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We show that the stress tensor of a real scalar quantum field on Reissner-Nordström-de Sitter spacetime
exhibits correlations over macroscopic distances near the Cauchy horizon. These diverge as the Cauchy
horizon is approached and are universal, i.e., state independent. This signals a breakdown of the
semiclassical approximation near the Cauchy horizon. We also investigate the effect of turning on a charge
of the scalar field and consider the correlation of the stress tensor between the two poles of the Cauchy
horizon of Kerr-de Sitter spacetime.
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Introduction.OnMinkowski space and in the vacuum state,
the correlations hT̂αβðxÞT̂γδðx0Þi of stress tensor compo-
nents of a massless field at spacelike separated points x, x0

fall off as d−8 with the distance d (exponentially for
massive fields). Hence, correlations of the stress tensor
over macroscopic distances are negligible. This is one of
the (not always outspoken) assumptions underlying the
semi-classical Einstein equation (here Λ is the cosmologi-
cal constant, Tclass

μν the stress tensor of classical matter andΨ
the state of the quantum matter),

Gμν þ Λgμν ¼ 8π
�
Tclass
μν þ hT̂μνiΨ

�
: ð1Þ

An example of a situation in which correlations of the
stress tensor over macroscopic distances are not negligible
would be a quantum superposition of two macroscopically
different spatial distributions of quantum matter, also called
a gravitational cat state. Such superpositions played a
crucial role in Feynman’s famous Gedanken experiment [1]
which was used to argue that in a consistent theory
comprising gravity and quantum matter also the gravita-
tional field must be quantized. The analysis of this and
similar Gedanken experiments has been a major activity in
quantum gravity research in recent years [2–6] and the
actual realization and study of gravitational cat states is a
key goal of experimental studies of quantum gravity [7,8].
In quantum field theory on curved spacetimes (QFTCS),

correlations of quantum fields over macroscopic distances
are crucial in inflationary cosmology [9], where they
provide the seeds of cosmological structure formation.

In the following, we show that also near the Cauchy
horizon inside black holes, there are correlations of the
stress tensor over macroscopic distances. These are generi-
cally of the same order as the square of the expectation
value of the stress tensor, and in particular they diverge as
the Cauchy horizon is approached. Moreover, this behavior
is universal, i.e., the leading divergence of the correlations
is independent of the quantum state. Hence, the occurrence
of gravitational cat states (defined as states with non-
negligible correlations of the stress tensor over macroscopic
distances) on the Cauchy horizon of a black hole is a robust
prediction of QFTCS.
All stationary black hole solutions (with the exception of

nonrotating, uncharged black holes) possess a Cauchy
horizon in their interior. While the metric can be smoothly
extended beyond it, the extension is nonunique, as is the
extension of any other field subject to hyperbolic field
equations. Hence, the occurrence of a Cauchy horizon signals
the breakdown of predictivity. It was conjectured by Penrose
[10] that this breakdown is not generic, i.e., under generic
perturbations of the gravitational and/or matter fields, the
Cauchy horizon should become singular. This strong cosmic
censorship (sCC) conjecture motivates the study of classical
[11–25] and quantum [26–37] fields near a Cauchy horizon.
For our study, we mostly consider a scalar (charged or

uncharged) field on Reissner-Nordström-de Sitter (RNdS)
spacetime, describing a static charged black hole in a
spacetime with positive cosmological constant. This choice
is motivated both by physical and practical considerations:
From a practical point of view, RNdS has the advantage of
spherical symmetry as well as having a further (cosmo-
logical) horizon at a finite radius, which simplifies the
computation of the required scattering coefficients.
But RNdS is also interesting from a conceptual point of

view, as (the Christodoulou formulation [38] of) sCC can
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be violated in that case [21,24,25], i.e., the classical stress
tensor diverges weaker than V−1 at the Cauchy horizon.
Here V is a (Kruskal) coordinate with which one can
smoothly extend the metric beyond the Cauchy horizon,
situated at V ¼ 0. In contrast, for quantum fields, one finds
the leading divergence,

hT̂VVi ∼ CV−2; ð2Þ

for the expectation value of the renormalized stress-tensor
component T̂VV near the Cauchy horizon [30,31], with a
universal (state-independent) coefficient C [31,39].
In this work, we will consider the correlations,

ΔT̂VVðδθÞ ≔ hT̂VVðθÞT̂VVðθ þ δθÞiU − hT̂VVi2U; ð3Þ

of T̂VV in the Unruh state at angular separation δθ near the
Cauchy horizon (we used spherical symmetry to simplify
the last term on the rhs). We find that for the uncharged
scalar field on RNdS,

ΔT̂VVðδθÞ ∼DðδθÞV−4; ð4Þ

with a non-negative coefficientDðδθÞ which is (i) universal
(state independent), (ii) related to the coefficient C of (2)
as limδθ→0DðδθÞ ¼ 2C2, and (for near-extremal RNdS)
(iii) essentially flat (independent of δθ) except near
spacetime parameters where C vanishes.
This implies that the correlations of T̂VV are of the

same order as (the square of) its expectation value and that
these strong correlations exist over macroscopic distances
(the whole Cauchy horizon), putting the applicability
of the semiclassical Einstein equation into question. Of
course, also the divergence (2) indicates a breakdown of the
semiclassical Einstein equation for V → 0. However, for
the present argument we do not need to consider this limit.
In fact, our argument would also apply in a regime where
jhT̂VVij is still small, but ΔT̂VV is of the same order of
magnitude as hT̂VVi2 over macroscopic distances.
For the charged scalar field, one still finds (4), but for

increasing charge q of the field DðδθÞ is more and more
localized near δθ ¼ 0, i.e., correlations over macroscopic
distances are suppressed. This calls into question the
genericity of the result obtained for the uncharged scalar
field. As realistic black holes are (essentially) uncharged
but rotating, we finally consider the case of Kerr-de Sitter
(KdS) spacetime. Since all fields “couple” to the angular
momentum in a fashion quite analogous to the “coupling”
of a charged field to the charge of the black hole, it is
conceivable by analogy to the charged case that correlations
over macroscopic distances are suppressed in that case. We
calculate the correlation between the North and the South
Pole and again find correlations which are of the same order
as the (square of the) expectation value. Hence, also in this
case, there are correlations over macroscopic distances near

the Cauchy horizon, so that these can be considered as a
generic feature of (essentially massless) quantum fields in
black hole spacetimes.
To the best of our knowledge, the explicit calculation of

correlations of the stress tensor (or more generally quantum
fields) on black hole spacetimes has up to now been limited
to timelike separated points [40], or to toy models which
neglect scattering [41–43]. Hence, we also present the first
calculation of quantum correlations at spacelike separation
in black hole spacetimes.

Reissner-Nordström-de Sitter spacetime. The RNdS space-
time is characterized by the metric

g ¼ −fðrÞdt2 þ f−1ðrÞdr2 þ r2dΩ2 ð5Þ

fðrÞ ¼ −
Λ
3
r2 þ 1 −

2M
r

þQ2

r2
: ð6Þ

Here, dΩ2 is the area element of the unit 2-sphere, Λ the
cosmological constant,M the mass, andQ the charge of the
black hole. These are chosen such that fðrÞ has three distinct
positive roots r− < rþ < rc, which determine the location
of the Cauchy ðCHÞ, event ðHÞ and cosmological horizon
ðHcÞ. The black hole exterior consists of region III ¼
Rt × ðrc;∞Þ × S2 beyond the cosmological horizon and
region I ¼ Rt × ðrþ; rcÞ × S2 causally connected to the
black hole, as well as the horizon HL

c connecting them.
The black hole interior up to theCauchy horizon, region II ¼
Rt × ðr−; rþÞ × S2, is connected to region I along the event
horizonHR. Region II is connected to region IV containing
the singularity by the Cauchy horizon CHR. A Penrose
diagram of the spacetime is shown in Fig. 1.
We introduce a double null coordinate system. First, we

define the tortoise coordinate r� by fdr� ¼ dr. Then, one
defines u ¼ t − r� and v ¼ tþ r�. These coordinates run
over R in each of the regions I, II, and III separately. To
cover the horizons, one can introduce Kruskal-type coor-
dinates. The null coordinate that is regular across the
Cauchy horizon CHR is defined in region II by

V ¼ −e−κ−v; κi ¼
1

2
j∂rfðriÞj; ð7Þ

so V ¼ 0 on CHR. These coordinates are indicated in Fig. 1.
The other Kruskal coordinates relevant to this work are

defined in region I by U ¼ −e−κþu and Vc ¼ −e−κcv.

Correlations of the energy flux. We will mostly consider a
real, minimally coupled massive scalar field of mass
μ2 ¼ 2Λ=3, i.e., satisfying the Klein-Gordon equation,

ð∇ν∇ν − μ2Þϕ ¼ 0: ð8Þ
This is the same equation as for a massless, conformally
coupled scalar field on RNdS (or KdS), so that we say that
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the field has “conformal mass”. For this choice the
corresponding mode equation can be brought into Heun
form [44] (as for massless fields of higher spin, so that ϕ
can be seen as a proxy for the electromagnetic field), which
simplifies numerical calculations. For such a scalar field,
the classical stress tensor is given by

Tνρ ¼ ∂νϕ∂ρϕ −
1

2
gνρð∂αϕ∂αϕ − μ2ϕ2Þ: ð9Þ

In the quantum theory, this needs to be renormalized, since
it is quadratic and local in the quantum field. In QFTCS,
this must be done in a local and covariant way [45], i.e., by
Hadamard point split renormalization (up to possible finite
renormalizations, which are irrelevant for the divergent
behavior near the Cauchy horizon). In this scheme, the
renormalized expectation value of a Wick square with any
number of derivatives is given by

h∂αϕðxÞ∂βϕðxÞirenΨ ¼ lim
x0→x

∂
α
x∂

β
x0
�hϕðxÞϕðx0ÞiΨ −Hðx; x0Þ�;

ð10Þ

with α, β multi-indices. Here, Hðx; x0Þ is the Hadamard
parametrix for the Klein-Gordon operator∇ν∇ν − μ2. If the
state Ψ is Hadamard, i.e., with a two-point function whose
singularities for x0 → x agree with those of Hðx; x0Þ, then
the resulting expectation value is finite. Thus, one may
write the operator-valued distribution for the vv-component
of the renormalized stress tensor (henceforth referred to as
the energy flux) on RNdS (somewhat formally) as

T̂vvðxÞ ¼ lim
x0→x

ð∂vϕðxÞ∂vϕðx0Þ − ∂v∂
0
vHðx; x0Þ1Þ: ð11Þ

We are interested in the correlations of this operator,
defined by

ΔT̂vvðx; yÞΨ ¼ hT̂vvðxÞT̂vvðyÞiΨ − hT̂vvðxÞiΨhT̂vvðyÞiΨ:
ð12Þ

If the state Ψ is quasifree (Gaussian), as is the case for the
Unruh state considered below, then one finds, using Wick’s
formula,

ΔT̂vvðx; yÞΨ ¼ 2ðh∂vϕðxÞ∂vϕðyÞiΨÞ2: ð13Þ

We would like to compute this correlation for the Unruh
state on the Cauchy horizon CHR of RNdS.
The Unruh state for the real scalar field on RNdS is

Hadamard in I ∪ II ∪ III, i.e., up to the Cauchy horizon [31].
It can be defined by expanding the quantum scalar field in
terms of mode solutions to the Klein-Gordon equation (8),

ϕðxÞ ¼
X
λ;l;m

Z∞

0

ϕλ
ωlmðxÞaλωlm þ ϕ̄λ

ωlmðxÞaλ†ωlmdω; ð14Þ

where the aλωlm and aλ†ωlm are creation and annihilation
operators and ϕλ

ωlm form a complete set of symplectically
normalized mode solutions to (8). The index λ runs over two
families of such modes, called “in” and “up” modes, while
l and m are the usual angular quantum numbers.
For the Unruh state, the “up” modes vanish near

H−
c ∪ HR

c , and are of positive frequency with respect to
U near HL ∪ H−, while the “in” modes vanish near
HL ∪ H− and are of positive frequency with respect to
Vc near H−

c ∪ HR
c .

For the evaluation of the correlations at the Cauchy
horizon, we will pick x as any point on CHR, and
y ¼ xþ δθ separated from x in the θ-direction. Due to
the spherical symmetry of the Unruh state, the correlations
will only depend on δθ.
As the Unruh state is stationary, we can also compute the

correlations on CHL, which is advantageous. To explain
this, we recall the calculation of the expectation value
hT̂vviU on CHR as performed in [31]. There, a further
stationary “comparison” state h·iC is introduced, which is
defined by final data on CHL ∪ CHþ (see Fig. 1), and
which is Hadamard in II ∪ IV, i.e., across CHR. Due to the
latter property, the renormalized expectation value of T̂vv in
this state must vanish at CHR, so that instead of hT̂vviU one
can consider hT̂vviU − hT̂vviC. The advantage is that the
Hadamard parametrix drops out in this difference and the
result can be computed (on CHL) in terms of a mode
integral as

FIG. 1. The Penrose diagram of RNdS. Regions I and III
comprise the black hole exterior. The black hole interior consists
of II and IV. The blue arrows point towards increasing u and v,
the red arrow towards increasing V.
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hT̂vviU ¼
X∞
l¼0

TðlÞ
vv ; TðlÞ

vv ¼ 2lþ 1

16π2r2−

Z∞

0

dωωnlðωÞ; ð15Þ

with nlðωÞ, explicitly given in [31, Eq. (123)], a function of
certain scattering coefficients on RNdS.
Returning to the correlations (13), we note that in

principle these do not require any renormalization for
spacelike separated x, y (as is the case for δθ ≠ 0 on
CHR). However, to improve the weak convergence of the
mode integral, we again use stationarity to evaluate
the expression on CHL and subtract the correlation of
T̂vv in the comparison state. This does not alter the result
for δθ ≠ 0, as, on CHL, h∂vϕðxÞ∂vϕðxþ δθÞiC ¼ 0 for
δθ ≠ 0 (a “blind spot” in the terminology of [46]). Thus,
one finds

ΔT̂vvðδθÞU ¼ 2

�X∞
l¼0

Plðcos δθÞTðlÞ
vv

�
2

; ð16Þ

with PlðxÞ the Legendre polynomials. In particular, we see
that the angular dependence comes from the terms with
l > 0, and that limδθ→0ΔT̂vvðδθÞU ¼ 2hT̂vvi2U.
From the result for ΔT̂vvðδθÞU, one straightforwardly

obtains (with the tensor transformation law) the divergent
correlation (4), with DðδθÞ ¼ κ−4− ΔT̂vvðδθÞU. Furthermore,
using the arguments of [31,39], one sees that this result is
universal, i.e., the coefficient DðδθÞ of the leading diver-
gence is the same for all states which are Hadamard
in I ∪ II ∪ III.

Numerical results. We now present numerical results for
ΔT̂vvðδθÞU. A method for the numerical computation of the
integrand nlðωÞ with Mathematica has been developed
in [32]. We will focus on the regime of largeQ, since this is
where sCC is violated classically.
When fixingM and Λ and studying TðlÞ

vv as a function of
Q, one finds that generically contributions with l > 0 are
suppressed with respect to the l ¼ 0 term. The only

exception is a parameter region around Q0, where Tð0Þ
vv

vanishes and changes sign. This parameter region also
contains the value Q� at which hT̂vviU vanishes due to a

cancellation of Tð0Þ
vv and the higher l-modes, mostly Tð1Þ

vv . In
Fig. 2, we focus on a neighborhood of Q� (indicated by a
red line) in parameter space. We see that away from Q� the
correlations are essentially independent of δθ, as expected
due to the dominance of the l ¼ 0 term. Furthermore, they
coincide approximately with 2hTvvi2U (indicated by the
purple line). It follows that the correlations of T̂VV in the
Unruh state diverge as V−4 near the Cauchy horizon, with a
coefficient of the same order as that of the leading
divergence of hT̂VVi2U. We thus see strong fluctuations of

the stress tensor which are correlated over macroscopic
distances.
At Q�, the correlations of T̂vv at nonzero angular

separations are nonzero and of a size similar to hT̂vvi2U
at other (nearby) values of Q. This means that even at Q�,
the typical realization of T̂vv in a single measurement must
be of the same order of magnitude as for other nearby
values ofQ. The positive and negative measurement results
only cancel out on average. Thus, even if the leading
divergence of the expectation value of the energy flux
vanishes for this particular choice of parameters, one would
expect that in a typical realization quantum effects will still
lead to a quadratic divergence of the stress tensor and
thereby restore sCC.
We note that at Q�, the correlations at large angular

separation are larger than at small angular separation. This
is counterintuitive, as one would usually expect the
correlations to decay with the separation.
To see how generic our finding of strong correlations of

the energy flux over macroscopic distances near the
Cauchy horizon is, we study two variations of the above.
The first one is to turn on a charge q of the scalar field. This
indeed alters the picture substantially. First, if q is suffi-

ciently large, the sign change of Tð0Þ
vv as a function of Q=M

that we observed for the uncharged field is absent, and
therefore also the sign change in hT̂vviU. Second, as q is

increased, the relative size of the higher-lmodes, TðlÞ
vv with

l ≥ 1, compared to Tð0Þ
vv , increases. This leads to a stronger

dependence of the correlations on δθ. This can be observed
in Fig. 3, where ΔT̂vvðδθÞU (normalized with hT̂vvi2U) is
shown as a function of δθ for different values of the field
charge q (for a fixed choice of spacetime parameters Λ and
Q). We see that as q increases, the correlations start to
localize stronger around δθ ¼ 0.
Finally, we consider the case of a real scalar field (of

conformal mass) on KdS, which describes a rotating black

FIG. 2. Correlations of the energy flux at the Cauchy horizon at
angular separation δθ for different values of Q=M and
ΛM2 ¼ 0.02. The red line marks Q� at which the energy flux
vanishes. The purple line represents twice the square of the flux
as a function of Q=M.
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hole in the presence of a positive cosmological constant.
Due to the lack of spherical symmetry, this is considerably
more involved than RNdS. Results for the expectation
values of T̂vv (and T̂vφ) on Kerr (KdS) were recently
obtained in [35] ([47]). For simplicity, we restrict to the
correlation between the two poles. Using the results of [47],
one obtains the correlations shown in Fig. 4. These are of
the same order as hT̂vvi2U at the pole, except around the
parameter value at which hT̂vvi2U vanishes. Hence, there are
strong correlations over macroscopic distances, also near
the Cauchy horizon of KdS.
An intuitive understanding for this finding can easily be

given: At the poles, only the m ¼ 0 modes are relevant,
which do not couple to the angular momentum of the black
hole, analogously to the real scalar field not coupling to the
black hole charge; hence, the similarity to the behavior of
the real scalar on RNdS. However, we also verified the
existence of strong correlations (of the order of the square
of the expectation value) away from the poles (for pairs of
points related by reflection at the equatorial plane). In this
case, the long-range correlations can be attributed to the
dominance of the modes with m ¼ −l, which are sym-
metric under reflection at the equatorial plane, and thus do
not contribute to a suppression of the correlations for the
pairs of points under consideration.
Quite generally, we expect strong correlations of the

energy flux over macroscopic distances near the Cauchy
horizon whenever only a small number of l- and m modes
contribute to the expectation value of the energy flux.
This is expected to no longer hold for fields of a sizeable
mass, in appropriate units; the effective potential governing
the one-dimensional scattering problem for the modes of
the real scalar (in the spherically symmetric case) is Veff ¼
fðlðlþ 1Þr−2 þ μ2 þ r−1f0Þ, so that if the Compton
wavelength corresponding to μ is much smaller than r−,
then the first (l dependent) term is negligible with respect
to the second one for a large range of l values. Hence, in

this case (which applies to astrophysical black holes and the
known massive elementary particles, possibly with the
exception of neutrinos), the scattering coefficients, and thus
nlðωÞ should be essentially independent of l for a large
range of l values, leading to a strong localization of the
correlations. However, as there is at least one massless
particle, the photon, the strong correlations over macro-
scopic distances near the Cauchy horizon persist.

Conclusion. We have seen that there are strong (divergent
as V−4) correlations of the component T̂VV of the stress
tensor near the Cauchy horizon which, in some cases,
extend over macroscopic distances and are of the same
order as the square of the expectation value. We expect this
to be the generic behavior for fields of vanishing or
small mass.
If the correlations of T̂VV are of the same order as the

square of its expectation value over macroscopic distances,
then correlations, i.e., fluctuations, can no longer be
neglected, calling into question the applicability of the
semiclassical Einstein equation, even if the expectation
value of T̂VV is still sufficiently small. We refer to [48,49]
for approaches to take correlations of the stress tensor into
account in the description of backreaction. Considering the
results obtained in this work, an ansatz incorporating also
the fluctuations of the stress tensor will be necessary to
unravel the effect of quantum fields on the formation of
singularities at the Cauchy horizon.
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FIG. 3. Correlation of the energy flux, normalized to the square
of the expectation value, as a function of δθ for different values of
the scalar field charge q atQ=M ¼ 1 and ΛM2 ¼ 0.14. For larger
qQ, the range of the correlations shrinks.

FIG. 4. Correlation of the energy flux between the poles of KdS
as a function of the black hole angular momentum a=M for
ΛM2 ¼ 1=270. The correlations are of the same order as the
square of the expectation value, except near a=M ≃ 0.75, where
hT̂vviðθ ¼ 0Þ changes its sign (for a=M ¼ 0.75, the error bar is
omitted, due to the small denominator).
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