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In this article, we point out that to solve the null Raychaudhuri equation for higher-dimensional
spacetime with an accelerating FRW solution in external directions and static compact internal directions, it
is necessary to violate the strong-energy condition in higher dimensions. This constraint is well-known in
obtaining accelerating cosmological solutions in string compactification, first described by Gibbons-
Maldacena-Nunez. In deriving this constraint, we do not make any assumptions regarding the matter
content.
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Introduction.We have compelling evidence that the present
Universe is dominated by dark energy and going through a
period of accelerated expansion. It is, therefore, natural to ask
ourselves what quantum gravity theories, such as string/M-
theory can tell about accelerating cosmological solutions [1].
However, the construction of accelerating cosmological
solutions in string theory is still an open problem even after
almost twenty years of the subject. The research direction
took an interesting turn due to the obstacles such as the no-go
theorems [2,3] and the proposed swampland conjectures
[4–6]. The most interesting of them is the well-known no-go
first proposed by Gibbons [2,7]; later on, a more refined
version came fromMaldacena andNunez [3]which took into
account the supergravity fluxes and the (anti-)D-branes. The
most significant point made in this no-go theorem is that to
obtain ad-dimensional accelerating cosmological solutionby
compactifying aD > d dimensional theory, it is necessary to
violate the D-dimensional strong-energy condition (SEC).
Afterward, many other no-go theorems were constructed in
string cosmology paradigm from different viewpoints,
including metric-based constraints [8–11], world sheet sym-
metry [12–14], energy conditions [6,8,15–21], supersym-
metry [22–24] string/M theory [20,25–45], spacetime
entropy, and quantum gravity in de Sitter (dS) space
[46–50]. We have made considerable progress in under-
standing the properties of gravitational thermodynamics
[51–55]. In these works as well as in the Hawking-Penrose
singularity theorems [56,57] Raychaudhuri equation provides
a fundamental contribution.
The Raychaudhuri equation, a well-known geometric

identity, is used extensively to enhance our understanding
of various disciplines involving gravity, from astrophysics
[58] to holography [59] and quantum gravity [60,61].
Recently, in an interesting article [62] this geometric
identity was used to further derive new no-go theorems
in string compactification. In the no-go theorem, the article

concluded that accelerating backgrounds in string theory
can only solve the Raychaudhuri equation when the null
energy condition (NEC) is violated and/or the internal
directions have a positive curvature. Besides, the well-
studied flux compactification schemes in de Sitter (dS),
such as the Kachru-Kallosh-Linde-Trivedi scheme, are
revisited in light of this new no-go theorem in Ref. [62].
The authors point out that the matter sources or geometries
that can potentially evade many of the previous no-go
theorems and are considered to be essential ingredients in
building putative dS solutions are unfortunately ruled out
by the NEC violation constraint [63]. This is bad news for
dS compactifications as we know that the four-dimensional
dS maintains NEC [64]. The NEC is also well-known to be
satisfied by a large set of matter content, which will further
restrict the models with extra dimensions. In this article, we
carefully study the conditions to satisfy the Raychaudhuri
equation for a D-dimensional spacetime solution where
we have a d-dimensional Friedmann-Robertson-Walker
(FRW) solution in the external direction and a compact
internal manifold of dimension n [65]. There are several
arguments [1] whether such a cosmological background
with accelerating cosmology can be obtained in string
compactification. The pursuit of constructing four-dimen-
sional accelerating solutions in string theory has led to
claims ranging from multiple solutions [25,66,67] to none
at all [6,68], but here we reexamine the necessary con-
straints for such backgrounds to satisfy the Raychaudhuri
equation. In particular, we consider if any violation of NEC
is really necessary to satisfy the Raychaudhuri equation. It
is well-known that NEC also plays a significant role in
establishing the existence of the big bang singularity, as
well as proving the second law of thermodynamics for
black holes [69]. There are also some hints that accelerating
cosmology should satisfy the NEC to have a UV com-
pletion in string theory [15]. For example, the Virasoro
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constraint in string theory coming from world sheet theory
precisely gives rise to the NEC in the geometry [13].
Because of NEC violation, it is quite difficult to obtain
wormhole solutions, the creation of laboratory universes,
and the building of time machines [13]. We demonstrate
here that to solve the Raychaudhuri equation with four-
dimensional accelerating cosmology in an external direc-
tion successfully, we must violate the SEC in higher
dimensions. It is quite remarkable as this is the precise
statement of the Gibbons-Maldacena-Nunez (GMN) no-go
theorem. We briefly discuss the energy conditions, the null
Raychaudhuri equation, and the GMN no-go theorem.
Then, in Sec. IV, we work out the details to look for the
constraints to solve the Raychaudhuri equation for the
background metric in (12).

A brief review on energy conditions. In this section we
briefly discuss the null and strong-energy conditions as
well as the constraints it provides on the “scale factor” of
the FRWmetric [64]. The NEC simply states that for all the
null-like vectors lM we have the following constraint on
Ricci tensor:

RMNðxÞlMlN ≥ 0; gMNðxÞlMlN ¼ 0: ð1Þ

Similarly, the SEC implies that for any timelike vector tM,

RMNtMtN ≥ 0; t2 < 0: ð2Þ

Considering the FRW metric in physical time coordinates
gives,

g̃μνdxμdxν ¼ −dt2 þ a2ðtÞδijdxidxj: ð3Þ

As we know, H ¼ ȧ
a is the Hubble scale. Accelerating

solutions are identified with

ä=a ¼ Ḣ þH2 > 0: ð4Þ

For a power-law scale factor, aðtÞ ∝ tγ , we have

SEC ⇔ 0 < γ ≤ 1; ð5Þ

NEC ⇔ γ ≥ 0; ð6Þ

If the NEC violation is necessary to maintain the
Raychaudhuri equation, then it would rule out many the
four-dimensional cosmology such as dS. It is much more
difficult to violate the NEC than it is to violate the SEC.
Violating the NEC, on the other hand, is very difficult, and
no known classical energy-momentum sources or fields are
known do so [70].

The null Raychaudhuri equation. In order to establish a
singularity theorem, it is necessary to have an effective

means of anticipating the appearance of focal points along
the geodesics. Raychaudhuri’s equation offers such a meth-
odology [71]. Raychaudhuri’s equation reveals that the
occurrence of focal points is quite common as gravity has
a propensity to focus nearby geodesics. The Raychaudhuri
equation for null geodesic congruences is the following:

dθ
dλ

¼ −
1

D − 2
θ2 − σ2 − RMNlMlN; ð7Þ

where lN are the null vectors. Now, the expansion parameter
and the shear tensor are identified as

θ ¼ 1ffiffiffiffiffiffiffiffiffi−gD
p ∂Mð

ffiffiffiffiffiffiffiffiffi
−gD

p
lMÞ; ð8Þ

σMN ¼ 1

2
ð∇MlN þ∇NlMÞ −

1

D − 2
ĥMNθ: ð9Þ

And, ĥMN is the transverse metric, i.e.,

ĥMNlM ¼ 0; ð10Þ

which are, of course, transverse to null rays.

Gibbons-Maldacena-Nunez no-go theorem. We quickly
review the GMN no-go theorem [2,3,7] in this section.
We will consider the following warped product D ¼ dþ n
dimensional manifold as a solution of higher-dimensional
quantum gravity theory such as string theory (D ¼ 10)
following [65]. In the external direction we take the four-
dimensional FRWmetric, and the internal direction is given
by a (time-independent) compact n-dimensional manifold,

ds2 ¼ e−2AðymÞgμνdxμdxν þ e2AðymÞgmnðymÞdymdyn: ð11Þ

The above metric can also be written in the following way
using conformal rescaling of the internal metric [62]:

ds2 ¼ Ω2ðymÞ½g̃μνdxμdxν þ h̃mnðymÞdymdyn�: ð12Þ

We will refer to the Ω as the warp factor. We take the
compact manifold has no boundary, and the warp factor
is nonsingular. Calculating the Ricci tensor for the
D-dimensional metric in the external directions following
(B2) gives,

RðDÞ
μν ¼ RðdÞ

μν ðg̃Þ − g̃μν½∇2ðlnΩÞ þ ðD − 2Þð∇ lnΩÞ2�: ð13Þ

The covariant derivative of Eq. (13) is simply along the
compact directions. Using the Einstein equation for the full
metric (12), we find that,

RðDÞ
μν ¼ Tμν −

Ω2

D − 2
g̃μνTM

M: ð14Þ
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Comparing (13) and (14) and taking the trace over g̃we get,

1

ðD − 2Þ
∇2ΩD−2

ΩD−2 ¼ RðdÞ þ Ω2

�
−Tμ

μ þ d
D − 2

TM
M

�
: ð15Þ

As a result [3], when we want to have positive curvature
spacetime, i.e., RðdÞ > 0 this implies,

ðD − d − 2ÞTμ
μ > dTm

m : ð16Þ

Alternatively, a similar statement is (when we want to have
accelerated expansion ä

a ≥ 0 in warped compactification)
that the D-dimensional Einstein field equations allow a
time-independent compactification to an accelerating sol-
ution of dimension d < D if the D-dimensional stress
tensor violates the SEC. This can be viewed easily in
physical time coordinates of the FRW metric. From
Eq. (11) we find that

RðDÞ
00 ¼ −ðd − 1ÞðḢ þH2Þ þ Ω−ðD−2Þ

D − 2
∇2ΩðD−2Þ: ð17Þ

Multiplying both sides with ΩD−2 and integrating over
compact space leads to

ðd − 1ÞGD

Gd
ðḢ þH2Þ ¼ −

Z
dnỹ

ffiffiffĩ
h

p
ΩðD−2ÞRðDÞ

00 ; ð18Þ

where GD and Gd are Newton’s constant in D and d
dimensions, respectively. We can clearly see to obtain the
accelerating solution we need to violate (integrated version
of) the D-dimensional SEC, i.e.,

Z
dnỹ

ffiffiffĩ
h

p
ΩD−2RðDÞ

00 < 0: ð19Þ

If the higher-dimensional SEC was satisfied we would
always have ä

a ≤ 0, i.e., a nonaccelerating cosmology in the
four-dimensional external directions. We should also note
when we have an accelerating FRW solution it automati-
cally indicates

Rð4Þ ¼ 3

�
ä
a
þ
�
ȧ
a

�
2
�

> 0; ð20Þ

which is a positive curvature [73] as the second term is
clearly non-negative by nature. We will further prove
in the next section that the accelerating backgrounds in
(12) should maintain the condition (19) to satisfy the
Raychaudhuri equation.

The Raychaudhuri equation and GMN no go theorem. We
start by examining the background (12) to see if this can
satisfy the Raychaudhuri equation following [62]. In other
words, we would like to understand what the constraints for

background (12) are in order to maintain the Raychaudhuri
equation. We first take the affine null vectors such as

NM ¼ 1

Ω2
ð1; 0; 0; 0; ñmÞ; ð21Þ

where ñm is an affine unit n-dimensional spacelike vector
with respect to metric h̃mn, which means [62]

h̃mnñmñn ¼ 1; ñm∇̃mñn ¼ 0: ð22Þ

The expansion parameter associated with NA is

θ ¼ Nm
∂m½lnðΩD−2

ffiffiffĩ
h

p
Þ� þ 3H

Ω2
; ð23Þ

where
ffiffiffĩ
h

p
¼ ½detðh̃mnÞ�12. The shear tensors have the

following nonzero components:

σtt ¼ −h̃mn
∂nðlnΩÞNm; ð24Þ

σtm ¼ ∂mðlnΩÞ; ð25Þ

σmn ¼ −Γp
mnNp −

θ

D − 2
ĥmn; ð26Þ

σij ¼ ΓM
ij NM −

θ

D − 2
ĥij; ð27Þ

where, ΓA
BC are the Christoffel coefficients of (12). (They are

listed in the Appendix of Ref. [19].) Combining Eqs. (7),
(23), and (24)–(27), we find out (exactly as Ref. [62]),

3ðH2 þ Ḣ2Þ ¼ R̃ðnÞ
mnñmñn þ AmnðΩÞñmñn

−Ω4RðDÞ
MNN

MNN; ð28Þ

where AmnðΩÞ is defined as

AmnðΩÞ ¼ ðD − 2Þ½∂mðlnΩÞ∂nðlnΩÞ −∇m∂nðlnΩÞ�:

Rewriting (28) as

3ðH2 þ ḢÞ ¼ R̃ðnÞ
mnñmñn þ AmnðΩÞñmñn

− RðDÞ
00 − RðDÞ

mn ñmñn; ð29Þ

we can see RðDÞ
mn is related to R̃ðnÞ

mn by a conformal symmetry
similar to (13) which we can use to further simplify our
calculation [using (B2)],

RðDÞ
mn ¼ R̃ðnÞ

mnðh̃Þ− h̃mnððD− 2Þ∂p lnΩ∂p lnΩþ□ lnΩÞ
þ ðD− 2Þð∂mðlnΩÞ∂nðlnΩÞ−∇m∂nðlnΩÞÞ: ð30Þ

We can clearly see the last term in Eq. (30) exactly cancels
AmnðΩÞ in Eq. (29). So we rewrite Eq. (29) as
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3ðH2 þ ḢÞ ¼ −RðDÞ
00 þ ððD − 2Þ∂p lnΩ∂p lnΩ

þ□ lnΩÞh̃mnñmñn: ð31Þ

Simplifying Eq. (31) further using Eq. (22) [74] and
multiplying both sides by ΩD−2 we get

3ðD − 2ÞðH2 þ ḢÞΩD−2 ¼ −ðD − 2ÞRðDÞ
00 ΩD−2 þ□ΩD−2:

ð32Þ

Let us now perform an integral over the compact internal
space which gives,

3ðH2 þ ḢÞGD

Gd
¼ −

Z
dnỹ

ffiffiffĩ
h

p
ΩD−2RðDÞ

00 : ð33Þ

Throughout, we have used the fact that the integral of the
Laplacian of the warp factor over the compact manifold is
zero as the warp factor is nonsingular and the compact
manifold has no boundary. Let usfocus on
(A) The dS solution, where we know that Ḣ ¼ 0. As a

result, the left-hand side is a positive definite quantity.
(B) In the case of other accelerating FRW solutions,

Ḣ þH2 ¼ ä
a
> 0;

and finally, the left-hand side of (33) is also a
positive definite quantity as well. In both cases,
we find out that the left-hand side is positive. The
only way the right-hand side of (33) is a positive
quantity is if

Z
dnỹ

ffiffiffĩ
h

p
ΩD−2RðDÞ

00 < 0: ð34Þ

This looks like an (integrated) constraint which indicates
towards (averaged) SEC violation in higher dimensions but
this is the main essence of the GMN no-go theorem (19),
i.e., one needs to violate the SEC in the higher dimensions
to obtain a four-dimensional accelerating FRW solution.
As we point out here, the Raychaudhuri equation results an
integrated (averaged) SEC violation constraint. This fol-
lows entirely following a geometric identity, i.e., the
Raychaudhuri equation, not having any presumption on
the matter content of the theory. In Ref. [62], the authors
argued that the constraints one obtains to solve this geo-
metric identity leads to much stronger condition than the
existing no-go theorems in that the NECmust be violated at
every point. Therefore, the NEC violation constraint puts
considerable restrictions on constructing any accelerating
cosmology. The NEC is the weakest of the energy con-
ditions in the sense that a violation of the NEC implies a
violation of the other energy conditions, such as weak,
dominant, and strong-energy conditions. The minimal

coupling of NEC violating matter to Einstein gravity is
likely inconsistent with string theory and black hole
thermodynamics [75]. Also, NEC violating theories often
display unsettling characteristics, namely superluminal
propagation [76] and unbounded negative Hamiltonians
[77]. Therefore, if NEC violation is essential for the
background (12) to satisfy the Raychaudhuri equation, it
could be problematic as NEC violation would cause the
aforementioned problems.
Investigating the problem carefully, we realize [from

Eq. (33)] that it is important to violate the D-dimensional
SEC [or at least the integrated version (34)] to satisfy the
Raychaudhuri equation when backgrounds have accelerat-
ing FRW solutions in the external directions. The geometric
identity (7) does not impose any condition on the curvature
of compact internal space and/or on the NEC for the
background under consideration in (12). As a consequence
violating the NEC is not an essential condition for accel-
erating geometries. Satisfying this geometric identity for
the background (12) leads to a constraint which indicates
the same conclusion as the GMN no-go theorem.
This can be understood from the seminal work of

Jacobson [51,52]; the main result of the GMN no-go
theorem is dependent upon satisfying the Einstein equation.
We basically take the trace over the higher-dimensional
Einstein equation in the external direction (see Sec. III). We
do not explicitly perform such a step to find the relevant
constraints to satisfy the Raychaudhuri equation but as
pointed out by works of Jacobson [51,52] making the use of
null Raychaudhuri equation along with the fundamental
heat flow equation δQ ¼ TdS, one can obtain the Einstein
equation as the equation of state. As a result, although we
have not explicitly evoked the Einstein equation in the
derivation in Sec. IV, it is already implied due to Jacobson
[51,54]. One of the main reasons we reach a different
conclusion compared to [62] is because when the authors

reach (29) they do not relate R̃ðnÞ
mn with R

ðDÞ
mn . However, as we

know these quantities are related by simple conformal
transformation (30). When we use it to derive the con-
straint, we find out that not only does the contribution from
spacelike parts completely disappear but also the warp
factor contribution can be nicely removed when we
perform an integral over compact space. Consequently,
we are left with an integrated constraint involving only
timelike directions of the Ricci tensor, i.e., R00. This allows
us to conclude that we need to violate the SEC to satisfy the
Raychaudhuri equation and in the process we reinvent the
main essence of GMN no-go theorem. We have not
discussed the status of the apparent horizon and antitrapped
surfaces in this article [62]. In the future we would like to
revisit these issues on time-dependent background because,
as pointed out by Townsend [29,41] and Steinhardt [11], to
evade all the no-go theorems for dS compactification we
might need to go beyond the time-independent setup. In
particular we would like to understand how such
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backgrounds can be realized as a coherent state [78,79] to
bypass the Swampland conjectures [6] and trans-Planckian
problems [80].
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Appendix A: Christoffel coefficients. The list Christoffel
coefficients associated with (12) are

Γρ
αm ¼ ∂mðlnΩÞδρα;

Γρ
mn ¼ 0;

Γm
μr ¼ 0;

Γm
μν ¼ g̃μνh̃

mn
∂nðlnΩÞ;

Γm
nr ¼ Γ̃m

nrðh̃Þ þ
1

Ω
ðδmr ∂nΩþ δmn ∂rΩ − h̃nr∂mΩÞ;

Γρ
μν ¼ Γ̃ρ

μνðg̃Þ:

Appendix B: Ricci tensor. In any warped geometry
represented by the metric

ds2 ¼ h̃ðzÞd̃s2 ¼ h̃ðzÞG̃MNdzMdzN; ðB1Þ

the Ricci tensor for the full metric RðGMNÞ is related to
Ricci tensor of the metric RðG̃MNÞ by

RðGMNÞ ¼ RðG̃MNÞ− ðD− 2Þ
�
∇M∇N

�
ln h̃
2

�

−∇M

�
ln h̃
2

�
∇N

�
ln h̃
2

��
− h̃MN

�
∇P∇P

�
ln h̃
2

�

þ ðD− 2Þ∇P

�
ln h̃
2

�
∇P

�
ln h̃
2

��
: ðB2Þ

Block letter indices such as M can be thought of as the
directions 0…; D − 1 for the metric (12).
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