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Strong evidence for the Helling-Downs correlation curves have been reported by multiple pulsar timing
array (PTA) collaborations in the middle of 2023. In this work, we investigate the graviton mass bounds by
analyzing the observational data of the overlap reduction functions from the NANOGrav 15-year data
release and CPTA first data release. The results from our data analysis display the state-of-the-art upper
limits on the graviton mass at 90% confidence level, namely, mg ≲ 8.6 × 10−24 eV from NANOGrav and

mg ≲ 3.8 × 10−23 eV from CPTA. We also study the cosmic-variance limit on the graviton mass bounds,

i.e., σCVmg
¼ 4.8 × 10−24 eV × f=ð10 yearÞ−1, with f being a typical frequency band of PTA observations.

This is equivalent to the cosmic-variance limit on the speed of gravitational waves, i.e., σCVvg ¼ 0.07c, with c

being the speed of light. Moreover, we discuss potential implications of these results for scenarios of
ultralight tensor dark matter.
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Introduction. In Einstein’s theory of general relativity, the
Hellings-Downs (HD) correlation curves [1] have been
shown to characterize the overlap reduction functions
(ORFs) due to the existence of a stochastic gravitational-
wave background (SGWB) of nano-Hertz band that is
detectable for ongoing and future programs of pulsar timing
array (PTA). The specific forms of them are solely
determined by a null-mass characteristic of gravitational
waves. Recently, both the North American Nanohertz
Observatory for Gravitational Waves (NANOGrav) [2]
and Chinese PTA (CPTA) [3] Collaborations reported
strong evidence for a stochastic signal that is spatially
correlated among multiple pulsars. In particular, the HD
correlation curves were claimed to deserve statistical
significance of ∼3σ − 4σ by NANOGrav and of 4.6σ by
CPTA. Meanwhile, the European PTA (EPTA) [4] and
Parkes PTA (PPTA) [5] Collaborations further claimed that
their observational results are also compatible with the HD
correlation curves.
However, for the massive gravity, the spatial correlations

are expected to be different from the standard HD corre-
lation curves. Correspondingly, their theoretical expres-
sions depend on the speed of gravitational waves and hence
on the graviton mass, but would recover the results of HD
correlation curves in the massless limit [6–9]. The theory of
massive gravity was first proposed by Fierz and Pauli in
1939 [10]. Since then, it and its extensions have been

comprehensively studied in subsequent decades and multi-
ple upper bounds on the graviton mass have been placed by
a large quantity of laboratory and astronomy observations
(e.g., see reviews in Ref. [11] and references therein).
Meanwhile, these theories of massive gravity have been
used for interpreting cosmological phenomena, such as an
accelerating expansion rate of the late universe without the
need for dark energy [12,13], the observed gravitational
effects without the need for additional dark matter [13], and
so on. Moreover, constraining the graviton mass with
observations from PTA could be helpful to understand
the nature of gravity, e.g., its intrinsic symmetry, quantiza-
tion, etc [14].
During the era of gravitational-wave astronomy, the

speed of gravitational waves vg has been shown by the
Advanced LIGO, Virgo and KAGRA (LVK) Collaborations
to be compatible with the light speed with a precision
jvg − 1j ≲ 10−15, indicating upper limits on the graviton
mass, namely, mg ≲ 10−23 eV [15,16]. Similar bounds on
the graviton mass have also been claimed by other research
groups [17,18], who focused on analysis of the NANOGrav
12.5-year PTA data [19]. Moreover, pulsar timing of binary
pulsars PSR B1913þ 16 and PSR B1534þ 12 has set an
upper limit ofmg < 7.6 × 10−20 eV at 90% confidence level
[20]. Forecasting works related to planned space-borne
gravitational-wave detectors can be found in Ref. [21].
In this work, we will study the state-of-the-art upper

limits on the graviton mass through analysis of the 2023
data releases of NANOGrav and CPTA programs [2,3].*Corresponding author: zhaozc@cau.edu.cn
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Though demonstrating strong evidence for the HD corre-
lation curves, these observations have not vetoed other
alternative correlations. As shown in Ref. [7], the graviton
mass would flatten the spatial correlation curves, since a
more-massive graviton has a lower speed. An earlier
forecasting work can be found in Ref. [22]. Therefore,
we will take into account the specific ORFs for massive
gravitons during our practical analysis of the recent PTA
datasets from NANOGrav [2] and CPTA [3]. The remain-
ing context of the paper is as follows. In Sec. II, we show
the theoretical expressions of ORFs for massive gravitons,
with the HD correlation curves being their massless limit.
In Sec. III, we show a likelihood method for our data
analysis and the resulting bounds on the graviton mass. In
Sec. V, we display the concluding remarks and discussion.

Spatial correlation curves for massive gravitons. For
simplicity, we consider the helicity-2 modes without loss
of generality [23]. In principle, we can study the massive
gravity via analyzing its Lagrangian. However, when we
focus solely on the propagation of gravitational waves, an
equivalent but simple approach seems to concern the
dispersion relation of gravitons, i.e.,

ω2 ¼ k2 þm2
g; ð1Þ

where mg denotes the graviton mass, and ω and k stand for
the angular frequency and wave number, respectively. The
above dispersion relation leads to a definition of the speed
of gravitational waves, namely vg ¼ dω=dk [16]. For
subluminal gravitons, we can establish a relation between
the graviton mass and the speed of gravitational waves,
namely,

mg ≃ 1.31 × 10−22 eV ×
f

year−1
×

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2g

q
; ð2Þ

where f ¼ ω=ð2πÞ is the frequency of gravitational waves,
and the light speed is defined as unity, i.e., c ¼ 1. For a
typical frequency band of gravitational waves, a lower
bound on the speed of gravitational waves can be recast into
an upper bound on the graviton mass.
Upon the influence of a SGWB, the time of arrivals of

radio pulses from two pulsars would be spatially correlated
[24–26], with the angular correlation being defined as

γabðvg; ζabÞ ¼
X
l

2lþ 1

4π
ClPlðcos ζabÞ; ð3Þ

where the subscript ab stands for the cross correlation
between these two pulsars, as labeled by a and b, with their
angular separation ζab, and the angular power spectrum Cl
is defined as

Cl ¼ 1ffiffiffi
π

p Jlðvg; fDaÞJ�lðvg; fDbÞ; ð4Þ

where Dc denotes a distance to the c-th pulsar. To simplify
the definition, we have introduced a function of the form

Jlðvg; yÞ ¼
ffiffiffi
2

p
πil

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþ 2Þ!
ðl − 2Þ!

s Z
2πyvg

0

dx
vg

eix=vg
jlðxÞ
x2

; ð5Þ

where jlðxÞ denotes the spherical Bessel function with lth
multipole. Following Refs. [7,27], we recast the angular
correlation γabðvg; ζabÞ into the ORFs of massive gravitons,
i.e., Γabðvg; ζabÞ, by normalizing the former such that
Γabðvg ¼ 1; ζab ¼ 0þÞ ¼ 0.5, where the subscript ab

stands for the correlation of ath and bth pulsars. It is
worthy noting that the HD correlation curves would be
recovered by the above correlations in the massless limit.
We show the difference between the ORFs of massive

gravitons (orange dashed curves) and those of massless
gravitons (black dotted curves) in Figs. 1 and 2. We depict
these ORFs of massive gravitons by using the best-fit
results in the next section. The orange shaded regions stand
for the 1σ uncertainties due to the cosmic variance, i.e.,
ΔCl=Cl ¼ ½2=ð2lþ 1Þ�1=2. For comparison, we repro-
duce the observed ORFs by NANOGrav [2] (blue shaded
violins in Fig. 1) and CPTA [3] (blue data points with error
bars in Fig. 2). It seems that the massive gravitons fit better
the observed spatial correlation curves than the massless
gravitons. Our data analysis in the subsequent section
would be proved to support such a suspicion.1

Results from data analysis. In the NANOGrav 15-year data
release, there are 67 individual pulsars with timing base-
lines longer than three years monitored, implying a total of
2,211 distinct pairs, with each pair having a deterministic
angular separation. Based on the previous 12.5-year data

FIG. 1. Comparison between the ORFs of massive gravitons
(orange dashed curve denotes mg ¼ 7.7 × 10−24 eV−1) and those
of massless gravitons. The orange shaded region stands for 1σ
uncertainties due to the cosmic variance. The NANOGrav 15-year
data points are also shown as shaded violins for comparison.

1Besides our present paper, Ref. [28] supports the same results.
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release, the authors of Ref. [2] have constructed a mini-
mally modeled Bayesian reconstruction of the inter-pulsar
correlation pattern via employing a spline interpolation
over seven spline-knot positions, i.e., Fig. 1(d) of the paper.
In the CPTA first data release [3], there are 57 individual
millisecond pulsars monitored. The 4.6σ statistical signifi-
cance of the HD correlations between those pulsars has
been reported at around 14 nHz, i.e., Fig. 4 of the data-
release paper.
Analyzing the above NANOGrav and CPTA observa-

tional data of the spatial correlations, we can infer the speed
of gravitational waves, or equivalently, the graviton mass,
by using the log-likelihood as follows

−2 lnLðvgjDÞ ¼
X
ζab

�
Γabðvg; ζabÞ − ΓD

ab

σDab

�
2

; ð6Þ

where ΓD
ab stands for the observed ORFs for the binned

angular separation ζab, σDab stands for the corresponding 1σ
uncertainty, D denotes the NANOGrav or CPTA datasets,
and the summation runs over all the binned angular
separations. It is worthy noting that the above uncertainties
σDab also contain contributions from the cosmic variance
[7,27,29], which contributes to an overall error in the
measured inter-pulsar correlation or the harmonic space
coefficients, Cl’s. That is ðσDabÞ2 ¼ ðσmÞ2 þ ðσCVÞ2, where
σm denotes the measured error and σCV arises from the
cosmic variance that will also be mentioned in the next
section. In other words, we consider the cosmic variance of
the correlation in our data analysis, i.e., the orange regions
in Figs. 1 and 2.
For our data analysis, the parameter to be inferred is the

speed of gravitational waves vg. We let the corresponding
priorprobabilitydistribution tobeuniform, i.e.,vg ∈ ½10−2; 1�,
and performMarkov-ChainMonte-Carlo samplings by using
thepublicly available COBAYA software [30].We further adopt
the publicly available PTAfast package [27] to compute the

ORFs of massive gravitons. The resulting posterior proba-
bility distribution functions of vg will be recast into those of
mg, following the relation in Eq. (2). Following the above
approach, we will obtain some upper limits on mg at 90%
confidence level and so on.
Our results are shown as follows. Firstly, the posterior

probability distributions of vg are depicted in Fig. 3. We
show the results for NANOGrav in a blue curve while those
for CPTA in an orange curve. Correspondingly, we label
the 90% confident lower limits on vg with vertical dashed
lines with the same coloring. They are shown to be vg ≳
0.173 for NANOGrav and vg ≳ 0.168 for CPTA. Based on
Fig. 3, it seems that CPTA favors a relatively smaller speed
of gravitons, compared with NANOGrav. Secondly, we
further display the posterior probability distributions of mg

in Fig. 4. The shaded regions stand for the allowed
parameter space at 90% confidence level. To be specific,
we display the results for NANOGrav in the blue shaded
region and those for CPTA in the orange shaded region.
Following Eq. (2), in which f is a frequency corresponding

FIG. 2. Comparison between the ORFs of massive gravitons
(orange dashed curve denotes mg ¼ 3.6 × 10−23 eV−1) and those
of massless gravitons. The orange shaded region stands for 1σ
uncertainties due to the cosmic variance. The CPTA first data
release is also shown as data points with error bars for
comparison.

FIG. 3. Posteriors of the speed of gravitational waves vg
inferred from the NANOGrav 15-year data release and the CPTA
first data release. The vertical dashed lines stand for the 90%
confident lower limits.

FIG. 4. Posteriors of the graviton mass mg inferred from the
NANOGrav 15-year data release and the CPTA first data release.
The shaded regions stand for the allowed parameter space at 90%
confidence level.
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to the time span of PTA observation, we obtain the upper
limits on mg at 90% confidence level, namely,

mg ≲ 8.6 × 10−24 eV ð7Þ

from NANOGrav and

mg ≲ 3.8 × 10−23 eV ð8Þ

from CPTA. We find that the two bounds are comparable
with each other. They stand for the state-of-the-art upper
limits on the graviton mass. Moreover, we notice over-
lapping posteriors for the gravitational wave (GW) speed,
while seemingly distant posteriors for the graviton mass.
This difference stems from different duty circles or fre-
quency inputs for the NANOGrav and CPTA datasets. In
fact, when evaluating Eq. (2), we have used f ¼
ð15 yearsÞ−1 for the former, while f ¼ ð3.4 yearsÞ−1 for
the latter.
Besides of SGWB with characteristic quadrupolar angu-

lar patterns, there are two other common signals with
different angular correlations. The first is associated with
errors in our clock standards and has a monopolar corre-
lation. The second is due to errors in Solar system
ephemerids and has a dipolar correlation. To produce
robust upper limits on graviton mass, we also compare
the data-derived correlation patterns with a combination of
these three correlations. In other words, the latter can be
given by

Γeff
abðvg; ζabÞ ¼ aþ b × cos ζab þ Γabðvg; ζabÞ; ð9Þ

where a and b are undetermined parameters. Figure 5
demonstrate comparisons between the posteriors of vg with
and without monopolar and dipolar correlations for
NANOGrav and CPTA. However, we find few difference
between these results of this joint analysis and those of our
present analysis.
In Fig. 4, we find that the posteriors on the graviton mass

are not flat. Therefore, it may be more adequate to provide
the “measured” values of the model parameters. At 68%
C.L., they are given by

mg ¼ 7.71þ0.81
−1.71 × 10−24 eV ð10Þ

for NANOGrav and

mg ¼ 3.61þ0.17
−0.37 × 10−23 eV ð11Þ

for CPTA, respectively. The inclination of our results
toward the massive graviton hypothesis could arise from
several factors that may bias our results. For example, the
reported signals may not be solely contributed by a SGWB,
but also by unknown physical processes, e.g., the afore-
mentioned scalar or vector correlations. On the other hand,
there may also be unknown systematics within the datasets,
which should be checked by future observations. However,
we cannot exclude the possibility that the speed of
gravitational waves is indeed subluminal. It can also be
vetoed or confirmed by future observations.

Cosmic-variance limit on the graviton mass bounds. Our
study can be further improved by upcoming PTA obser-
vations. At present, the detection of pulsars is on the rise,
with an increasing number of newly constructed telescopes
offering heightened sensitivity and producing data of
continually improving quality. Concurrently, advancements
in pulsar modeling techniques and data processing tools are
allowing for more effective noise suppression. Moreover,
the accumulation of data over extended periods is facili-
tating an increase in signal-to-noise ratio and enabling
observations across diverse frequency bands. This has
resulted in the acquisition of increasingly powerful tools
for PTA observations.
However, the cosmic variance, i.e., ΔCl=Cl ¼

½2=ð2lþ 1Þ�1=2, would inevitably introduce an uncertainty
to inferences of the graviton mass.2 For example, it can
bring about uncertainties on Γabðvg; ζabÞ, as shown as the
orange shaded regions in Figs. 1 and 2, which could be
recast into uncertainties on mg, as studied in this section.
Due to the cosmic variance, we inquire the maximal
capability of PTA in constraining the graviton mass and
whether it is sufficient to challenge theories of gravity
beyond general relativity. We study this issue in the
following.

FIG. 5. Comparison between the posteriors with and without
monopolar and dipolar correlations inferred from the NG15 (left)
and CPTA (right) datasets. The red dashed and green dotted lines
represent the 90% C.L. upper limits for the respective cases.

2It is challenging to discuss details of the cosmic variance in
this short paper. Here, we provide only a brief review of the
concept of cosmic variance. Traditionally, it is popular to consider
the cosmic variance in cosmological data analysis, e.g., temper-
ature and polarization anisotropies in the cosmic microwave
background (CMB) [31], etc. Recently, a similar proposal was
originally introduced to the community of PTA in Refs. [29,32].
Subsequently, the cosmic variance was further considered in
PTA-relevant studies of additional polarization modes of gravi-
tational waves in Ref. [27]. We strongly recommend readers to
refer to these papers if they wish to find more details of the
cosmic variance.
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To investigate the cosmic-variance limit, we consider an
ideal PTA observation, which does not have instrumental
uncertainties. In other words, we assume that all the
uncertainties arise from the cosmic variance. As a first
step, we should get the cosmic-variance limit on the speed
of gravitational waves. For simplicity, we follow an
approach of Fisher matrix, i.e.,

F ¼
Z

dζab

�
1

σab

�
2
�
∂Γabðvg; ζabÞ

∂vg

�
2

ð12Þ

where σab stands for the 1σ uncertainty on Γab arising from
the cosmic variance. Here, we consider a fiducial model with
massless gravitons, indicating vg ¼ 1 during derivations of
the Fisher matrix. By evaluating F−1, we obtain the cosmic-
variance limit on the speed of gravitational waves, i.e.,
σCVvg ¼ 0.07. By using Eq. (2), we recast it into the cosmic-
variance limit on the graviton mass bounds, namely,

σCVmg
¼ 4.8 × 10−24 eV ×

f
ð10 yearÞ−1 ; ð13Þ

where f typically denotes the lowest frequency band of PTA
observations, which can roughly correspond to the obser-
vational time span. This inevitable uncertainty cannot be
gotten rid of by any PTA, indicating that it is intrinsic. In
other words, it stands for the maximal capability of PTA in
measuring the graviton mass.

Conclusions and discussion. In this work, we investigated
the graviton mass bounds through analysis of the
NANOGrav 15-year dataset and the CPTA first data
release. By analyzing the data points of ORFs from these
two observatories, we inferred the allowed parameter
intervals for the speed of gravitational waves, particularly,
its posterior probability distributions. By further recasting
them into the posterior probability distributions of graviton
mass, we obtained the state-of-the-art upper limit on the
graviton mass, namely, mg ≲ 8.6 × 10−24 eV at 90% con-
fidence level.
We found that these new bounds on the graviton mass are

comparable to the most recent one reported by the LVK
Collaborations, i.e., mg < 1.27 × 10−23 eV at 90% con-
fidence level [16]. However, our study is solely based on
the form of ORFs. Therefore, our work has two obvious
advantages, compared with those works relevant to LVK.
The first one is independence on gravitational-wave
sources. The second one is no requirement of prior knowl-
edge of the waveforms. In addition, the findings observed
by PTA could effectively supplement those recorded by

LVK, since they could compose a multiband study of the
graviton mass.
Furthermore, we investigated the cosmic-variance limit

on the graviton mass bounds from any PTA observations of
SGWB, following an approach analogue to the study of
CMB. We found this inevitable cosmic-variance limit to be
σCVmg

¼ 4.8 × 10−24 eV × f=ð10 yearÞ−1, with f being the
typical frequency band of PTA observations of SGWB. As
an intrinsic uncertainty, it restricts the maximal capability
of PTA in measuring the graviton mass. Moreover, we also
obtained the cosmic-variance limit on the speed of gravi-
tational waves, i.e., σCVvg ¼ 0.07.
One may wonder why the results on the NANOGrav data

does not look consistent with those of a subsequent work
[33], which adopts the same data to constrain the GW
speed. There might be several potential reasons to account
for this discrepancy. A notable reason is the inclusion of
cosmic variance in our analysis, a factor that was not
accounted for in that work. The other reason involves an
inherent difference between our model and that of
Ref. [33], leading to, e.g., different priors for the twoworks.
There might be implications of our study for scenarios of

ultralight tensor dark matter [34,35], which could account
for the mystery of dark matter in the universe. In particular,
the ultralight dark matter in the mass range muldm ∼
10−22 eV was used for conquering several shortcomings
of the traditional cold dark matter [36,37]. To some extent,
the ultralight dark matter behaves like the massive grav-
itons, indicating possible imprints of it on PTA observa-
tions [38–40]. Since our results have been obtained through
analysis of the recent PTA datasets, we can infer that the
preferred mass range of ultralight tensor dark matter is also
compatible with the upper bounds on graviton mass shown
by our current work. A related work resulting from detailed
analysis of the NANOGrav 12.5-year dataset can be found
in Ref. [41].
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