point OPE coefficients [48,49],

λk1k2k3 ¼
2Σ−2Γ

�Σ
2

�
π3=2

Y3
i¼1

Γ
�
Σ−2kiþ1

2

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Γð2ki − 1Þp ; ð19Þ

with Σ ¼ k1 þ k2 þ k3. Our bootstrap calculation gives the
defect OPE coefficients

ak ¼
1

k
bkD ¼ ðk − 1Þð2k − 1Þ

2k−
1
2

ffiffiffi
π

p
ck

¼ ΓðkÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kΓð2k − 1Þ

p :

The ak were computed in [48,50] while the bkD are new
predictions. Taking k1 ¼ k2 ¼ 2 our result (18) reproduces
the special case computed in [30].
From the holographic two-point function we can also

extract the chiral algebra correlator. This is achieved by
setting ω ¼ z̄. We find that the defect two-point function
reduces to the following simple meromorphic function:

ζðzÞ ¼ 1

2
bk1Dbk2D

Xkm−1
i¼1

Cið2ZÞ−i; ð20Þ

where Ci ¼ 1
iþ1

ð2ii Þ is the Catalan number. The chiral
algebra of the 6D (2,0) theory is conjectured to be the
WN algebra, where Sk inserted on the chiral algebra plane
is mapped to the kth generatorWk [30,42]. Meanwhile, the
defect is mapped to two vertex operators V(0), V̄ð∞Þ
inserted at zero and infinity. Then ζðzÞ is the four-point
function hV̄ð∞ÞWk1ðzÞWk2ð1Þ Vð0Þi. The correlator ζðzÞ
can also be computed purely in the 2D chiral CFT from the
knowledge of the OPE. One starts with a rational function
ansatz of which the singularities and their strengths are
dictated by the OPE. This ansatz can be written in the form
of (20) thanks to the z ↔ 1=z invariance with unfixed
coefficients. These coefficients can then be solved by

comparing the singularities with the prediction from the
OPE (see, e.g., [30,51,52]). We will not pursue this
calculation further here. However, we point out that the
ansatz can also be more efficiently fixed by requiring the
small-z expansion contains no other powers between
the leading term z and the next term zkm . This is due to
the fact that only one supermultiplet of fields appears in the
defect-exchange Witten diagrams and the spectrum of
protected operators has a gap.

Mellin space. A natural language for holographic correla-
tors is Mellin space [46,53], where their analytic structure is
drastically simplified and the scattering amplitude nature
becomes manifest. The Mellin formalism can also be
extended to correlators in CFTs with boundaries and
defects [47,54], where Mellin amplitudes are interpreted
as form factors of particles scattering with an extended
object. The Mellin representation for defect two-point
functions is given by [54]

F ¼
Z

dδdγ
ð2πiÞ2 ξ

−δχ−γþδMðδ; γÞΓk1k2ðδ; γÞ; ð21Þ

where we recombine the cross-ratios z, z̄ into

ξ ¼ ð1 − zÞð1 − z̄Þffiffiffiffiffi
zz̄

p ; χ ¼ zþ z̄ffiffiffiffiffi
zz̄

p : ð22Þ

The dynamical information is encoded in the Mellin
amplitude M and

Γk1k2 ¼ ΓðδÞΓðγ − δÞ
Y2
i¼1

Γ
�
2ki − γ

2

�
; ð23Þ

is a factor included as part of the definition. In this
representation, contact Witten diagrams have constant
Mellin amplitudes and the Mellin amplitudes of exchange
diagrams have only simple poles. Their explicit expressions
can be found in [31] (also in the Appendix) and we can
obtain the Mellin amplitudes of two-point functions by
translating (18) diagram by diagram. However, it turns out
that the most compact way to express the result is to use the
reduced Mellin amplitude, defined by

H ¼
Z

dδdγ
ð2πiÞ2 ξ

−δχ−γþδfMðδ; γÞΓ̃k1k2ðδ; γÞ; ð24Þ

where we extract a different Gamma factor:

Γ̃k1k2 ¼ ΓðδÞΓðγ − δÞ
Y2
i¼1

Γ
�
2ki þ 2 − γ

2

�
: ð25Þ

Similar to the case of four-point functions in AdS5 × S5

[33,34], the protected part in (9) does not contribute to the
Mellin amplitude. Comparing the definitions (21) and (24),
we find that factor R in (10)
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R ¼ ξ2 þ 2ξχσ þ 2χ2σ − 8σ þ 4σ2; ð26Þ

acts as a difference operator R̂ in Mellin space which can be
obtained by promoting each monomial as

dξmχn∘fMðδ; γÞ ¼ fMðδþm; γ þmþ nÞ

×
Γ̃k1k2ðδþm; γ þmþ nÞ

Γk1k2ðδ; γÞ
:

Then the full Mellin amplitude is related to the reduced
Mellin amplitude by

Mðδ; γÞ ¼ R̂∘fM: ð27Þ

From the position space result (18), we find that the
reduced correlator can always be written as a finite sum
of contact Witten diagrams. It is then straightforward to
translate the reduced correlators into Mellin space and we
find that the reduced Mellin amplitudes admit a remarkably
simple form with only simultaneous poles

fMðδ; γ; σÞ ¼
X2km−2
i¼1

Xkm
j¼2

RijðσÞ
ðδ − iÞðγ − 2jÞ ; ð28Þ

where the residues are given by

RijðσÞ ¼
Xmin ði;j−1Þ

m¼bi
2
c

bk1Dbk2Dð−1Þiið m
i−mÞð2σÞm−1

2j!m!ðk1 − jÞ!ðk2 − jÞ!ðj −m − 1Þ! :

Discussion. In this paper, we performed a systematic
bootstrap analysis of two-point functions of 1

2
-BPS oper-

ators in the 6D (2,0) theory in the presence of a surface
defect and obtained all tree-level correlators with arbitrary
KK levels. There are many interesting future research
directions. First, our result for two-point functions is
surprisingly simple, especially when written in Mellin
space. This is highly reminiscent of tree-level four-point
functions of IIB supergravity in AdS5 × S5, where a similar
unexpected simplicity led to the discovery of higher-
dimensional conformal symmetries in a number of models
[55–58]. While the same symmetry is clearly ruled out by
the explicit four-point correlators [59], we nevertheless
expect that some form of higher-dimension structure should
exist in all models to organize correlators of different KK
modes. Unfortunately, no such organizing principles are
known at the moment. The simple form of the defect two-
point functions provides an ideal starting point for explor-
ing new structures. Second, the two-point functions encode
a wealth of defect CFT data. It would be interesting to
extract these data and use it to compute loop corrections by
extending the AdS unitarity method [60] to the defect case.
These loop-level correlators will allow us to probeM-theory

corrections beyond supergravity. Third, while in this paper
we have restricted our attention to a specific model, the same
strategy can be applied to compute defect two-point func-
tions in an array of other setups. Prime targets include surface
defects in 4DN ¼ 4 SYM and line defects in 3D Aharony-
Bergman-Jafferis-Maldacena theories, to name just a few.
From examining thesemodels, it would be very interesting if
we could understand the general structure of these holo-
graphic defect correlators by writing down an interpolating
formula parametrized by the spacetime dimension and defect
dimension, similar to the four-point function case with no
defects [61]. Finally, we can also extend our bootstrap
program to encompass higher point-defect correlators.
Applying our techniques, a reasonable goal is to compute
three-point functions with one bulk and two defect operators
or two bulk and one defect operators which have the simplest
kinematics. A study of the relevantWitten diagrams has been
initiated in [62].
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Appendix. The contact Witten diagram in position space
is given by

CΔ1Δ2
¼ π3=2

2Δ1þΔ2

Γ
�
Δ1þΔ2−2

2

�
Γ
�
Δ1þΔ2þ1

2

�
× 2F1

�
Δ1;Δ2;

Δ1þΔ2þ1

2
;−

ξþχ−2

4

�
: ðA1Þ

The exchange Witten diagrams can be expressed as
finite sums of contact Witten diagrams

EΔ;0
Δ1Δ2

¼
XΔ
n¼1

ð1 − Δ̄Þn−1ð4 − Δ − Δ̄Þn−1
4ξnð1 − Δ1Þnð1 − Δ2Þn

CΔ1−n;Δ2−n;

ÊΔ̂;0
Δ1Δ2

¼
XΔ1−Δ̂2

n¼1

�
Δ̂þ2−Δ1

2

�
n−1

�
4−Δ̂−Δ1

2

�
n−1

4ð1 − Δ1Þ2n
CΔ1−2n;Δ2

;

ÊΔ̂;1
Δ1Δ2

¼ 2Δ1Δ2χÊ
Δ̂;0
Δ1þ1;Δ2þ1; ðA2Þ

where we introduced Δ̄¼ Δ1þΔ2−Δ
2

. The spin-two diagram
EΔ;2
Δ1Δ2

admits a similar expression but with more
complicated coefficients. We refrain from writing down
the explicit formula but include it in the ancillary file
accompanying the arXiv submission.

DEFECT TWO-POINT FUNCTIONS IN 6D (2,0) THEORIES PHYS. REV. D 109, L061903 (2024)

L061903-5



The Polyakov-Regge blocks are linear combinations of
the exchange and contact Witten diagrams [31]

PΔ;0
Δ1Δ2

¼ r1E
Δ;0
Δ1Δ2

; ðA3Þ

PΔ;2
Δ1Δ2

¼ r1r2ðEΔ;2
Δ1Δ2

þ r3CΔ1Δ2
Þ; ðA4Þ

P̂Δ̂;0
Δ1Δ2

¼ r4E
Δ̂;0
Δ1Δ2

; P̂Δ̂;1
Δ1Δ2

¼ χP̂Δ̂;0
Δ1þ1;Δ2þ1: ðA5Þ

The coefficients read

r1 ¼
2Δþ2ð−1ÞΔ̄þ1Γ

�Δþ1
2

�ð1 − Δ1ÞΔ̄ð1 − Δ2ÞΔ̄
π3=2Γ

�Δ−2
2

�ðΔ̄ − 1Þ!�8−Δ−Δ1−Δ2

2

�
Δ̄−1

;

r2 ¼
8ðΔ2 − 1Þ

ðΔ1 þ Δ2 − ΔÞðΔ1 þ Δ2 þ Δ − 6ÞðΔ2 − Δ2
12Þ

;

r3 ¼
7

12
−
Δ2

12ðΔ1 þ Δ2 − 6Þ2
12ΔðΔ − 6Þ

þ ðΔ2
12 − 1ÞððΔ1 þ Δ2 − 6Þ2 − 1Þ

12ðΔ − 1ÞðΔ − 5Þ ;

r4 ¼
8ΓðΔ1ÞΓðΔ2Þ

πΓ
�Δ1−Δ̂

2

�
Γ
�Δ2−Δ̂

2

�
Γ
�Δ1þΔ̂−2

2

�
Γ
�Δ2þΔ̂−2

2

� :

Here we have chosen the normalization such that the
conformal block of the exchanged field has unit coefficient.
In Mellin space, the Witten diagrams have simple

expressions. The Mellin amplitude of a contact Witten
diagram is just a constant

MCΔ1Δ2
¼ πΓðΔ1þΔ2−2

2
Þ

4ΓðΔ1ÞΓðΔ2Þ
: ðA6Þ

For spin-0 and spin-2 exchangeWitten diagrams in the bulk
channel, we have

MΔ;0
Δ1Δ2

¼
X∞
n¼0

Rn

δ − Δ1þΔ2−Δ−2n
2

; ðA7Þ

MΔ;2
Δ1Δ2

¼
X∞
n¼0

Snγ þ Tn

δ − Δ1þΔ2−Δþ2−2n
2

þU: ðA8Þ

The coefficients can be determined by imposing the
equation of motion relation in Mellin space [31,62] and
are given by

Rn¼
πΓðΔ−2

2
ÞΓðΔþΔ1þΔ2−6

2
ÞðΔ−2

2
ÞnðΔ−Δ1−Δ2þ2

2
Þn

16n!ΓðΔ1ÞΓðΔ2ÞΓðΔþn−2Þ ;

Sn¼
2ðΔ−Δ1−Δ2ÞðΔþΔ1þΔ2−6Þ

Δ−Δ1−Δ2þ2n
Rn;

Tn¼
Sn

4ðΔ−5ÞðΔ−1ÞðΔþ2n−4ÞððΔ−5ÞðΔ−4ÞðΔ−2ÞΔþΔ2
12ðΔ2−9Δþ2n2þ2Δn−12nþ20Þ

þ2ðΔ2−6Δþ4Þn2þ2ðΔ3−8Δ2þ16Δ−4Þn−2ðΔ−5ÞðΔ−1ÞðΔ1þΔ2ÞðΔþ2n−4ÞÞ;

U¼ πΓðΔ1þΔ2−2
2

Þ
48ðΔ−5ÞðΔ−1ÞΓðΔ1ÞΓðΔ2Þ

�
Δ2

12−7ΔðΔ−6ÞþðΔ1þΔ2−12ÞðΔ1þΔ2Þþ5Δ2
12

ðΔ1þΔ2Þ2−12ðΔ1þΔ2Þþ36

ðΔ−6ÞΔ
�
:

Note that the pole coefficients vanish for n ≥ Δ1þΔ2−Δþl
2

when the quantum numbers satisfy Δ1 þ Δ2 − Δþ
l∈ 2Z>0. The exchange Mellin amplitudes then become
rational functions. The situation for the defect exchange is
similar

M̂Δ̂;0
Δ1Δ2

ðδ; γÞ ¼
X∞
n¼0

Vn

γ − Δ̂ − 2n
;

M̂Δ̂;1
Δ1Δ2

ðδ; γÞ ¼ 2Δ1Δ2ðγ − δÞMΔ̂;0
Δ1þ1;Δ2þ1ðδ; γ þ 1Þ:

The coefficients written in terms of Δdi ¼ Δ̂ − Δi are

Vn ¼ −
πΓ

�Δ̂þΔ1−2
2

�
Γ
�Δ̂þΔ2−2

2

��
2þΔd1

2

�
n

�
2þΔd2

2

�
n

8n!ΓðΔ1ÞΓðΔ2ÞΓðΔ̂þ nÞ :

The Mellin amplitude truncates to a rational function when
Δ1 − Δ̂þ s∈ 2Z>0 or Δ2 − Δ̂þ s∈ 2Z>0.
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