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In boundary conformal field theories, global symmetries can be broken by boundary conditions,
generating a homogeneous conformal manifold. We investigate these geometries, showing they have a
coset structure, and give fully worked out examples in the case of free fields of spin zero and one-half.
These results give a simple illustration of the salient features of conformal manifolds while generalizing to
interacting and more intricate setups. Our work was inspired by Drukker et al. [Phys. Rev. Lett. 129,
201603 (2022)].
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Introduction. Conformal field theories (CFTs) are useful
for describing critical phenomena, fixed points of the
renormalization group in quantum field theory more gen-
erally, and potentially even quantum gravity. Occasionally,
a CFT can appear as a member of a family. This situation
occurs when the theory possesses one or more marginal
couplings, i.e., couplings that do not scale under the action
of the dilation generator of the conformal group. Two well
known examples of such marginal couplings are the
compactification radius of a compact scalar in two dimen-
sions and the gauge coupling of maximally supersymmetric
Yang-Mills theory in four dimensions. These couplings can
be interpreted as coordinates on a manifold, which in turn
puts interesting constraints on the correlation functions of
such theories [1–3]. Finding exactly marginal parameters
for CFTs that are neither supersymmetric nor two dimen-
sional has historically been a challenge.
Recently, however, it was emphasized [4] that defect and

boundary conformal field theories with global symmetry,
where the defect or boundary breaks the global symmetry,
naturally have such couplings. The role of conserved
currents in providing exactly marginal operators has long
been known in boundary two dimensional CFT and super-
symmetric CFTs in higher dimensions [5,6]. It should
perhaps come as no surprise then that these currents play
also a role for defect and boundary CFTs in higher
dimensions as well. Indeed, it has long been known that
the OðNÞ model with a boundary has such a marginal
operator [7,8] in the 4 − ϵ expansion. Along the line in the
phase diagram where the system changes from surface

ordered to bulk ordered (the case of an extraordinary phase
transition), the spontaneous breaking of the OðNÞ sym-
metry caused by the surface ordering leads to a set of
exactly marginal couplings that “tilt” how the preserved
OðN − 1Þ group sits inside the original OðNÞ symmetry.
More recent discussions of these tilts in the OðNÞ model
and boundary CFT more generally can be found here [9]
and here [10] respectively.
In contrast to Ref. [4] where the focus was on line and

surface defects, the goal of this letter is to investigate the
nature of these couplings in boundary conformal field
theories (bCFTs). We focus on two particularly simple
examples: N free massless scalar or spinor fields where
the coupling acts by changing the boundary conditions. By
looking at free theories, we will be able to investigate the
correlation functions not just perturbatively in the value of
the marginal couplings but exactly, for any value. As a
result, we will be able to write down completely explicit
expressions for the metric, connection, and curvature of the
conformal manifold [11].
Here is an instance of the more general insight of Ref. [4]

for the particular case of a Uð1Þ global symmetry. In the
absence of a defect, Noether’s Theorem implies the
existence of a corresponding conserved current JμðxÞ.
The defect is assumed to break this symmetry

∂μJμðxÞ ¼ TðxkÞδðx⊥Þ; ð1Þ

where TðxkÞ is the “tilt” operator living on the defect and
δðx⊥Þ is a Dirac delta function localized on the defect. (In
the case of a boundary, TðxkÞ can be traded for the
boundary value of normal component of the current,
J⊥ðxkÞ, by Gauss’s law.) The presence of a defect cannot
change the scaling dimension of the otherwise conserved
current JμðxÞ, which thus must be d − 1 in d dimensions.
By dimensional analysis TðxkÞ will have scaling dimenion
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n for a n-dimensional defect. Given the existence of TðxkÞ,
we can deform the path integral for the original theory by
inserting the tilt:

exp λ
Z

dnxkTðxkÞ ð2Þ

where λ is a marginal coupling.
Remarkably, the associated conformal manifold in this

case can be absorbed by a field redefinition. The situation is
similar to spontaneous symmetry breaking, where even
though there is a moduli space of vacua, they can be related
to each other through the action of the broken generators of
the group. Indeed, let us couple the current to an external
gauge potential AμðxÞ:Z

ddxAμðxÞJμðxÞ: ð3Þ

Under a gauge transformation Aμ → Aμ − ∂μλ, this cou-
pling changes by the defect localized term

Z
dnxkTðxkÞλðxkÞ: ð4Þ

Constant gauge transformations λðxkÞ ¼ λ correspond to
global symmetry transformations under the Uð1Þ sym-
metry. Thus, we anticipate that this coupling can be
removed by redefining the bulk fields of the CFT under
a Uð1Þ transformation. Indeed, we will be able to see this
redefinition explicitly for the free scalar and spinor
bCFTs below.
Before engaging in the details, it is worth mentioning

that bCFT offers an even simpler way of seeing that
the deformation λ

R
dd−1xTðxkÞ ¼ λ

R
dd−1xJ⊥ðxkÞ can

be removed by a field redefinition. In this case, the operator

exp λ
Z

dd−1xkJ⊥ðxkÞ ð5Þ

can be interpreted as an element of the Uð1Þ group. The
integral

R
dd−1xJ⊥ðxkÞ is the conserved charge associated

with the boundary foliation of the space-time, and hence an
element of the Lie algebra. The exponential is then the
usual exponential map for Lie groups that converts a Lie
algebra element into a group element, acting on the rest of
the theory. Clearly, it can be “undone” by acting with its
inverse. The generalization of this argument to non-Abelian
Lie groups is straightforward, and we will not belabor
it here.
Despite the almost trivial nature of the conformal

manifold in these defect and boundary cases, it nevertheless
exemplifies the properties of conformal manifolds more
generally. That one can perform a field redefinition to
reabsorb the coupling means that the ensuing manifold is

homogeneous. The two point function of the marginal tilt
operators furnishes a metric on the manifold [12]. The three
point functions vanish up to contact terms but are asso-
ciated with a connection on said manifold [1,2]. Finally, the
four point function can be used to compute the Riemann
curvature [2]. In what follows, we first analyze the case of
free scalar with a boundary and then, more briefly, the case
of a free spinor. We end with an argument that the
manifolds we compute should be largely insensitive to
the addition of interactions and propose some further
generalizations.

Scalar moduli. The starting point is a system of N free
scalar fields ϕI , I ¼ 1;…; N in the presence of a boundary
along x⊥ ¼ 0. To p of the scalars ϕa, a ¼ 1;…; p, we
apply Dirichlet boundary conditions. To q ¼ N − p of the
scalars ϕi, i ¼ pþ 1;…; N, we apply Neumann boundary
conditions. In this case, the presence of the boundary has
broken the OðNÞ global symmetry group to OðpÞ ×OðqÞ
through boundary conditions. There are then a collection
of marginal operators ϕi∂⊥ϕa and associated marginal
couplings λai that we can use to “rotate” the boundary
conditions.
Given the global OðNÞ symmetry, there are current

operators JμIJ ¼ ϕI∂
μϕJ − ϕJ∂

μϕI . The marginal operators
ϕi∂⊥ϕa can then be understood as the restriction of J⊥ia to
the boundary x⊥ ¼ 0, where ϕa and ∂⊥ϕi vanish by the
boundary conditions.
A useful string theory inspired picture to keep in mind is

a fundamental string ending on a D-string. In this case, the
bCFT is the two-dimensional world sheet of the string, and
the fields ϕI are embedding coordinates of the string in N
dimensional spacetime. By rotating the D-string ninety
degrees, we convert a Neumann boundary condition into a
Dirichlet one and vice-versa.
To be more specific, our system is described by the

following classical action

S ¼ Sbulk þ Sbry ð6Þ

where

Sbulk ¼
1

2

Z
x⊥>0

ddxð∂μϕÞ · ð∂μϕÞ; ð7Þ

and

Sbry ¼
Z
x⊥¼0

dd−1xðϕa∂⊥ϕa þ λaiϕi∂⊥ϕaÞ; ð8Þ

where a sum on repeated indices is implied. The ϕa∂⊥ϕa
term is added to impose Dirichlet conditions on the ϕa
scalars in the absence of the λai couplings. More generally,
the variational principle imposes the boundary conditions
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λai∂⊥ϕa − ∂⊥ϕi ¼ 0;

λaiϕi þ ϕa ¼ 0: ð9Þ

We impose no condition on the variations δϕ and ∂nδϕ, and
thus interpret their coefficients as boundary equations of
motion to derive the above equations.
To see explicitly that the λai can be removed by a field

redefinition, it is convenient to write the boundary term
using the matrix

A≡
�
idp 0

λT 0

�
ð10Þ

such that Sbry ¼
R
x⊥¼0 d

d−1xϕ · A · ∂⊥ϕ. We use the nota-
tion that idp is a p × p identity matrix.
Defining

C≡
� − 1

1þλλT
λλT 1

1þλλT
λ

− 1
1þλTλ

λTλλT 1
1þλTλ

λTλ

�
; ð11Þ

and given the boundary conditions (9), we are free to add
the redundant operator

R
dd−1xϕ · C · ∂⊥ϕ to the action

without affecting correlation functions or boundary con-
ditions. The identity λð1þ λTλÞ−1 ¼ ð1þ λλTÞ−1λ is useful
in checking this claim.
The effect of adding C is to symmetrize the matrix A:

Aþ C ¼
� 1

1þλλT
1

1þλλT
λ

1
1þλTλ

λT 1
1þλTλ

λTλ

�
≡ Ã: ð12Þ

The matrix Ã can then be diagonalized by an action of the
OðNÞ group without affecting the bulk kinetic term, as Ã is
symmetric with real coefficients. Note that Ãðid − ÃÞ ¼ 0,
guaranteeing that all the eigenvalues of Ã are either zero or
one. We “diagonalize” the theory with a change of basis
matrix ϕ ¼ B · φ, after which the action remains of the
form (6) but with λai ¼ 0:

Sbry ¼
Z
x⊥¼0

dd−1xðφa∂⊥φaÞ: ð13Þ

We play one further game with the matrices A and Ã.
We define a new matrix χ such that

Ã ¼ 1

2
ðid − χÞ: ð14Þ

As Ã is a projector, it follows that χ2 ¼ id. This matrix will
be useful in defining two-point functions of the ϕ fields
later on. In terms of χ, the boundary conditions (9) can be
written more compactly

ð1 − χÞϕ ¼ 0; ð1þ χÞ∂⊥ϕ ¼ 0: ð15Þ

As a simple example, consider the Oð2Þ case where

ÃðθÞ ¼
�

cos2θ cos θ sin θ

cos θ sin θ sin2θ

�
; ð16Þ

B ¼
�
cos θ − sin θ

sin θ cos θ

�
; ð17Þ

and λ ¼ tan θ. Note the Ã matrix has periodicity under
θ → θ þ π instead of 2π because the action (6) has a Z2

symmetry and is invariant under ϕi → −ϕi. The theories
ÃðθÞ and Ãðθ þ π=2Þ are related by permuting the ϕ1 and
ϕ2 fields and sending λ → − 1

λ, which is an example of a
duality discussed by Witten [13] in an AdS=CFT context.
More generally, we have a situation where the boundary

conditions break the OðNÞ symmetry to OðpÞ ×OðqÞ and
the marginal couplings λai can be understood as coordi-
nates on the coset moduli space OðNÞ=ðOðpÞ ×OðqÞÞ,
which is a real Grassmannian manifold. To characterize the
moduli space using the field theory, we calculate the two,
three and four point functions of the marginal opera-
tors O½ai� ¼ ϕi∂⊥ϕa.
The two point function ofO½ai�, which gives the metric on

themoduli space [12], follows from the two point function of
the fundamental fieldϕI byWick’s theorem. This correlation
function of ϕI with itself in turn is uniquely fixed by the
condition that □xhϕIðxÞϕJðyÞi ¼ −δðx − yÞδIJ along with
the boundary conditions. The result is that

hϕIðxÞϕJðyÞiλ ¼ κ

�
δIJ

jx − yjd−2 þ
χIJðλÞ

jx̃ − yjd−2
�
: ð18Þ

We have introduced the normalization κ−1 ¼ ðd − 2Þ
VolðSd−1Þ and the mirror point x̃ ¼ ð−x⊥; xkÞ. This result
can be reproduced by treating the moduli using conformal
perturbation theory [14,15]. In the boundary limit, we can
then read off

hϕðxkÞϕð0Þiλ ¼ κ
idþ χ

jxkjd−2
;

h∂⊥ϕðxkÞ∂⊥ϕð0Þiλ ¼ ðd − 2Þκ id − χ

jxkjd
: ð19Þ

These correlation functions clearly satisfy the boundary
conditions (15) because Ã is a projector.
Naively hϕðxkÞ∂⊥ϕð0Þi is zero as these two operators

have different conformal dimension. However, the full
story is more complicated as these operators are also
shadow dual. By placing both insertions at a height ϵ
above the boundary and carefully taking the limit ϵ → 0,
we find the contact term
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hϕðxkÞ∂⊥ϕð0Þi ¼
χ

2
δd−1ðxkÞ: ð20Þ

Applying Wick’s Theorem, we find up to contact terms
that we drop, that

hO½ai�ðxkÞO½bj�ð0Þiλ ¼
g½ai�½bj�ðλÞ
jxkjd

; ð21Þ

where

g½ai�½bj�ðλÞ ¼
L2

4
ðδab − χabÞðδij þ χijÞ

¼ L2

�
1

1þ λλT

�
ab

�
1

1þ λTλ

�
ij
; ð22Þ

can be interpreted as a metric on the coset space
OðNÞ=ðOðpÞ ×OðqÞÞ, where we have defined the “length
scale” L2 ≡ 4ðd − 2Þκ2. A simple example to give us
confidence this metric is correct is the case p ¼ 1 and
q ¼ 2, where the moduli space is S2. By making the
variable substitutions λ1;2 ¼ tan θ cosϕ and λ1;3 ¼
tan θ sinϕ, we recover the usual round metric on an
S2∶ ds2 ¼ L2ðdθ2 þ sin2θdϕ2Þ. Indeed, (22) is the unique
OðNÞ-invariant metric on the Grassmannian, up to the scale
L [16–18]. (There is an exception forOð4Þ. We will discuss
the uniqueness result in more detail at the end.)
TheOðNÞ invariance of this metric is not obvious, except

for the OðpÞ ×OðqÞ subgroup. To find the transformation
law of the λ under the remaining transformations, note that
we can identify a point in OðNÞ=ðOðpÞ ×OðqÞÞ with the
set fðλv;−vÞ∈RN; ∀ v∈Rqg. This vector transforms in
the usual vector representation. In this parametrization, we
can perform an infinitesimal transformation in the off-
diagonal sector to identify the induced change in λ. This
gives δλ ¼ ρþ λρTλ, ρ∈Rp×q. This nonlinearly realized
OðNÞ transformation law defines a Killing vector of this
metric.
From the metric (22), it is straightforward to use the

usual rules of Riemannian geometry to compute a con-
nection and a Riemann curvature tensor. By direct compu-
tation, we find

Γ½ck�
½ai�½bj�ðλÞ ¼

1

2
ðδcaχbiðλÞδkj þ δcbχajðλÞδki Þ; ð23Þ

R½ck�½ai�½dl�½bj� ¼
1

L2
ðg½ai�½cj�g½bk�½dl� − g½ai�½dk�g½bj�½cl�

þ g½ai�½bk�g½cj�½dl� − g½ai�½cl�g½bj�½dk�Þ: ð24Þ

We can also compute the Ricci tensor and scalar —

R½ai�½bj� ¼ N−2
L2 g½ai�½bj� and R ¼ NðN−2Þ

L2 — indicating that the
Grassmannian has been endowed with an Einstein metric
with positive curvature. In the special case p ¼ 1 or q ¼ 1,

the conformal manifold is the sphere SN−1, and the Riemann
tensor takes the form Rabcd ¼ 1

L2 ðgacgbd − gadgbcÞ.
This direct computation is not always practical when

studying conformal manifolds, as the correlators are
usually known only in a small neighborhood near specific
points, for example near λ ¼ 0. It is instructive to compare
these direct results with the usual operatorial approach,
which involves computing integrated three and four point
functions of the marginal operators O½ai�.
Marginal operators have a special OPE structure [1,2],

with contact terms given by other moduli. Using the Wick
contraction (20), we can see here explicitly that

OAðxkÞOBð0Þ¼
gABðλÞ
jxkj2d−2

þΓC
ABδ

d−1ðxkÞOCð0Þþ… ð25Þ

where we have introduced the multi-index A ¼ ½ai�. The
contact terms induce a mixing of the operators which
correspond to the connection of the metric. This specific
form of the OPE fixes the three point function, which only
contains contact terms. This is necessary for a vanishing
beta function. Otherwise, the power-laws would yield log
divergences and a nontrivial scale dependence.
As a final exercise, we compute the integrated four-point

function of the marginal operators O½ai� and relate it to the
Riemann curvature. It is often challenging to perform the
integrals, and various techniques have been developed to
simplify and streamline the procedure [19,20]. Indeed,
[4,21] have already employed the method of [19] in
computing the curvature for line and surface defects.
Here however we are able to proceed directly. From the
usual rules of quantum field theory, the second derivative of
a two point function can be expressed as an integrated,
connected, four point function:

∂½ai�½bj�g½ck�½dl�ðλÞ

¼
Z

dd−1x1dd−1x2hO½ai�ðx1ÞO½bj�ðx2ÞO½ck�ðx0ÞO½dl�ð0Þiλ
ð26Þ

with x0 · x0 ¼ 1. At λ ¼ 0, we can neglect the connection
and the curvature can be expressed purely in terms of
second derivatives of the metric

R½ai�½bj�½ck�½dl� ¼
1

2
ð∂½ck�½ai�g½dl�½bj� − ∂½ck�½bj�g½dl�½ai�

− ∂½dl�½ai�g½ck�½bj� þ ∂½dl�½bj�g½ck�½ai�Þ: ð27Þ

We would like to verify this formula. The four point
function follows from Wick contractions. One should note
this correlator contains contact terms. These contact terms
are proportional to contractions hϕi∂⊥ϕai ∼ χia ∝ λ that
vanish at leading order. For this reason, we will ignore
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them. (One one can keep them to compute ∂
2g for

generic λ.)
Let us evaluate this second derivative:

∂½ai�½bj�g½ck�½dl�ðλÞ ¼ κ4
Z

dd−1x1dd−1x2
ðjx1jjx10jjx2jjx20jÞd−2

×

�
g½ai�½dk�g½bj�½cl�
jx10j2jx2j2

þ g½ai�½cl�g½bj�½dk�
jx1j2jx20j2

þ g½ai�½dj�g½bl�½ck�
jx12j2

þ g½ai�½bl�g½ck�½dj�
jx1j2jx20j2

þ g½ai�½bk�g½cj�½dl�
jx2j2jx10j2

þ g½ai�½cj�g½bk�½dl�
jx12j2

�
: ð28Þ

There are two types of terms: power laws involving only x1
and x2, which take a factorized form; and power laws
involving x1, x20 and x12 (or equivalently with x1 and x2
exchanged). We regularize these expressions by treating
them as distributions and replacing them with their formal
Fourier transform. We use the following two formulas:

2κ

rd−2
¼
Z

dd−1k
ð2πÞd−1

eik·r

k
;

2κ

rd
¼ −

1

d − 2

Z
dd−1k
ð2πÞd−1 e

ik·rk; ð29Þ

from which we are able to perform the position space
integrals. We find through this prescription that we can set
the first two terms of (28) to zero. The relevant integrals are
of the formZ

dd−1x1
1

jx1jd−2jx10jd
∝ δd−1ðx0Þ ¼ 0: ð30Þ

For the other terms, we use

Z
dd−1x1dd−1x2

jx1j2Δþ2jx12j2Δjx20j2Δþ2
¼ −

1

L2
: ð31Þ

The end result of these manipulations is that we fix from
the operatorial prescription

∂½ai�½bj�g½ck�½dl� ¼ −
1

L2
ðg½ai�½dj�g½bl�½ck� þ g½ai�½bl�g½ck�½dj�

þ g½ai�½bk�g½cj�½dl� þ g½ai�½cj�g½bk�½dl�Þ ð32Þ

at the point λ ¼ 0. With this explicit result, we can compute
the Riemann tensor from (27). We find back the result (24)
previously derived, evaluated at λ ¼ 0.

Spinor moduli. The starting point for the spinors is a system
of N free massless spinor fields ψ I , I ¼ 1;…; N, again in
the presence of a boundary at x⊥ ¼ 0. The existence of the
γ⊥ gamma matrix allows us to define a pair of projectors

P� ¼ 1
2
ð1� γ⊥Þ. The initial boundary conditions consist of

imposing Pþψa ¼ 0 on p of the spinors and P−ψ i ¼ 0 on q
of the spinors, where as before pþ q ¼ N. The global
UðNÞ symmetry group is then broken to UðpÞ ×UðqÞ. For
our conventions, see [22].
The marginal operators are again the boundary limit of

the normal component of the conserved currents,
Jμ ¼ ψ̄ Iγ

⊥ψJ. To discuss what happens to the boundary
limit of J⊥ having applied the above boundary conditions,
it is useful to introduce the projected boundary values of the
spinor

ρ�I ¼ P�ψ I: ð33Þ

Because of the presence of γ0 in the definition of ψ̄ , only
the combinations ρ̄�I γ

⊥ρ∓J survive in the boundary limit
of J⊥ ¼ ψ̄ Iγ

⊥ψJ.
The action that describes our system, including the

deformation by the marginal operators, is

S ¼ −
1

2

Z
x⊥>0

ddxðψ̄ I∂ψ I − ∂μψ̄ Iγ
μψ IÞ

þ 1

2

Z
x⊥¼0

dd−1xðρ̄þA†ρ− þ ρ̄−AρþÞ; ð34Þ

where

A ¼
�
idp 2λ

0 −idq

�
: ð35Þ

Like in the bosonic case, this choice for A imposes
boundary conditions on the field which take the form

λ†i;aρ
−
a ¼ þρ−i ; λa;iρ

þ
i ¼ −ρþa : ð36Þ

Again, one can add the redundant operator ρ̄þCρ− to the
action to modify A, where

C≡
 
− 1

1þλλ†
λλ† − 1

1þλ†λ
λ†λλ†

1
1þλλ†

λ 1
1þλ†λ

λ†λ

!
ð37Þ

and the Hermitian conjugate to modify A†. The resulting

Ã≡ Aþ C ¼
 
−idþ 2

1þλ†λ
2

1þλ†λ
λ†

2
1þλλ†

λ id − 2
1þλλ†

!
ð38Þ

is Hermitian and can be diagonalized by a UðNÞ trans-
formation, i.e., an element of the global symmetry group of
the bulk theory. Thus the deformation by λ can be undone
by a field redefinition, just like in the scalar case. The big
difference from the scalar case is that the λ are complex and
are coordinates on the complex Grassmannian manifold,
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the coset UðNÞ=ðUðpÞ ×UðqÞÞ. To keep the notation
parallel to the scalar case, we introduce χ ≡ Ã.
The bulk ψ I two-point function is fixed by boundary

conditions and the equation of motion to be

hψ IðxÞψ̄JðyÞi¼ κf

�
δIJ

γ ·ðx−yÞ
jx−yjd þχIJ

γ⊥γ ·ðx̃−yÞ
jx̃−yjd

�
; ð39Þ

where κf ≡ ðd − 2Þκ. Again, this result can be reproduced
independently using perturbation theory. The boundary
limits of this two-point function obey

hραI ðxÞρ̄αJð0Þi ¼ κfðδIJ þ αχIJÞ
γ · xP−α

jxjd ; ð40Þ

hραI ðxÞρ̄−αJ ð0Þi ¼ χIJ
2

Pαδ
d−1ðxÞ: ð41Þ

The next step is to compute the metric on the conformal
moduli space for general values of λ. The metric can be
computed from Wick’s theorem applied to the marginal
operators O½ai� ¼ ρ̄þa ρ−i and complex conjugate:

hO½ai�ð1ÞŌ½jb�ð0Þiλ ¼ g½ai�½jb�ðλÞ: ð42Þ

The metric is evidently for a complex manifold. We find

g½ai�½jb�ðλÞ ¼ L2

�
1

1þ λλ†

�
ab

�
1

1þ λ†λ

�
ij

ð43Þ

where L2 ¼ 2κ2fD and D is the dimension of the spinor
representation. The metric is the standard UðNÞ invariant
Fubini-Study type metric on the complex Grassmannian
UðNÞ=ðUðpÞ × UðqÞÞ. It is again unique [16–18]. Unlike
the real case, It can be derived from a Kähler potential:

g½ai�½jb� ¼
∂

∂λ½ai�

∂

∂λ†½jb�
K ð44Þ

where K ¼ L2 log detð1þ λλ†Þ.
The Ricci tensor follows from the standard formula

R½ai�½bj� ¼ −
∂

∂λ½ai�

∂

∂λ†½jb�
log det g ¼ N

L2
g½ai�½jb� ð45Þ

indicating the manifold is Einstein with positive curvature.
The calculation requires the Weinstein-Aronszajn identity,

that detðidþ λ†λÞ ¼ detðidþ λλ†Þ. The Ricci scalar finally
is R ¼ N2=L2.

Discussion. This work explained how the interplay between
continuous symmetry and boundary conditions gives rise to
fully computable examples of conformal manifolds. While
we have performed computations in two free theories, the
free scalar and spinor, we anticipate that this conformal
manifold produced by inserting tilt operators into the action
will be insensitive to the presence of interactions that
preserve the bulk global symmetry—OðNÞ in the scalar
case, UðNÞ in the spinor case. In each case the conformal
manifold was a Grassmannian, and in each case the
Grassmannian was endowed with essentially a unique
metric invariant under global symmetry. Thus the inter-
actions can do nothing to perturb the metric, except change
the scale L. Because of the bulk group action, all points on
the manifold should look the same. In other words, the
manifold is homogeneous. One has the following theorem
due to Wolf [23]: Let M ¼ G=K be a G-homogeneous
isotropy irreducible space. Then (up to homotheties) M
admits a unique G-invariant Riemannian metric. This
Riemannian metric is Einstein.
For our OðNÞ=ðOðpÞ ×OðqÞÞ and UðNÞ=ðUðpÞ ×

UðqÞÞ cosets, the one exception to the isotropy condition
occurs for Oð4Þ=ðOð2Þ ×Oð2ÞÞ becauseOð4Þ breaks apart
into a product of Oð3Þ groups. For the corresponding
metric on a product of two-spheres, the radii of the spheres
can be adjusted independently. It would be interesting to
see if such a situation can be realized through an interacting
Oð4Þ model of scalar fields. In all the other cases that we
studied, the metric is unique up to rescaling (homothety).
A richer class of conformal manifolds will emerge from

field theories that support different classes of boundary
conditions [24]. One candidate are higher derivative the-
ories [25]. A theory with an action

R
ddxϕ□2ϕ for instance

supports four different types of boundary conditions,
allowing a breaking pattern OðNÞ=ðOðpÞ ×OðqÞ×
OðrÞ ×OðN − p − q − rÞÞ. We leave investigations of
higher derivative and supersymmetric bCFTs to future
work.
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