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We propose a holographic dictionarywhich comes from reducing the bulk theories in an asymptotically flat
spacetime to its null infinity. A general boundary theory is characterized by a fundamental field, an infinite
towerof descendant fields, constraints among the fundamental field and its descendants, aswell as a symplectic
form.For theCarrollian diffeomorphisms,we can construct the correspondingHamiltonianswhich are also the
fluxes from the bulk, and whose quantum operators realize this algebra with a divergent central charge. This
central charge reflects the propagating degrees of freedom and can be regularized. For the spinning theory, we
need a helicity flux operator to close the algebra which relates to the duality transformation.
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Introduction. Holography, one of the main properties of
gravity, has been checked for various examples in the
context of AdS=CFT. However, most of the physical
processes occur in an asymptotically flat spacetime. Flat
holography [1–11], which is to study the correspondence
between the gravity in asymptotically flat spacetime and
field theory at its boundary, has received a lot of attention in
recent years.
In this letter, we study the boundary theories from the

bulk reduction and find the intrinsic properties of physi-
cally meaningful boundary theories. We provide a bulk-to-
boundary dictionary which is summarized in Table I and
has been checked by virtue of unifying the results from
the real scalar, Maxwell, and (linearized) gravity theories
[12–14]. All the results will be extended to the higher spin
theory [15], and we will show how the correspondences in
this table are realized in a concise way which may also be
true for general dimensions [16].

Manifold. The bulk manifold is assumed to be asymptoti-
cally flat and a typical example is the Minkowski space-
time. In retarded coordinates xμ ¼ ðu; r; θ;ϕÞ, we may
choose a timelike hypersurface Hr with constant r. By
taking the limit r → ∞ while keeping u finite, the hyper-
surface Hr approaches future null infinity Iþ with top-
ology R × S2. This is a Carrollian manifold [17–19] whose
metric could be obtained by taking a Weyl scaling for the

induced metric of the hypersurface Hr in the above limit.
The metric of Iþ is degenerate

ds2Iþ ¼ γ ¼ dθ2 þ sin2 θdϕ2 ð1Þ
which characterizes the unit sphere S2. There should be a
complementary null vector χ ¼ ∂u that lies in the kernel of
the metric γ and generates the retarded time direction.
Therefore, an asymptotically flat spacetime takes a
Carrollian manifold as its boundary.

Symmetry. Carrollian diffeomorphism [20–22], which pre-
serves the null structure of Iþ, is generated by the vector ξ
such that the direction of the null vector χ is invariant under
Lie derivative along ξ [12]

Lξχ ¼ μχ : ð2Þ
The general solution of (2) is

ξ ¼ ξf ;Y ¼ fðu;ΩÞ∂u þ YAðΩÞ∂A ð3Þ
where f is any smooth function on Iþ and YA is any
smooth vector on S2. All the Carrollian diffeomorphisms
consist of a group denoted by DiffðS2Þ ⋉ C∞ðIþÞ, i.e., the
semi-product of the diffeomorphisms on the sphere and the
transformations generated by f∂u with f∈C∞ðIþÞ.

BMS group. The original Bondi-Metzner-Sachs (BMS)
group [23–25] is a subgroup of the Carrollian diffeomor-
phism which is generated by ξf ;Y with parameters satisfying

fðu;ΩÞ ¼ fðΩÞ þ 1

2
u∇AYA; ΘABðYÞ ¼ 0 ð4Þ

where the symmetric traceless tensor ΘABðYÞ is defined as

ΘABðYÞ ¼ ∇AYB þ∇BYA − γAB∇CYC: ð5Þ
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The vanishing of the tensor ΘABðYÞ indicates that YA is a
CKV. There are various extensions of the BMS group
[26–33]. We will adopt the terminology defined in [14]
that a general supertranslation (GST) is generated by
ξf ¼ fðu;ΩÞ∂u, and a special superrotation (SSR) has
generator ξY ¼ YAðΩÞ∂A. The GST and SSR, consisting
of the Carrollian diffeomorphisms, preserve the null struc-
ture of Iþ, so they are our main focus. We have also called
the cases of YA ¼ YAðu;ΩÞ a general superrotation and of
f ¼ fðΩÞ a special supertranslation.

Boundary fields. For a bulk system whose fields are
collected as fðt; xÞ, a variation of the LagrangianL½f� leads to

δL½f� ¼ δL½f�
δf

δf − dΘðδf; fÞ ð6Þ

where the first term represents the equation ofmotion (EOM)
and the second term gives the presymplectic potential.
To solve the EOM, we may expand the bulk field near Iþ

fðt; xÞ ¼ Fðu;ΩÞ
r

þ
X∞
k¼2

FðkÞðu;ΩÞ
rk

ð7Þ

in the Cartesian coordinates. We have omitted the tensor
indices and superscript for the leading order field. The
coefficients fFðu;ΩÞ; FðkÞðu;ΩÞg are boundary fields and
the EOM becomes the following constraint equations

CðF;FðkÞÞ ¼ 0 ð8Þ
among the boundary fields. The boundary fields are
classified into the fundamental fields and descendant fields.
The fundamental fields at Iþ represent the leading radiative
modes, namely

fA1���As
¼ rs−1FA1���As

þOðrs−2Þ ð9Þ
in retarded frame. The order of other components is at least
Oðrs−2Þ. We will write the fundamental fields as FAðsÞ for
brevity, where AðsÞ ¼ A1 � � �As represents a set of sym-
metric indices. For s ¼ 0, 1, and 2 can also be denoted by
Σ; AA and CAB, respectively, to match with notations of the
general literature. Note that for the spin-2 theory, the

field can also be interpreted as the metric perturbation
δgμν ¼ gμν − ημν.

Constraints and descendants. The descendant fields, deter-
mined by the fundamental fields up to initial data, are not
independent radiative modes. For example, we consider the
scalar theory with a potential VðΦÞ ¼ P

n≥4 λnΦn=n. From
the bulk EOM ∂

2Φ − V 0ðΦÞ ¼ 0, one can derive the
constraints at order Oðr−k−1Þ with k ≥ 2

Σ̇ðkÞ ¼−
k−2

2
Σðk−1Þ−

1

2ðk−1Þ∇A∇AΣðk−1Þ

þ 1

2ðk−1Þ
Xkþ2

n≥4
λn

Xk1þ���þkn−1¼kþ1

k1;…;kn−1≥1
Σðk1Þ…Σðkn−1Þ: ð10Þ

Descendant fields ΣðkÞ with k ≥ 2 are constrained and will
be determined with appropriate initial conditions. A similar
equation has been obtained in [34,35].
The same analysis can be done for spinning theories and

we get the same conclusion.
Therefore, the bulk equations of motion become con-

straints of boundary fields. The fundamental fields re-
present leading radiative modes, while the descendant
fields could be determined from fundamental fields given
specified initial conditions.

Symplectic form.In the bulk, we may evaluate the sym-
plectic form in a constant r hypersurface Hr and find the
boundary symplectic form [36–40] by sending it to Iþ
(with 32πG ¼ 1 for the gravitational theory)

ΩsðδF; δFÞ ¼
Z

dudΩδFAðsÞ ∧ δḞAðsÞ; ð11Þ

where the upper indices are raised by the inverse metric of
S2. From the boundary symplectic form, we could work out
the commutators for the fundamental fields

½FAðsÞðu;ΩÞ; ḞBðsÞðu0;Ω0Þ� ¼ i
2
XAðsÞBðsÞδðu−u0ÞδðΩ−Ω0Þ;

ð12Þ

where the Dirac delta function on the sphere reads
δðΩ −Ω0Þ ¼ 1

sin θ δðθ − θ0Þδðϕ − ϕ0Þ. The tensor XAðsÞBðsÞ
is the symmetric and trace-free part of γA1B1

� � � γAsBs
with

respect to two sets of indices AðsÞ and BðsÞ, respectively.
For the theories with spin s ¼ 0, we have X ¼ 1, while for
s ¼ 1, we have XAB ¼ γAB.
One can also define vacua and then obtain the funda-

mental correlators

h0jFAðsÞðu;ΩÞFBðsÞðu0;Ω0Þj0i
¼ iXAðsÞBðsÞβðu − u0ÞδðΩ − Ω0Þ

TABLE I. Bulk-to-boundary dictionary.

Bulk Boundary

AFS Carrollian manifold
Leading radiative modes Fundamental fields FAðsÞðu;ΩÞ
Other modes Descendant fields
EOMs Constraints CðF;FðkÞÞ ¼ 0
Symplectic form ΩHðδf; δfÞ Symplectic form ΩðδF; δFÞ
Leaky fluxes Hamiltonians
# of Propagating DOFs Proportion of central charges
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with βðu − u0Þ ¼ R∞
0 dω 1

4πω e
−iωðu−u0−iϵÞ, which will be

useful for computing the central charges.

Hamiltonians. From the symplectic form (11) and the
Carrollian diffeomorphism, we could make use of the
formula below [39,40]

iξΩðδF; δFÞ ¼ δHξ ð13Þ
to find the corresponding Hamiltonian operators

T s
f ¼

Z
dudΩfðu;ΩÞ∶ḞAðsÞḞAðsÞ∶;

Ms
Y ¼ 1

2

Z
dudΩYAðΩÞPABðsÞCDðsÞ

× ð∶ḞBðsÞ∇CFDðsÞ − FBðsÞ∇CḞDðsÞ∶Þ; ð14Þ
where we have imposed normal order to quantize the
operators, and the tensor PABðsÞCDðsÞ is the symmetric and
trace-free part of

ðγACγB1D1
þ sγAB1

γCD1
− sγAD1

γCB1
ÞγB2D2

� � � γBsDs
ð15Þ

concerning BðsÞ and DðsÞ, respectively. Note that the
variation of field δξFAðsÞ needs to be modified to covariant
variation, seeing (19) and below. At last, these
Hamiltonians are just the hard part of so-called BMS
fluxes [41–44], as shown in [14].

Leaky fluxes. Interestingly, the aforementioned
Hamiltonians are just the fluxes of Noether’s charges
arriving at Iþ. Take the translation as an example. The
four-momentum flux T α arriving at Iþ, may be computed
from the bulk stress tensor Tμν

T α ¼
Z
Iþ
ðd3xÞrTαr ¼ −

Z
dudΩnαḞAðsÞḞAðsÞ: ð16Þ

Here nα is a null vector which reads nμ ¼ ð1; niÞin
Cartesian coordinates with ni the unit normal vector for
S2. One can check that the result is T f with f taking −nα.
Note that the quantity Tα is not a conservative charge but
the leaky flux [31,40,41,45] from bulk to boundary. From
the Poincaré fluxes, one can define two local density
operators

Tsðu;ΩÞ≕ ḞAðsÞḞAðsÞ∶; ð17aÞ

Ms
Aðu;ΩÞ ¼

1

2
ð∶ḞBðsÞ∇CFDðsÞ − FBðsÞ∇CḞDðsÞ∶Þ

× PABðsÞCDðsÞ: ð17bÞ
We can perform the (generalized) Fourier transforms to
these density operators

T s
f ¼

Z
dudΩfðu;ΩÞTsðu;ΩÞ; ð18aÞ

Ms
Y ¼

Z
dudΩYAðu;ΩÞMs

Aðu;ΩÞ: ð18bÞ

However, to preserve the null structure of Iþ and get a
closed algebra, we have to impose Ẏ ¼ 0which makesMs

Y
be the Hamiltonian operator related to the SSR. Hence, we
conclude that the bulk leaky fluxes are precisely the
corresponding Hamiltonians at the boundary.

Actions on radiative fields. We find that all the physical
operators (including the helicity flux operators below) have
the unified form

i
Z

dudΩ∶ḞAðsÞδFAðsÞ∶: ð19Þ

where “δFAðsÞ” denotes the corresponding covariant varia-
tion of FAðsÞ induced by taking the commutator with
Hamiltonian operators. For example, the supertranslation
operators can be written in the form below

T s
f ¼ i

Z
dudΩ∶ḞAðsÞδFAðsÞ∶ ; ð20Þ

with the following covariant variation

δFAðsÞ ≡ i½T s
f; FAðsÞ� ¼ fḞAðsÞ: ð21Þ

It is easy to see that δFAðsÞ agrees with δfFAðsÞ induced by
Lie derivative.
The covariant variation of superrotation is denoted as

ΔY ¼ δY − δf¼1
2
u∇·Y , where the δY corresponds to the

standard superrotation. Hence we can define superrotation
flux operators as

Ms
Y ¼ i

Z
dudΩ∶ḞAðsÞΔYFAðsÞ∶ ; ð22Þ

where

ΔYFDðsÞ ≡ i½Ms
Y; FDðsÞ�

¼ ρABðsÞCDðsÞYA∇CFBðsÞ

þ 1

2
PABðsÞCDðsÞFBðsÞ∇CYA; ð23Þ

and we have defined ρABðsÞCDðsÞ ¼ 1
2
ðPABðsÞCDðsÞ þ

PADðsÞCBðsÞÞ.
Contrary to the supertranslation, the covariant variation of

the superrotation differs from the one induced by Lie
derivative. The origin lies in the fact δYγAB¼ΘABðYÞ≠0.
To be adapted to the boundary metric, we introduce a
“connection” ΓABðYÞ ¼ 1

2
ΘABðYÞ, and define the covariant

variation δY by regarding the variation induced by Lie
derivative as theordinaryvariation, in parallel to the definition
of the covariant derivative. One can check the linearity,
Leibniz rule, metric compatibility, and the last one, acting on
scalar fields like the ordinary variation, i.e., δYΣ ¼ δYΣ.
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In summary, we use the covariant variations to
find a unified form for all the physical operators,
which are adapted to the boundary metric,
consistent with the starting point that all the
fields locate at an asymptotically flat spacetime.

Commutation relations.We could write the general form of
commutators among the supertranslation and superrotation
operators for the theories with spin s

½T s
f1
; T s

f2
� ¼ Cs

Tðf1; f2Þ þ iT s
f1ḟ2−f2ḟ1

; ð24aÞ
½T s

f;M
s
Y � ¼ −iT s

YA∇Af
; ð24bÞ

½Ms
Y;M

s
Z� ¼ iMs

½Y;Z� þ isOs
oðY;ZÞ: ð24cÞ

where we have defined the following function

oðY; ZÞ ¼ 1

4
ϵBCΘABðYÞΘA

CðZÞ; ð25Þ

which vanishes by definition when Y or Z is a CKV.
Cs
Tðf1; f2Þ represent central charges which for s ¼ 0 takes

the form

Cðs¼0Þ
T ðf1; f2Þ ¼ −

iδð2Þð0Þ
48π

Z
dudΩðf1f

���
2 − f2f

���
1Þ: ð26Þ

The Maxwell field and gravitational field have two propa-
gating degrees of freedom (DOFs) at Iþ, so their central
charges are exactly twice larger than (26). In general d
dimensions, the central charge for the Maxwell theory is
d − 2 times as large as (26), as expected, while for the spin-
2 theory, the number of propagating DOFs is dðd − 3Þ=2,
which is exactly the proportion of this central charge. This
fact illustrates that the number of propagating DOFs in the
bulk corresponds to the proportion of the central charges
at the boundary.

Regularization of δð2Þð0Þ. Using the orthogonal and com-
plete relations for spherical harmonics Yl;mðΩÞ, one can
show that δð2Þð0Þ is exactly the density of states on S2,
which is represented by an infinite sum

P
l;m 1. One can

use the spectral zeta function regularization [46,47] for the
Laplace operator on the compact manifold S2 to find a finite
result. One can also use the heat kernel method [48–50] to
evaluate this sum. These two methods give the same results
in d ¼ 4, namely δð2Þð0Þ ¼ 1=12π. These regularizations
may be valid in higher dimensions [16].

Duality operators. For the scalar theory, (26) realizes the
Carrollian diffeomorphisms with a central extension.
However, if the spin is not zero, we must include a
generalized duality operator Os

g to form a closed algebra,
which can also be written in the aforementioned form (19)
by virtue of δgFAðsÞ. As the result of Ẏ ¼ 0, we require the

parameters g of duality operators to be time-independent.
The above covariant variations read

½Os
g; FAðsÞ� ¼ −igQAðsÞBðsÞFBðsÞ; ð27Þ

where QAðsÞBðsÞ is the symmetric and trace-free part of
ϵB1A1

γA2B2
� � � γAsBs

with respect to AðsÞ and BðsÞ,
respectively.
As is known, the duality transformations is a symmetry

for the free Maxwell theory [51–56] and linearized gravity
theory [57–59]. They rotate the field strength tensors with
their Hodge duals. The infinitesimal duality transforma-
tions at Iþ reduce to

δϵFAðsÞ ¼ ϵF̃AðsÞ; δϵF̃AðsÞ ¼ −ϵFAðsÞ; ð28Þ
where F̃AðsÞ is the dual fundamental field at Iþ, which
relates to FAðsÞ through F̃AðsÞ¼QAðsÞBðsÞFBðsÞ. As an exam-
ple, we could write out ÃA ¼ ϵBAAB; C̃AB ¼ QABCDCCD.
Now, one can derive the Hamiltonians related to the

duality transformations and also the corresponding flux
operators. The results are precisely Os

g, with parameters g
constants. They can be extended to smooth functions on the
sphere which we call special super-duality transformations
(SSDTs), but cannot be time-dependent due to the nonlocal
term.Nevertheless, we call the latter as general super-duality
transformation. The corresponding operators are called
duality operators since it is the generator of duality trans-
formations. Readers may need to be careful to distinguish
this name from the dual charges constructed from the dual
field F̃AðsÞ, such as dualmass/angularmomentum,which are
the dual counterparts to the normal charges [56,60–65]. One
can also refer toOs

g as helicity flux operators since the fluxes
evaluate the difference between the numbers of particles
with left and right helicity. In particular, the flux is called
optical helicity [53] for the Maxwell theory.

Phase transformation. Actually, when we switch the
fundamental fields to complex scalars through the vector
ζA ¼ ð1;−i= sin θÞ and its complex conjugate ζ̄A, namely
taking ψ s ¼ FAðsÞζA1 � � � ζAs and ψ̄ s ¼ FAðsÞζ̄A1 � � � ζ̄As , the
duality transformations become phase transformations of
the complex scalars. The flux density operator correspond-
ing to the phase transformation is

Osðu;ΩÞ ¼ −
i
2
ð∶ψ s ˙̄ψ s − ψ̄ sψ̇ s∶ Þ; ð29Þ

and we find the superrotation flux operator can be written as

Ms
Y ¼

Z
dudΩYASsAþ

is
4

Z
dudΩoðy; ȳÞOsðu;ΩÞ; ð30Þ

where

SsA¼
1

4
ð∶ ˙̄ψ s∇Aψ

sþ ψ̇ s∇Aψ̄
s− ψ̄ s∇Aψ̇

s−ψ s∇A ˙̄ψ
s∶Þ ð31Þ
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and

oðy; ȳÞ ¼ y∇Aζ̄
A − ζ̄A∇Ay − ȳ∇Aζ

A þ ζA∇Aȳ ð32Þ
with y ¼ YAζA and ȳ ¼ YAζ̄A. It implies that the super-
rotation flux operator can be divided into a duality part
is
4
Os

oðy;ȳÞ and a part which is in the same form as the
superrotation flux operator in the spin-0 theory, namely that
Ss
Y ¼ R

dudΩYASsA is just the formof the complex versionof

Mðs¼0Þ
Y . The duality part is proportional to the spin s which

leads to the appearance of s in (24c).

Intertwined algebra. Including the duality operators for
spinning theories, one needs to calculate out the commu-
tators involving Os

g to complete the algebra. The result is

½T s
f;O

s
g� ¼ 0; ð33aÞ

½Ms
Y;O

s
g� ¼ iOs

YA∇Ag
; ð33bÞ

½Os
g1 ;O

s
g2 � ¼ 0: ð33cÞ

The algebra (24) and (33) shows the intertwinement
between Carrollian diffeomorphisms and SSDTs.

Truncated algebras. Imposing Ẏ ¼ ġ ¼ 0 gives the pre-
vious closed algebra. If we further demand YA to be a CKV,
then we obtain the Newmann-Unti group [66,67]
NUðIþ; γ; χÞ ¼ ConfðS2Þ ⋉ C∞ðIþÞ, where ConfðS2Þ
denotes the conformal transformations on the sphere. On
the other hand, we could also require ḟ ¼ 1

2
∇ · Y; Ẏ ¼

ġ ¼ 0, and the result is the generalized BMS group
(intertwined with duality transformations for the spinning
theory). At last, the original BMS group is obtained when
ḟ ¼ 1

2
∇ · Y; YA ¼ ωμνYA

μν, and the Poincaré group is recov-
ered if f ¼ aμnμ; YA ¼ ωμνYA

μν, where aμ and ωμν are
constants. We can use a schematic diagram to show how
various groups are related:

fðu;ΩÞ; YAðu;ΩÞ; s
most general case

8>>>>>>>>>><
>>>>>>>>>>:

s¼ 0
no dual:

8<
:

fðu;ΩÞ; Ẏ ¼ 0
Carr: diffeo:

ḟ ¼ 1
2
∇ · Y; Ẏ ¼ 0

gener: BMS

s ≠ 0
with dual:

8>><
>>:

fðu;ΩÞ; Ẏ ¼ ġ¼ 0
Carr: diffeo:×SSDTs

ḟ ¼ 1
2
∇ · Y; Ẏ ¼ ġ¼ 0

gener: BMS×SSDTs

⇒

8>><
>>:

fðu;ΩÞ; YA ¼ ωμνYA
μν; s

NU group

ḟ ¼ 1
2
∇ · Y;YA ¼ ωμνYA

μν; s
original BMS

⇒ f ¼ aμnμ; YA ¼ ωμνYA
μν; s

Poincaryé trans:

Although we show a series of groups, it must be pointed
out that our main concern is the Carrollian diffeomorphism.
That is because it preserves the null structure of the Iþ and
leads to a closed algebra. The time-dependence of f may be
a little surprising. However, seeing Tsðu;ΩÞ≕ ḞAðsÞḞAðsÞ∶
as a natural local object at Iþ and taking the Fourier
transform of this density implies that we need to consider
the general f. Such a Fourier transform encodes all the
information about the momentum radiation. In particular,
if we take f as a natural basis at R × S2, i.e., f ¼
e−iωuYl;mðΩÞ, we find that (24a) is a Virasoro algebra
for the real scalar, and the same is true for the spinning
theories except that the central term will be twice as large.
As a matter of fact, such a time-dependence appears in the
context of the light-ray operator formalism [68–71] which
is related to the collider physics.

Conclusions. We propose a systematic way to obtain field
theory at Iþ from bulk reduction. We find some intrinsic
characteristics of the boundary theory that capture the
essence of the dictionary: There are fundamental fields that
are unconstrained and determine their descendants up to
initial data. The boundary symplectic forms only depend on

these fields and give the fundamental commutators and
correlators. The transformations of fundamental fields
under the Carrollian diffeomorphism are adapted to the
boundary metric and lead to the Hamiltonians or leaky
fluxes at the boundary. Taking normal order results in
quantum operators, which form a representation of the
Carrollian diffeomorphism. These properties have been
checked by virtue of the field theories with any integer spin,
which may provide new insight to the construction of the
general Carrollian field theories. It will be our future
interest to check the above properties of boundary theory,
improve the dictionary, and investigate how these may help
to understand the quantum gravity in the bulk.

Discussions. We consider the Carrollian diffeomorphism
ξf ;Y linking two boundary fields F1ðu;ΩÞ and F2ðu;ΩÞ,
whose bulk counterparts f1ðt; xÞ and f2ðt; xÞ are related by a
bulk transformation. It is interesting to investigate how our
boundary transformation will react the bulk physics or
solution space in the future. Moreover, taking soft limit in
the basis f ¼ e−iωuYl;mðΩÞ, the Carrollian diffeomorphism
reduces back to the generalized BMS group for which the
equivalence between the Ward identities and (leading and
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subleading) soft graviton theorems has been checked. It is
natural to ask how the Carrollian diffeomorphism is
integrated into S-matrix. Under a Carrollian diffeomor-
phism generated by ξ, there is an equation relating the
fluxes Qξ at Iþ and I−

QξjIþ −QξjI− ¼ 1

2

Z
bulk

d4xTμνδξgμν ð34Þ

like (4.77) in [16]. Bracketing (34) by in and out states, we
will get a similar expression as Ward identity in [1] which
relates to the soft theorem, except that there will be
nontrivial contributions from the insertion of stress tensor
in S-matrix. This problem deserves further study.
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BMS flux-balance laws with application to binary systems,
J. High Energy Phys. 10 (2020) 116.

[42] G. Compère, A. Fiorucci, and R. Ruzziconi, Superboost
transitions, refraction memory and super-Lorentz charge
algebra, J. High Energy Phys. 11 (2018) 200; J. High
Energy Phys. 04 (2020) 172(E).

[43] G. Compère, A. Fiorucci, and R. Ruzziconi, The Λ − BMS4
charge algebra, J. High Energy Phys. 10 (2020) 205.

[44] L. Donnay, K. Nguyen, and R. Ruzziconi, Loop-corrected
subleading soft theorem and the celestial stress tensor,
J. High Energy Phys. 09 (2022) 063.

[45] E. E. Flanagan and D. A. Nichols, Conserved charges of the
extended Bondi-Metzner-Sachs algebra, Phys. Rev. D 95,
044002 (2017).

[46] S.W. Hawking, Zeta function regularization of path integrals
in curved spacetime, Commun. Math. Phys. 55, 133 (1977).

[47] E. Elizalde, S. D. Odintsov, A. Romeo, A. A. Bytsenko, and
S. Zerbini, Zeta Regularization Techniques with Applica-
tions (World Scientific Publishing, Singapore, 1994).

[48] I. Polterovich, Heat invariants of Riemannian manifolds, Isr.
J. Math. 119, 239 (2000).

[49] D. V. Vassilevich, Heat kernel expansion: User’s manual,
Phys. Rep. 388, 279 (2003).

[50] D. Birmingham, Conformal anomaly in spherical space-
times, Phys. Rev. D 36, 3037 (1987).

[51] P. A. M. Dirac, Quantised singularities in the electromag-
netic field, Proc. R. Soc. A 133, 60 (1931).

[52] S. Deser and C. Teitelboim, Duality transformations of
Abelian and non-Abelian gauge fields, Phys. Rev. D 13,
1592 (1976).

[53] K. Y. Bliokh, A. Y. Bekshaev, and F. Nori, Dual electro-
magnetism: Helicity, spin, momentum, and angular mo-
mentum, New J. Phys. 15, 033026 (2013).

[54] Y. Hamada, M.-S. Seo, and G. Shiu, Electromagnetic
duality and the electric memory effect, J. High Energy
Phys. 02 (2018) 046.

[55] V. Hosseinzadeh, A. Seraj, and M.M. Sheikh-Jabbari, Soft
charges and electric-magnetic duality, J. High Energy Phys.
08 (2018) 102.

[56] A. Seraj and B. Oblak, Precession caused by gravitational
waves, Phys. Rev. Lett. 129, 061101 (2022).

[57] M. Henneaux and C. Teitelboim, Duality in linearized
gravity, Phys. Rev. D 71, 024018 (2005).

[58] B. Julia, J. Levie, and S. Ray, Gravitational duality near
de Sitter space, J. High Energy Phys. 11 (2005) 025.

[59] C. W. Bunster, S. Cnockaert, M. Henneaux, and R.
Portugues, Monopoles for gravitation and for higher spin
fields, Phys. Rev. D 73, 105014 (2006).

[60] S. Ramaswamy and A. Sen, Dualmass in general relativity,
J. Math. Phys. (N.Y.) 22, 2612 (1981).

[61] A. Strominger, Magnetic corrections to the soft photon
theorem, Phys. Rev. Lett. 116, 031602 (2016).

[62] L. Freidel and D. Pranzetti, Electromagnetic duality and
central charge, Phys. Rev. D 98, 116008 (2018).

[63] H. Godazgar, M. Godazgar, and C. N. Pope, Subleading
BMS charges and fake news near null infinity, J. High
Energy Phys. 01 (2019) 143.

[64] H. Godazgar, M. Godazgar, and C. N. Pope, New dual
gravitational charges, Phys. Rev. D 99, 024013 (2019).

[65] H. Godazgar, M. Godazgar, and C. N. Pope, Tower of
subleading dual BMS charges, J. High Energy Phys. 03
(2019) 057.

[66] E. T. Newman and T.W. J. Unti, Behavior of asymptoti-
cally flat empty spaces, J. Math. Phys. (N.Y.) 3, 891 (1962).

[67] G. Barnich and P.-H. Lambert, A note on the Newman-Unti
group and the BMS charge algebra in terms of Newman-
Penrose coefficients, Adv. Theor. Math. Phys. 2012, 197385
(2012).

[68] P. Kravchuk and D. Simmons-Duffin, Light-ray operators
in conformal field theory, J. High Energy Phys. 11 (2018)
102.

[69] C. Córdova and S.-H. Shao, Light-ray operators and the
BMS algebra, Phys. Rev. D 98, 125015 (2018).

[70] G. P. Korchemsky, E. Sokatchev, and A. Zhiboedov, Gen-
eralizing event shapes: In search of lost collider time, J. High
Energy Phys. 08 (2022) 188.

[71] G. P. Korchemsky and A. Zhiboedov, On the light-ray
algebra in conformal field theories, J. High Energy Phys.
02 (2022) 140.

HOLOGRAPHIC DICTIONARY FROM BULK REDUCTION PHYS. REV. D 109, L061901 (2024)

L061901-7

https://doi.org/10.1103/PhysRevD.99.084007
https://doi.org/10.1103/PhysRevD.99.084007
https://doi.org/10.1007/JHEP11(2022)022
https://doi.org/10.1098/rspa.1981.0109
https://doi.org/10.1103/PhysRevLett.46.573
https://doi.org/10.1103/PhysRevD.48.R3427
https://doi.org/10.1103/PhysRevD.48.R3427
https://doi.org/10.1103/PhysRevD.50.846
https://doi.org/10.1103/PhysRevD.50.846
https://doi.org/10.1103/PhysRevD.61.084027
https://doi.org/10.1007/JHEP10(2020)116
https://doi.org/10.1007/JHEP11(2018)200
https://doi.org/10.1007/JHEP04(2020)172
https://doi.org/10.1007/JHEP04(2020)172
https://doi.org/10.1007/JHEP10(2020)205
https://doi.org/10.1007/JHEP09(2022)063
https://doi.org/10.1103/PhysRevD.95.044002
https://doi.org/10.1103/PhysRevD.95.044002
https://doi.org/10.1007/BF01626516
https://doi.org/10.1007/BF02810670
https://doi.org/10.1007/BF02810670
https://doi.org/10.1016/j.physrep.2003.09.002
https://doi.org/10.1103/PhysRevD.36.3037
https://doi.org/10.1098/rspa.1931.0130
https://doi.org/10.1103/PhysRevD.13.1592
https://doi.org/10.1103/PhysRevD.13.1592
https://doi.org/10.1088/1367-2630/15/3/033026
https://doi.org/10.1007/JHEP02(2018)046
https://doi.org/10.1007/JHEP02(2018)046
https://doi.org/10.1007/JHEP08(2018)102
https://doi.org/10.1007/JHEP08(2018)102
https://doi.org/10.1103/PhysRevLett.129.061101
https://doi.org/10.1103/PhysRevD.71.024018
https://doi.org/10.1088/1126-6708/2005/11/025
https://doi.org/10.1103/PhysRevD.73.105014
https://doi.org/10.1063/1.524839
https://doi.org/10.1103/PhysRevLett.116.031602
https://doi.org/10.1103/PhysRevD.98.116008
https://doi.org/10.1007/JHEP01(2019)143
https://doi.org/10.1007/JHEP01(2019)143
https://doi.org/10.1103/PhysRevD.99.024013
https://doi.org/10.1007/JHEP03(2019)057
https://doi.org/10.1007/JHEP03(2019)057
https://doi.org/10.1063/1.1724303
https://doi.org/10.1155/2012/197385
https://doi.org/10.1155/2012/197385
https://doi.org/10.1007/JHEP11(2018)102
https://doi.org/10.1007/JHEP11(2018)102
https://doi.org/10.1103/PhysRevD.98.125015
https://doi.org/10.1007/JHEP08(2022)188
https://doi.org/10.1007/JHEP08(2022)188
https://doi.org/10.1007/JHEP02(2022)140
https://doi.org/10.1007/JHEP02(2022)140

