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A novel first-order action principle has been proposed as the possible foundation for a more fundamental
theory of general relativity and the Standard Model. It is shown in this article that the proposal consistently
incorporates gravity and matter fields, and guides one to a new and robust path toward unification of
fundamental interactions.
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Introduction. Lorentz symmetry is a cornerstone of modern
physics. The Standard Model is formulated as a quantum
field theory based on the global Lorentz symmetry of special
relativity, the fields being classified according to the repre-
sentations of the (complexified) Lorentz group [1]. While
gravity has been understood to arise from the “gauging” of
the Poincaré group of the inhomogeneous Lorentz trans-
formations in the Einstein-Cartan-Sciama-Kibble theory1

and its generalizations [3,4], this has not yet lead to a
reconciliation of general relativity and quantum mechanics.
A new take on the gauge theory of spacetime and gravity

is based on precisely the homogeneous (complexified)
Lorentz group2 [10]. In general, gravitational models
with polynomial actions can accommodate the zero ground
state of the metric [14–17], which we refer to as the
“pregeometric” property [18–21]. The natural idea that
spacetime arises via a spontaneous symmetry breaking that
selects a preferred direction of time [22–24] is often
implemented by additional fields on top of the geometry,
but in-built to the Lorentz gauge theory wherein the
symmetry breaking is necessary to emerge from the pregeo-
metric state. The subtle elaboration of the mechanism entails
an apparently drastically different description of gravity and
spacetime, where even the Minkowski space has dynamical
curvature and torsion [25]. A recent Hamiltonian analysis
established the consistency of the Lorentz gauge theory [13],
and the possibility of a new cosmological paradigm was
speculated [26].
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1This procedure consists of a combined gauging of the global
“internal”Lorentz symmetry of fermionic actions and promotion of
the symmetry of Standard Model actions under diffeomorphisms
generated by the Killing vectors of Minkowski space (whose
commutators satisfy the Lie algebra of the Poincaré group) to a full
diffeomorphism symmetry. It could be argued that the latter part of
the procedure is superfluous both mathematically (as manifest in
the by-construction diffeomorphism-invariant language of differ-
ential forms) and physically (the introduction of the corresponding
gauge force is not supported by the interpretation of gravity
according to the equivalence principle) [2].

2Possible formulations of a Lorentz gauge theory of gravity had
been considered earlier [5–9], but a key point of the new theory [10]
is the realization that chiral asymmetry [11,12] is required for the
existence of a general-relativistic limit to the solutions [13].
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In view of the SO(10) grand unification of the Standard
Model gauge interactions [27], the new SOCð1; 3Þ≅ SOCð4Þ
gravitational gauge theory would naturally seem to fit into a
yet grander SO(N) unification along the lines of the grand
unified theory including gravity proposals [28–33].
However, the coupling of the Standard Model to the
Lorentz gauge theory calls for a pregeometrization of also
the internal gauge field sector [34]. Whereas the standard
spinor actions are polynomial in the fields, first-order in the
derivatives, and possess the pregeometric property, a more
fundamental action principlewas required for theYang-Mills
gauge bosons. The suggested theory [34] can differ already
classically from previous first-order formulations [35–38].
The characteristic feature of the new first-order gravity is

the appearance of an effective dark matter source term.
Interestingly, it was recently pointed out by Kaplan et al.
[39,40], that since unitary evolution in quantum mechanics
is described by the Schrödinger equation which is first-
order in time derivative, the classical limit of gauge
theories, including gravity, could be generalized by the
addition of shadow charges, whose presence reflects the
fact that quantum fluctuations need not satisfy the con-
straints imposed by the standard, second-order formulation
of gauge interactions. This motivates us to consider also a
modified version of the first-order Yang Mills theory,
wherein shadow charges could arise as integration con-
stants in the solutions to the equations of motion, analo-
gously to the theory of gravity [34,41].
We shall focus on the conserved charges in the framework

of Lorentz gauge theory from the perspective of Noether’s
theorems, taking advantage of some recent developments in
covariant phase space formalism [42–49]. This article reports
the results of our derivations. In the following sections, we
present the action, cover the currents in the gravitational
sector, and cover the rest. All the charges are unambiguous
and have a clear physical interpretation.We conclude that the
consistency of the first-action formulation provides a valu-
able guiding principle in the quest for the final theory.

The action principle. We consider an action I ¼ R
L with

the four-form

L ¼ LG þ LM; ð1Þ

where LG is the gravitational Lagrangian four-form poly-
nomial in the gravitational fields which are taken to be a
connection for the (complexified) Lorentz group ωab and a
scalar field ϕa valued in the group’s fundamental repre-
sentation (which we term the khronon due to its potential to
introduce a standard of time into gravitation). We choose

LG ¼ Bab ∧ þRab ð2Þ

where we have introduced the shorthand for the (proto)
area-element Bab,

Bab ¼ i
2
ðDϕa ∧ DϕbÞ; ð3Þ

and Rab ¼ dωab þωa
c ∧ ωcb is the curvature two-form for

ωab. The �X ¼ ð1 ∓ i ⋆ÞX are the projectors to the self-
dual (left-handed) or anti-self-dual (right-handed) sectors,
⋆ �X ¼ �i�X. It was demonstrated in [10] that (2) realizes
an extension to general relativity, when the metric tensor g
is identified as g ¼ Dϕa ⊗ Dϕa.
In (1) we take into account minimally coupled matter fields

ψ which may be some p-forms. LM ¼ LMðDϕa;ψ ; þDψÞ is
the Lagrangian four-form for ψ which includes the gravita-
tional fields, but we have excluded nonminimal couplings of
−ω toψ .We parametrize thematerial energy current ta and the
spin current Oab, respectively, as

ta ¼ −
∂LM

∂Dϕa ; Oab ¼ −repabψ ∧ ∂LM

∂Dψ
; ð4Þ

where repab represents the Lorentz generator for ψ. Detailed
examples are considered in the Sources section.
The variation of the total action,

δL ¼ δϕaEa þ δωab ∧ Eab þ δψ ∧ Eψ þ dΘ; ð5Þ

then yields the equations of motion (EoM) for the khronon,
the gauge potential, and the matter fields, respectively,

Ea ¼ −DðiDþ□□ϕa − taÞ; ð6aÞ
Eab ¼ þDBab − iϕ½aDþ□□ϕb� þ ϕ½atb� − Oab; ð6bÞ

Eψ ¼ ∂LM

∂ψ
þ ð−1Þpþ1D

∂LM

∂Dψ
; ð6cÞ

and the symplectic potential

Θ ¼ δϕaðiDþ□□ϕa − taÞ þ þδωab ∧ Bab þ δψ ∧ ∂LM

∂Dψ
;

ð7Þ
where □□ ¼ DD is the curvature two-form operator and
þ□□ ¼ þDþD. This shows that the action is stationary on-
shell given Dirichlet boundary conditions for the variations
of the gravitational and matter fields [43]. There are no
boundary conditions3 for the anti-self-dual potential −δωab.
The EoM Ea and Eab imply that on-shell ≈

iDþ□□ϕa ≈ ta þMa; ð8aÞ
þDBab ≈ ϕ½aMb� þ Oab; ð8bÞ

where Ma is a three-form that satisfies DMa ¼ 0.

3This depends crucially on the precise form of the action
functional, and would not hold e.g. for the choice L ¼
ði=2Þ□□ϕa ∧ þ□□ϕa þ LM which is equivalent to (1) up to a
total derivative.
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Symmetries. We consider transformations δ that act on the
dynamical fields. The transformation is a symmetry of L
if δL ¼ dl, and exact if l ¼ 0. Besides the Lorentz and
diffeomorphism symmetry, the action (1) has a peculiar
shift symmetry. Below we report the currents J correspond-
ing to the three classes of symmetry transformations. Each
current is manifestly conserved on-shell, dJ ≈ 0. For a
gauge symmetry, the current is on-shell an exact form,
J ≈ dj, where j is called the Noether-Wald charge [42,43].
The charges are given as the integrated

H
j of the Noether-

Wald charge over a closed surface.

Lorentz transformation: Consider a Lorentz transformation
of the fields with infinitesimal parameters λab,

δλϕ
a ¼ λabϕ

b; ð9aÞ

δλωa
b ¼ −Dλab; ð9bÞ

δλψ ¼ λabrepabψ : ð9cÞ

The Lorentz symmetry is exact δλL ¼ 0, and we take this
to be the case also independently for the matter four-form
δλLM ¼ 0. Then we obtain Noether identities independ-
ently for the gravitational and matter sector. These are
derived from (5) by considering parameters λab which
vanish at the boundary such that we can neglect all the total
derivatives in the variations. We obtain the two identities,

þ□□Bab ¼ iDϕ½a ∧ Dþ□□ϕb�; ð10aÞ

DOab ¼ Dϕ½a ∧ tb� þ repabψ ∧ Eψ : ð10bÞ

The Noether current,

Jλ ¼ λabEab − dðþλabBabÞ; ð11Þ

is an exact form on-shell Jλ ≈ djλ, where the Noether
charge two-form is now jλ ¼ þλabBab. Only the self-dual
Lorentz transformations are associated with nontrivial
charges.

Shift symmetry: The action
R
L enjoys a shift symmetry,

the invariance under constant translations of the khronon,4

δχϕ
a ¼ χa where Dχa ¼ 0; ð12aÞ

δχωa
b ¼ 0; δχψ ¼ 0: ð12bÞ

The Noether identity is trivial for this transformation.
The charge that we obtain using (7) and then (8a),

Jχ ¼ χaðiDþ□□ϕa − taÞ ≈ χaMa; ð13Þ

describes the energy-momentum carried by the effective
matter three-formMa. This can be contrasted with Poincaré
gauge theory, where the local translation is called a trivial
gauge symmetry since it has zero charge. (One has to break
covariance in order to extract a nonzero charge. We will
return to this point later.)

Diffeomorphism: In the Lorentz gauge theory, spacetime
geometry (coframe and curvature) is generated by Lie-
dragging the fundamental fields (khronon and gauge
potential) covariantly5 along a vector ξ:

δξϕ
a ¼ ξ ⌟Dϕa; ð14aÞ

δξωa
b ¼ ξ ⌟Ra

b; ð14bÞ

δξψ ¼ fξ ⌟ ;Dgψ ; ð14cÞ

where ⌟ is the interior product on differential forms, and
here and in what follows, theD is always the total covariant
derivative, thus involving also internal gauge fields in the
case that the fields ψ have internal gauge charge. This
gauge symmetry is not exact in the sense of L being
invariant under the transformation, but δξL ¼ dðξ ⌟LÞ. We
obtain the Noether identity for gravity,

iðξ ⌟DϕaÞ□□þ□□ϕa ¼ ξ ⌟Rab ∧ ðþDBab − iϕ½aDþ□□ϕb�Þ;

and for the invariance of
R
LM we get

ðξ ⌟DϕaÞDta þ ξ ⌟Rab ∧ ðϕ½atb� − OabÞ ¼ −δξψ ∧ Eψ :

In a nondegenerate spacetime wherein ea ≡ Dϕa has an
inverse əa, these can be rewritten as

i□□þ□□ϕa ¼ əa ⌟Rbc ∧ þDBab þ iTa ∧Dþ□□ϕa; ð15aÞ

−δəaψ ∧Eψ ¼Dta− əa ⌟Tb ∧ tb − əa ⌟Rbc ∧Obc; ð15bÞ

where Ta ¼ Dea ¼ □□ϕa. The Noether current vanishes
identically Jξ ¼ ξ ·Θ − ξ ⌟L ¼ 0, and thus implies that a
change of coordinates is a trivial gauge transformation. The
matter sources have to be formulated consistently such that

ðξ ⌟DϕaÞta ¼ δξψ ∧ ∂LM

∂Dψ
− ξ ⌟LM; ð16Þ

which means that the Hilbert (i.e. the metrical) and the
Noether (i.e. the canonical) energy-momenta are equivalent.

4Perchance this could be understood due to ϕa representing the
symmetry of not the group but the torsor; see https://math.ucr
.edu/home/baez/torsors.html.

5The transformation can be considered as the minimal cou-
pling of the frame-dependent definition discussed below.
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On frame-dependent charges: One can combine trans-
formations from the above three classes of sym-
metry transformations. An example is the coordinate
diffeomorphism,

Lξϕ
a ¼ ξ ⌟dϕa; ð17aÞ

Lξωab ¼ Dðξ ⌟ωabÞ þ ξ ⌟Rab; ð17bÞ

Lξψ ¼ fξ ⌟ ;dgψ ; ð17cÞ

which is the combination of a Lorentz transformation and a
proper diffeomorphism, Lξ ¼ δξ þ δλ¼ξ ⌟ω. The possible
physical relevance of this transformation is subject to
case-dependent subtleties. The way that the fields are
dragged along a vector ξ has no Lorentz-covariant meaning.
The corresponding charge has no Lorentz-invariant inter-
pretation. With some manipulations, using e.g. (4) and
assuming (16), one can verify that the Noether current
from (17) is given, as expected, precisely by (11) with the
Lorentz transformation parameter λab ¼ ξ ⌟ωab. So, the
charge is frame dependent because the parameter is
noncovariant.
Nevertheless, it is very well known that the currents

generated by Lξ correctly describe the physical energy and
momenta in many relevant special cases. This is so because
energy and momentum can only be defined with respect to
a reference frame, and thus it is expected that these charges
are frame dependent.6 The basic example is the standard
result in Minkowski space that the symmetry of matter
actions in the fixed background under diffeomorphisms
corresponding to the Killing vectors of Minkowski space
can—with “improvements”—lead to the conservation of
the stress-energy-momentum tensor and the six conserva-
tions associated with the boost and rotation Killing vectors.
This can be generalized to a maximally symmetric space,
available perhaps globally, locally, asymptotically, or say,
as an extra-dimensional embedding. These considerations
apply as such in the geometric phase of Lorentz gauge
theory.

Sources. Next we consider fermions, gauge bosons, and
scalars. A unimodular version of the theory is also briefly
checked.

Fermion matter: Dirac’s theory of the electron and Weyl’s
theory of the neutrino pass the pregeometric standards and
need no modifications. Let ψ in here denote the Dirac

spinor. The γa in the spin-1=2 repab ¼ −γ½aγb�=2 are
matrices which obey γðaγbÞ ¼ −ηab. The Dirac spinor ψ

has the conjugate ψ̄ ¼ ψ†γ0. In this representation,
⋆¼ iγ5 ¼ −γ0γ1γ2γ3, and we can project the two
Weyl spinors �ψ ¼ ð1 ∓ γ5Þψ=2. Define also ⋆ Dϕa ¼
ϵabcdDϕb ∧ Dϕc ∧ Dϕd=3! and ⋆ 1 ¼ ϵabcdDϕa ∧
Dϕb ∧ Dϕc ∧ Dϕd=4!. Then, adopting the prescription
of Ref. [51],

LM ¼ i
2
ð⋆ DϕaÞ ∧ ðψ̄γaDþψ − Dψ̄γa−ψÞ − ψ̄ψ ⋆ m:

ð18Þ

From the variation

δLM ¼ −δðDϕaÞ ∧ ta þ δωab ∧ δOab

þ δψ̄Eψ̄ þ Eψδψ þ dΘ; ð19Þ

we obtain the currents

ta ¼ ð⋆ BabÞ ∧ ðψ̄γbDþψ − Dψ̄γb−ψÞ þmψ̄ψ ⋆ Dϕa;

ð20aÞ

Oab ¼ i
8
ð⋆ DϕcÞψ̄ðγcγ½aγb�þψ þ γ½aγb�γc−ψÞ

¼ i
2
ψ̄þð⋆ Dϕ½aγb�Þγ5ψ ; ð20bÞ

the EoM,

Eψ̄ ¼ i
2
γað⋆ DϕaÞ ∧ Dψ − γað⋆ BabÞ ∧ Tb−ψ − ψ ⋆ m;

ð21aÞ

Eψ ¼ −
i
2
ð⋆ DϕaÞ ∧ Dψ̄γa þ ð⋆ BabÞ ∧ Tbþψ̄γa− ⋆ mψ̄ ;

ð21bÞ

and the symplectic potential,

Θ ¼ i
2
ð⋆ DϕaÞðδψ̄γa−ψ − ψ̄γaδ

þψÞ: ð22Þ

In a real frame, Eψ̄ ¼ Ēψ . The identity (16) is consistent
with the energy current (20a).

Yang-Mills fields: The first-order pregeometric Yang-Mills
theory [34] is formulated in terms of the interface (proto)
area element

B̃ab ¼ ha ∧ Dϕb; ð23Þ

with the “one foot outside” and the other ha, valued in
the adjoint representation of the Yang-Mills gauge group,

6According to a recent proposal, the frame dependence is the
consequence of the equivalence principle, and the physical
criterion that uniquely fixes the reference frame is the vanishing
of its local energy-momentum current [47]. However, it is outside
this article’s scope to implement this so-called GkR principle [50]
in the Lorentz gauge theory.
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a “vierbein” spanning an internal hyperspace.7 We recall
that D is the total covariant derivative, thus involving also
the Yang-Mills gauge field A whose field strength is
denoted by F. Now the field excitation �F (where � is
the Hodge dual) is not postulated a priori, but the gist of
this new approach to gauge interactions is that the field
excitation �B̃ ¼ ηab � B̃ab ≈ �F emerges from the varia-
tional principle. An action density which achieves this is

LM ¼ hB̃ab ∧ ð⋆ B̃ab − ηabFÞi − hA ∧ J̃i; ð24Þ

where A is the Yang-Mills gauge field, J̃ is its material
source, and h·i is the trace over the Lie algebra.
Standard theory. The variation

δLM ¼ −δðDϕaÞ ∧ ta þ δωab ∧ Oab

þhδha ∧ Ẽai þ hδA ∧ Ẽi þ dΘ; ð25Þ

yields us the EoM,

Ẽa ¼ −2 ⋆ B̃ab ∧ Dϕb þ F ∧ Dϕa; ð26aÞ

Ẽ ¼ DB̃ − J̃; ð26bÞ

and the symplectic potential,

Θ ¼ −hδA ∧ B̃i: ð27Þ

The gravitational source currents are

ta ¼ 2h⋆ B̃ab ∧ hbi − hF ∧ hai; ð28aÞ

Oab ¼ 0: ð28bÞ

It is not difficult to see that the internal symmetry trans-
formation,

δgha ¼ ½g; ha�; δgA ¼ −Dg; ð29Þ

results in the expected current Jg ≈ J̃. It has to be
concluded that this prescription is the mere reformulation
of the standard Yang-Mills theory. In particular, the
symplectic current (27) assumes its expected form, and
the energy current (28a) fails the consistency require-
ment (16).
A slightly more economic reformulation considers

instead the six degrees of freedom (d.o.f.) of the excitation
carried in the fundamental variational d.o.f. αab valued in
the adjoints of both the Lorentz and the Yang-Mills gauge
groups, such that ha ¼ αabeb. However, this would not
change the conclusions.

Modified theory. A more radical alternative is to encode
the variational d.o.f. into the isokhronon αa living in the
fundamental representation of the Lorentz group and giving
rise to the internal hyperspacetime ha ¼ Dαa in an analogy
to the khronon ϕa in the external spacetime. Then an
analogy of dark matter may also arise in the form of
nontrivial vacua. This describes the situation in quantum
mechanics wherein the field force lines need not be strictly
attached to the material source points. The case �B̃ ≈ �F is
just one of the solutions, and therefore the solution space
can be constrained by phenomenological data.8

The variation (25) should then be reconsidered,

δLM ¼ −δðDϕaÞ ∧ ta þ δωab ∧ Oab

þhδαaDẼai þ hδA ∧ Ẽi þ dΘ; ð30Þ
since now the three-form Ẽa in (26a) is closed but may not
vanish on-shell. Nontrivial modifications now enter into the
expression for the symplectic potential,

Θ ¼ hδαað2 ⋆ B̃ab − ηabFÞi ∧ Dϕb − hδA ∧ B̃i; ð31Þ

as well as the gravitational source currents,

ta ¼ 2h⋆ B̃ab ∧ Dαbi − hF ∧ Dαai; ð32aÞ

Oab ¼ hα½aDϕb� ∧ Fi − 2hα½a ⋆ B̃b�ci ∧ Dϕc: ð32bÞ

Remarkably, the energy current (32a) identically satisfies (16).
So, the results for the three classes of gravitational charges in
the Symmetries section remain intact in the presence of the
modified Yang-Mills interactions.
It can be verified that the internal symmetry trans-

formation δgα
a ¼ ½g; αa�, δgA ¼ −Dg is associated with

the current

Jg ¼ −hgẼi þ dhgB̃i þ h½g; αa�ð2 ⋆ B̃ab − ηabFÞi
∧ Dϕb ≈ J̃; ð33Þ

where in the last step we used the EoM (26) (see Sec. III C
of [34]). The possible contribution to the divergence of B̃
due to a vacuum polarization or magnetization [see Eq. (50)
of [34] ] is cancelled by the second term in (33), and we
recover the canonical gauge current. A novel property of
isokhronon theory is the shift symmetry,

δχ̃α
a ¼ χ̃a; where Dχ̃a ¼ 0: ð34Þ

The conserved current,

Jχ̃ ¼ χ̃að2 ⋆ B̃ab − ηabFÞ ∧ Dϕb ≈ χ̃aXa; ð35Þ

7On frames constructed from material fields in condensed
matter physics, see Ref. [52].

8In cosmology [26] it remains to be seen whetherMa could be
related to dark matter and the Xa in the result (35) to magnetic
fields.
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is the integration form Xa responsible for the possible
vacuum excitation [34]. It is the analogy of the integration
form Ma in the gravity sector.9

An important caveat is that one is now not free to choose
both integration forms independently for arbitrary solu-
tions. Therefore this theory is probably not a viable
modification of the Standard Model gauge interactions.
Let us briefly speculate on a possible refinement of the
unified theory, first restricting to the case of an Abelian
gauge field A. Now, if we consider, instead of ϕa, a field in
ðð1

2
⊗ 0̄Þ− ⊗ ð1

2
⊗ 1̄

2
ÞþÞ of the complex Lorentz group, and

instead of the αa, a field in ðð0 ⊗ 1̄
2
Þ− ⊗ ð1

2
⊗ 1̄

2
ÞþÞ, then

both of these fields are coupled to an independent SU(2)
connection. Consequently, there always exist solutions with
Xa ¼ 0, apparently restoring the viable limit to standard
gauge theory. However, this prescription is not without
other repercussions as then the B̃ is not a scalar but carries
the SUð2Þ × SUð2Þ charges from the anti-self-dual sector
of the Lorentz group. Optimistically, this hints to the
structure of the gravielectroweak theory and to the geo-
metrization of the Higgs mechanism operated by the
isokhronon in the hyperspacetime.

Scalar fields: Putting the above speculation aside, since the
Standard Model features a Higgs scalar field, for com-
pleteness we take into account a scalar field ζ. In the first-
order formulation, it is accompanied by a Lorentz vector za,
and a possible action is

LM ¼ za ⋆ Dϕa ∧ Dζ þ
�
1

4
zaza þUðζÞ

�
⋆ 1; ð36Þ

leaving open the possibility of a nontrivial potential UðζÞ.
We obtain the EoM,

Eζ ¼ Dðza ⋆ DϕaÞ þ U0ðζÞ ⋆ 1; ð37aÞ

Ea ¼⋆ Dϕa ∧ Dζ þ 1

2
za ⋆ 1; ð37bÞ

the symplectic contribution,

Θ ¼ −za ⋆ Dϕaδζ; ð38Þ
and the source current,

ta ¼ iϵabcdzbBcd ∧ Dζ −
�
1

4
zbzb þ UðζÞ

�
⋆ Dϕa; ð39aÞ

while for scalar fields Oab ¼ 0.

Cosmological constant: Perhaps the simplest energy source
is a cosmological constant. The contribution to the matter
action is given by a Lagrangian with two new fields, a
scalar Λ and a three-form κ,

LM ¼ 1

2
Λðdκ− ⋆ 1Þ: ð40Þ

The source contributions (4) is

ta ¼ −
1

2
Λ ⋆ Dϕa; Oab ¼ 0: ð41Þ

The EoM for the twi fields dictate that dκ ≈⋆ 1 and
dΛ ≈ 0. Thus LM ≈ 0. In the derivation of the diffeo-
morphism Noether current, we have to take into account
that now (16) does not hold. We obtain Jξ ¼ Λ � ξ=2, so it
would seem that the Λ does contribute. The nontrivial
charge reflects the effective breaking of the longitudinal
diffeomorphisms.
The three-form gauge symmetry κ → κþ k, where k is

an arbitrary two-form, has a nontrivial charge that is given
as the integral of jκ ¼ Λk=2 over a 2-surface.

Conclusion. Conserved charges lie at the heart of
gauge theories. They characterize the observables of
the theory and their algebra governs the structure of the
theory. Charges are of paramount importance in holo-
graphy and play a central role in (most approaches to)
quantum gravity. In fact, the putative quantum theory
might be entirely deduced from the charge algebra,
according to the corner proposal and related current
developments [44,45].
In this article we presented the physical charges in the

new Lorentz gauge theory of spacetime and gravitation.
The charges associated with the Lorentz symmetry and
diffeomorphism symmetry are the direct extrapolation
(ea → Dϕa) of the results in Poincaré gauge theory. A
novel feature is the “dark shadow matter” current Ma
associated with the shift symmetry of the action (1).
The theory was coupled to the pregeometrized

Standard Model of particle physics, and it was shown
that its matter fields generate consistently both the
energy-momenta and the angular momenta source cur-
rents. However, the most straightforward implementation
of the Standard Model gauge fields inherits the issue in
their usual, second-order geometric formulation, which
does not consistently describe the gravitational sources by
the canonical Noether currents. It has often puzzled
theoreticians that the canonical energy-momentum cur-
rents have the wrong expression, unless modified by
some of the proposed “improvements” [1,47,54–58]. We
considered a possible modification of the pregeometric
first-order theory, which would provide a solution to the
issue, and features the newly suggested shadow charges,

9Indeed, we recover the gravity action with a cosmological
constant when we set αa;bc ¼ ϵabcdϕd and identify A with þω. In
this sense, the actions for Yang-Mills fields and gravitation have a
similar character. A perturbative hint of this similarity is already
well known from the context of amplitudes, as the so called
double copy structure [53], manifest in (3) vs (23).
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associated with the shift symmetry of the first-order fields
in the internal sector.
The modified theory is not yet a phenomenologically

viable replacement of the Standard Model interactions
(though it might describe hypothetical new interactions
e.g. in cosmology), but it calls for the elaboration toward a
more final theory. We conclude that the first-order action
principle provides a new robust framework to negotiate the
unification of internal and spacetime gauge interactions and
the reconciliation of gravity and quantum mechanics.
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