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Black hole horizons in equilibrium and null infinity of asymptotically flat space-times are null
3-manifolds but have very different physical connotations. We first show that they share a large number of
geometric properties, making them both weakly isolated horizons. We then use this new unified perspective
to unravel the origin of the drastic differences in the physics they contain. Interestingly, the themes are
woven together in a manner reminiscent of voices in a fugue.
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Introduction. Two types of boundaries commonly arise in
general relativity: future horizons Δþ of black holes in
equilibrium and Penrose’s future null infinity Iþ. While it
is obvious that both these boundaries are null 3-surfaces, it
is not well appreciated that they share other, more subtle
geometric structures as well. In particular each of them
inherits an intrinsically defined derivative operator with
certain properties that ensure that they are both weakly
isolated horizons (WIHs) [1–3]. At first this appears
surprising—even impossible—because while WIHs are
generally thought of as representing black hole boundaries
in strong field regions, Iþ lies in asymptotic, near-flat
regions. More importantly, WIHs are often associated with
“stationary” black holes since there is no flux of gravita-
tional waves (or matter fields) across them, whileIþ is the
quintessential arena to calculate the fluxes of energy and
momenta carried by gravitational waves (as well as other
massless fields). The purpose of this Letter is to summarize
recent work [1] that compares and contrasts their geometry
and physics, and resolves this apparent tension.
As we recall below, a WIH horizon h can be defined

purely in geometrical terms, without reference to any field
equations. Nonetheless, WIHs carry a universal structure
which is very similar to that of Iþ. As a result, the
symmetry group G of WIHs h is closely related to the
Bondi, Metzner, Sachs (BMS) group [4]. Second, the
intrinsic (degenerate) metric q̄ab is nondynamical on h
just as it at Iþ. The third common element seems
counterintuitive at first: The intrinsic connection D̄ on a

general h is dynamical just as it is at Iþ. This important
point is often overlooked in the literature since WIHs have
been often regarded as “stationary boundaries.”
Both black hole horizons Δþ and null infinity Iþ are

examples of geometricWIHsh. However,whileΔþ is aWIH
with respect to the physicalmetric gab that satisfies Einstein’s
equations, Iþ is a WIH with respect to the rescaled metric
ĝab used in the Penrose completion that satisfies conformal
Einstein’s equations. Einstein’s equations imply that the time
dependence of the connection D on Δþ is extremely con-
strained: D is completely determined on the entire 3-mani-
foldΔþ by “data” that can be specified on a two-dimensional
cross section [3]. Therefore, in spite of its time dependence,
D does not carry any 3D degrees of freedom. Physically this
means that “radiative modes” are absent on Δþ; the con-
nection D on Δþ encodes only “Coulombic information.”
The situation is just the opposite at Iþ: Conformal
Einstein’s equations imply that the intrinsic connection D̂
captures precisely the two radiative modes of the gravita-
tional field [5]; it carries no Coulombic information. Wewill
see that this striking difference emerges from the same
evolution equation, Eq. (2), satisfied by the connection on
any WIH h. It is remarkable that both the close geometrical
similarities and the diametrically opposite physics emerge
from the common WIH framework.
This structure is also subtle. For example, one may

envisage using isolated horizons (IHs) [6] in place of
WIHs. This strengthening of conditions may seem innocu-
ous since the notion of IHs is also considerably weaker than
that of Killing horizons. (For example, the Robinson-
Trautman and Kastor-Traschen solutions admit IHs but
no Killing horizons [7,8].) But passage fromWIHs to IHs is
already unacceptably strong for our purposes because while

*ashtekar.gravity@gmail.com
†simone.speziale@cpt.univ-mrs.fr

PHYSICAL REVIEW D 109, L061501 (2024)
Letter

2470-0010=2024=109(6)=L061501(6) L061501-1 © 2024 American Physical Society

https://orcid.org/0000-0003-0616-2206
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.109.L061501&domain=pdf&date_stamp=2024-03-18
https://doi.org/10.1103/PhysRevD.109.L061501
https://doi.org/10.1103/PhysRevD.109.L061501
https://doi.org/10.1103/PhysRevD.109.L061501
https://doi.org/10.1103/PhysRevD.109.L061501


Iþ of any asymptotically flat space-time is a WIH, it
would be an IH only if the Bondi news vanishes, i.e., there
is no radiation across Iþ.
As discussed in [1] all our considerations apply also to

past horizons and past null infinity and, in the presence of a
positive Λ, also to cosmological horizons Δ which may not
be associated with black holes. In this brief report we focus
on Δþ and Iþ because physically they are the most
interesting cases. Also, for simplicity we assume that the
physical metric satisfies Einstein’s equations in a neighbor-
hood of Δþ and Iþ; one can allow appropriate sources.
Various mathematical symbols used in the Letter, together
with their meaning, are listed in Table I.

Geometric WIHs h. Fix a 4-manifold M̄ with a −, þ, þ, þ
metric ḡab. Consider a null, three-dimensional submanifold
h of M̄ with topology S2 ×R. Recall that it is said to be a
nonexpanding horizon (NEH) if [4]

(i) Every null normal k̄a to h is expansion free: θðk̄Þ¼̂ 0
where ¼̂ stands for equality at points of h. For
definiteness, we will assume that the null normals k̄a

are all future pointing.
(ii) The Ricci tensor R̄a

b of ḡab satisfies R̄a
bk̄a¼̂ αk̄b for

some function α.
There is extensive literature on NEHs (for reviews, see

e.g., [9–12]) and their key properties are summarized in
[1,4]. In particular, the 4-metric ḡab induces on h an
intrinsic (degenerate) metric q̄ab and provides a family
of null normals k̄a that are tangent to affinely parametrized
null geodesics. Any two of these normals are related by
k̄0a¼̂ fk̄a where the positive function f satisfies Lk̄f¼̂ 0.
The derivative operator ∇ defined by ḡab also induces a
unique derivative operator D̄ on h with the following
properties:

D̄aq̄bc¼̂ 0 and D̄ak̄b¼̂ ω̄ak̄b; where ω̄a satisfies

ω̄ak̄a¼̂ 0 and Lk̄ω̄a¼̂ 0: ð1Þ

(ω̄a depends on the choice of the null normal k̄a but we will
suppress this dependence for notational simplicity.) One
can eliminate the functional rescaling freedom in k̄a by
requiring that the rotation 1-form ω̄a be divergence free:
One is then left with a small class ½k̄� in which any two null
normals are related by a k̄0a ¼ ck̄a, for some positive
constant c [3].
An NEH h equipped with such an equivalence class ½k̄a�

of null normals is said to be a WIH. (Our WIHs are called
extremal because the acceleration of preferred null normals
½k̄a� vanishes.) Equation (1) implies that the intrinsic metric
q̄ab is time independent; Lk̄q̄ab¼̂ 0. However, on generic
WIHs, the connection D̄ is time dependent. It is easy to
verify that if a 1-form f̄a is “horizontal,” i.e., satisfies
k̄af̄a ¼ 0, then ˙̄Daf̄b ≔ ðLk̄D̄a − D̄aLk̄Þf̄b ¼ 0. Therefore
the “time derivative” ˙̄D is completely determined by ˙̄Da|̄b
for any 1-form |̄a satisfying |̄ak̄a ¼ −1. Since R̄a

bk̄a¼̂ αk̄b

on any WIH h, it follows that this action is given by [1,3]

˙̄Da|̄b¼̂ D̄aω̄b þ ω̄aω̄b þ k̄cC̄cab 
d|̄d

þ 1

2

�
S̄ ab þ

�
α −

1

6
R̄

�
q̄ab

�
ð2Þ

where C̄abc
d and S̄ab ¼ R̄ab − 1

6
R̄ḡab are the Weyl and

Schouten tensors of ḡab, and the under arrow indices that
indices a, b are pulled back to h. We will see that the drastic
difference in the physics of black hole horizonsΔþ and null
infinity Iþ can be directly traced back to Eq. (2). On a
generic WIH, none of the terms on the right side are zero,
whence D̄ has genuine time dependence. By contrast,
˙̄D ¼̂ 0 on IHs by their very definition [6]; this is why
IHs are much more restrictive. In particular, while one can
always choose a null normal on an NEH to endow it with
the structure of a WIH, generically there is no null normal
that can endow it with an IH structure.
Neither the metric q̄ab nor the connection D̄ on h are

universal; they change, for example, as one passes from the

TABLE I. Symbols associated with WIHs and their meaning.

Notions General space-times Physical space-times Conformal completions

Field equations None Einstein’s equations Conformal Einstein’s equations
4-manifolds and metrics thereon M̄; ḡab M; gab M̂; ĝab
Horizons h Δþ Iþ
Induced metrics q̄ab qab q̂ab
Null normals k̄a la n̂a

Dual 1-forms |̄a na bla
Intrinsic derivative operators D̄ D D̂
Symmetry vector fields ξa ξa ξa

Symmetry groups G ¼ B ⋉ D G B
Local regions R R̂
Covariant and local phase spaces Γcov;ΓR Γcov;ΓR̂
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Schwarzschild WIH to the Kerr WIH. However, because of
the S2 ×R topology, each WIH admits a three-parameter
family of unit, round two-sphere metrics q̊ab that are
conformally related to its q̄ab: q̊ab¼̂ ψ̊2q̄ab. While the
conformal factors ψ̊ relating the metrics q̊ab and q̄ab vary
from one WIH to another, the relative conformal factors α̊
between any two round metrics is universal:

q̊0ab¼̂ α̊2q̊ab where α̊ satisfies D̊2 ln α̊þ 1¼̂ α−2o : ð3Þ

The general solution to (3) is a linear combination of the
first four spherical harmonics of q̊ab: α−1o ¼ αo þP

m αmY1;m where the coefficients are constrained to
satisfy −α2o þ

P
m jαmj2 ¼ −1. Motivated by geometric

considerations related to multipoles, one introduces a
parallel rescaling of the vector fields ½k̄a� and sets
½̊ka�¼̂ ½ψ̊−1k̄a� [4]. Then every WIH is naturally equipped
with a three-parameter family of pairs ðq̊ab; ½̊ka�Þ related by
ðq̊0ab; ½̊k0a�Þ¼̂ ðα̊2q̊ab; α̊−1 ½̊ka�Þ. The relation is the same for
all WIHs. Thus, the pairs capture the “kinematical”
structure that is universal, leaving out fields such as
q̄ab; ½k̄a�; ω̄a that can carry physical information that varies
from one WIH to another.
The WIH symmetry group G is the subgroup of the

diffeomorphism group of h that preserves this universal
structure. It is generated by vector fields ξa satisfying

Lξq̊ab¼̂ 2β̊q̊ab and Lξ
̊ka¼̂ − ðβ̊ þ ϖ̊Þ̊ka ð4Þ

where ϖ̊ is a constant and β̊ satisfies ðD̊2 þ 2Þβ̊ ¼ 0; β̊ is a
linear combination of the first three spherical harmonics of
q̊ab. The BMS vector fields ξa at Iþ satisfy the same
Eq. (4) but with ϖ̊ ¼ 0. This difference can be directly
traced back to the fact that while h is equipped only with an
equivalence class ½k̄a� of null normals (where any two are
related by a constant rescaling), in any one conformal
completionIþ is equipped with a canonical null normal n̂a.
Equation (4) implies that G is a semidirect product,
G ¼ B ⋉ D, of theBMSgroupBwith the one-dimensional
groupD of dilations, withB serving as the normal subgroup
and D, the quotient of G by B. An example of a dilation
vector field is da ¼ ϖ̊ v̊ ̊ka ¼ ϖ̊ v̄ k̄a (where v̊ and v̄ are
affine parameters of ̊ka and k̄a respectively). Its action
rescales ̊ka (and k̄a) by a constant, leaving q̊ab (and q̄ab)
untouched. Could we perhaps have strengthened the boun-
dary conditions defining WIHs h to eliminate this dilation
and reduce G to B? The answer is in the negative: On the
Schwarzschild horizon, for example, the time translation is
realized as the dilation in the Lie algebra of G (while it is
realized as a supertranslation at Iþ). G has a rich structure
that has been spelled out in [4], and is a subgroup of the
symmetry group of a general null hypersurface studied in
[13] (see also [14–17]).

Black hole WIHs Δþ. Following the terminology used in
the literature for black hole WIHs, we will now drop the
bars and denote the space-time by ðM; gabÞ, the intrinsic
metric on Δþ by qab, and the intrinsic derivative operator
by D. For the same reason, the equivalence class of
preferred null normals will now be denoted by ½la� (in
place of ½k̄a�) and the 1-form conjugate to any given
la ∈ ½la� by na, so that lana ¼ −1 (in place of k̄a|̄a ¼ −1).
The universal structure and the symmetry group of Δþ is

the same as that of a general WIH h. In particular, the
symmetry vector fields ξa satisfy (4). Given a foliation v̊ ¼
const of Δþ where v̊ is an affine parameter of l̊a, their
explicit expressions are given by

ξa¼̂ ððϖ̊ þ β̊Þv̊þ ̊sÞÞl̊a þ ̊ϵabD̊b ̊χ þ q̊abD̊bβ̊: ð5Þ

Here s̊ðθ;ϕÞ is a general function on the two-sphere of null
generators of Δþ; each of ̊χðθ;φÞ and β̊ðθ;φÞ is a linear
combination of first three spherical harmonics defined by
q̊ab, and ̊ϵab; q̊ab are the inverses of the area 2-form and the
metric on the v̊ ¼ const cross sections, respectively. In this
representation, da ≔ ϖ̊ v̊ l̊a is a dilation, s̊l̊a are super-
translations, ̊ϵabD̊b ̊χ are rotations, and β̊ v̊lo þ q̊abD̊bβ̊ are
boosts.
Next, let us use Einstein’s equations to simplify the

dynamical equation (2). First, the Ricci tensor contribution
to the right side vanishes. Second, only the Newman-
Penrose component Ψ2 of the Weyl tensor contributes and,
on any WIH, it is completely determined by qab and D via
Ψ2 ¼ 1

4
Rþ i

2
ϵabDaωb, where R is the scalar curvature of

qab. Therefore, (2) becomes

Ḋanb ¼ DðaωbÞ þ ωaωb −
1

4
Rqab: ð6Þ

Note that every field on the right side is Lie dragged by la;
they are time independent. Therefore the time dependence
ofD is now tightly constrained: It is entirely determined by
the triplet ðqab;ωa; DanbÞ on any two-dimensional cross
section ofΔþ. In other words, there are no radiative degrees
of freedom on Δþ; it represents a black hole boundary in
equilibrium.

Asymptotic WIHs. Iþ. Recall (e.g., from [18]) that a
physical space-time ðM; gabÞ is asymptotically flat at null
infinity if there exists a manifold M̂ with boundaryIþ that
is topologically S2 ×R, and equipped with a metric ĝab
such that M̂ ¼ M ∪ Iþ and ĝab ¼ Ω2gab onM where Ω is
a nowhere vanishing on M, and

(i) Ω ¼̂ 0, while ∇̂aΩ is nowhere vanishing on Iþ.
(ii) The physical metric gab satisfies vacuum Einstein’s

equations Rab ¼ 0 in a neighborhood of Iþ.
As is well known, the conformal Einstein equations

satisfied by ĝab imply that Iþ is null and, without loss of

HORIZONS AND NULL INFINITY: A FUGUE IN FOUR … PHYS. REV. D 109, L061501 (2024)

L061501-3



generality, one can choose Ω so that ∇̂an̂a¼̂ 0 where n̂a ¼
∇̂aΩ is the null normal to Iþ. As is standard in the
literature on null infinity, we will restrict ourselves to such
divergence-free frames. Then conformal Einstein’s equa-
tions imply ∇̂an̂b¼̂ 0. Therefore integral curves of n̂a are
affinely parametrized null geodesics with vanishing expan-
sion and shear; Iþ is a WIH. Furthermore, the 1-form ωa
vanishes identically, whence in particular its divergence
vanishes. Thus n̂a¼̂ ∇̂aΩ serves as the preferred normal to
this WIH. Note that, while a generic WIH h is equipped
with only an equivalence class ½k̄a� of such null normals, the
given conformal completion endows Iþ with a specific
preferred normal n̂a; the freedom to rescale by a constant
has disappeared.
As onΔþ, let us adapt notation to the standard usage in the

literature onIþ. Thus, ðM̄; ḡabÞ of generalWIHShwill now
be replaced by a divergence-free completion ðM̂; ĝabÞ,
ðq̄ab; k̄aÞ by ðq̂ab; n̂aÞ, and the 1-form |̄a will now be denoted
by bla so that n̂abla ¼ −1. Of course, given a physical space-
time, we can introduce another divergence-free conformal
frame Ω0 ¼ μΩ where μ is nowhere vanishing on M̂ and
satisfies Ln̂μ ¼̂ 0. In the WIH perspective, the resulting
ðM̂; ĝabÞ and ðM̂; ĝ0abÞ are to be regarded as distinct space-
times, in both of whichIþ is a WIH but with distinct WIH
geometries ðq̂ab; n̂a; D̂Þ and ðq̂0ab; n̂0a; D̂0Þ. Put differently,
while the fact thatIþ is an extremalWIH is a property of the
given physical space-time, the geometry of this WIH varies
fromone (divergence-free) conformal completion to another.
The physics of this family of WIHs is the same; final results
are all conformally invariant as usual.
As in the case ofΔþ, let us begin with a discussion of the

universal structure and symmetries of this WIH. They are
essentially the same as on a general WIH but with a small
variation. As remarked above, while the given metric ḡab
endows geometrical WIHs h only with equivalence class
½k̄a� of null normals, ĝab endows Iþ with a single null
normal n̂a throughΩ. Therefore, the universal structure that
descends onIþ from theWIH perspective consists of pairs
ðq̊ab; n̊aÞ, a unit round metric and a null normal, con-
formally related to ðq̂ab; n̂aÞ as on h, so that any two pairs
are related by ðq̊0ab; n̊0aÞ ¼ ðα̊2q̊ab; α̊−1n̊aÞ. In the more
familiar terminology, these pairs correspond to Bondi
conformal frames. Now, in coordinate-free discussions of
Iþ, Bondi conformal frames play only a marginal role;
one works directly with the pairs ðq̂ab; n̂aÞ (see, e.g., [18]).
In the WIH perspective, on the other hand, these pairs
correspond to distinct WIH geometries; what is universally
available on all of them are the pairs ðq̊0ab; n̊0aÞ that
correspond to Bondi conformal frames. Thus, when looked
at through the WIH lens, symmetries are now those
diffeomorphisms of Iþ that map any one of these
Bondi frames to another one. This subgroup is the BMS
group B since B can also be characterized in this way.

For symmetry vector fields, theWIH perspective informs
us that ξa represents an infinitesimal symmetry if it satisfies
Eq. (4), but now with ϖ̊ ¼ 0 since there is no longer a
freedom to rescale the normals n̊a by constants. Thus in
terms of (5), we no longer have dilations that rescaled ̊ka by
constants, leaving the metric q̊ab unchanged. Given a pair
ðq̊ab; n̊aÞ, then, the symmetry vector fields at Iþ have the
form

ξa¼̂ ðβ̊ ůþs̊ÞÞn̊a þ ̊ϵabD̊b ̊χ þ q̊abD̊bβ̊; ð7Þ

where ů is now an affine parameter of n̊a. These are the
standard expressions of BMS vector fields in a Bondi
conformal frame ðq̊ab; n̊aÞ. Thus, the symmetry groupG ¼
B ⋉ D of a general WIH h just ‘“oses the dilation part”
and reduces to the BMS group B.
On the other hand, there is a strong contrast between the

evolution equation of D̂ on Iþ and that of D on Δþ: The
Weyl tensor C̄abc

d as well as the 1-form ω̄a on the right side
of (2) vanish on Iþ and the evolution is governed by the
Ricci part, which was the only one that vanished on Δþ.
Thus, in contrast to the Eq. (2) on Δþ at Iþ have

˙̂Da
blb ¼

1

2

�
Ŝ ab þ

�
α −

1

6
R̂

�
q̂ab

�
: ð8Þ

Now, the Bondi news is given by N̂ab ¼ Ŝab − ρ̂ab, where
ρ̂ab is the (kinematical) Geroch tensor field [19] that serves
to remove the unphysical information contained in the
conformal factor in Ŝab (see, e.g., [5,18,19]). Thus, the

time dependence of D̂ is dictated by the Bondi news that
carries 2 degrees of freedom per point of three-dimensional
Iþ. To summarize, Iþ is a WIH with respect to ĝab that
satisfies conformal Einstein’s equations while Δþ is a WIH
with respect to gab that satisfies Einstein’s equations. It is this
difference that leads to diametrically opposite physics on the
two WIHs, even though one starts from the same funda-
mental dynamical equation (2). Thus, the unified WIH
framework endows Δþ and Iþ with essentially the same
universal structures and symmetry groups and, at the same
time, teases out diagonally opposite physics from them.

Phase spaces of local d.o.f. We will now summarize a new
Hamiltonian framework, geared to local degrees of free-
dom, that serves as a common platform to discuss fluxes of
physical observables associated with symmetries at both
Iþ as well as Δþ.
Recall that the standard covariant phase space Γcov

consists of solutions gab to field equations on the entire
space-timeM satisfying the standard boundary conditions at
Iþ or/andΔþ (see, e.g., [13,20–22]).One can extract from it
phase spaces ΓR̂ and ΓR that are adapted to open regions R̂
and R of Iþ and Δþ, respectively, each bounded by
arbitrary two-sphere cross sections [1].ΓR̂ consists of certain
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equivalence classes fD̂g of connections on R̂ (where the
equivalence relation serves just to get rid of a redundant
conformal freedom). They encode precisely the two radiative
degrees of freedom of the gravitational field in full nonlinear
general relativity that reside in R̂ [5]. In particular, they do
not capture any of the Coulombic information contained in
gab. Similarly, ΓR consists of the (time-independent) pair
ðqab;ωaÞ, evaluated at a cross section of Δþ. These fields
encode just theCoulombic information in gab; although there
may be radiation arbitrarily close to Δþ, as in Robinson-
Trautman space-times [23], none of it registers in ΓR. Thus,
there is an interesting complementarity.
In addition, ΓR̂ and ΓR have an extremely simple

structure that greatly facilitates the subsequent analysis:
While Γcov is a complicated nonlinear space, ΓR̂ is an affine
space, and ΓR is a convex set in a vector space. (This
contrast can be traced back to the fact that elements of ΓR̂
and ΓR are freely specifiable; they are not subject to
nonlinear equations.) Thanks to this “effective linearity,”
one can endow ΓR̂ and ΓR with a topology in which two
elements are close to one another if they and their first
derivatives on R̂ and R are close in the L2 sense. This
topology is motivated by detailed considerations involving
test fields on asymptotically flat space-times [1,24].
The symplectic current Jabc on Γcov is a 3-form whose

integral over a Cauchy surface provides the symplectic
structure ω of Γcov. Integrals of Jabc on R̂ and R provide
symplectic structures ωR̂ and ωR on ΓR̂ and ΓR respec-
tively. With this setup at hand, one can compute the
Hamiltonians associated with symmetries. Let us begin
with Iþ. Then each BMS generator ξa defines a
Hamiltonian vector field δξ. However, as is common on
infinite-dimensional phase spaces (see, e.g., [25]), δξ is
only densely defined on ΓR̂. Therefore one first calculates
the corresponding Hamiltonian HξðfD̂gÞ on this subspace
and asks if it can be continuously extended to the full phase
space.1 The answer is in the affirmative for all BMS vector
fields ξa and the result is

HξðfD̂gÞ ¼
1

16πG

Z
Iþ
½ðLξD̂a − D̂aLξÞblb

þ 2blðaD̂bÞβ�N̂cdq̂acq̂bdϵ̂mnp ð9Þ

where β is given by Lξq̂ab ¼ 2βq̂ab and ϵ̂mnp is the volume
3-form on Iþ. This entire procedure can be applied to
familiar, simple systems such as a massless scalar field in
asymptotically flat space-times, and the Hamiltonians thus
obtained agree with the standard expressions of BMS
fluxes across 3D regions R̂ of Iþ obtained using the
stress-energy tensor of the scalar field [1,24]. These

applications serve to motivate the specific topology we
use on ΓR̂ and lead one to interpret HξðfD̂gÞ of (9) as the
flux Fξ½R̂� of the BMS momentum across the region R̂ of
Iþ. Indeed, the right side of (9) is the standard expression
of BMS fluxes, now obtained using the phase space ΓR̂ of
degrees of freedom local to the region R̂ of Iþ. Note that
the procedure does not require additional structures such as
preferred symplectic potentials or extensions of BMS
vector fields away from Iþ. Finally for open regions R
of Δþ, one can apply exactly the same procedure but now
the result is trivial: The pullback of the symplectic current
Jabc to Δþ vanishes identically [13,22]. (This is a
reflection of the fact that there are no 3D degrees of
freedom in ΓR.) Consequently, fluxes Fξ ½R� also vanish
identically for all generators ξa of the Δþ-symmetry group
G, just as one would expect physically.
Thus, there is a single framework involving phase spaces

of degrees of freedom that reside in open regions of WIHs.
But it yields very different results depending on which of
the two types of WIHs it is applied to. When applied to Δþ,
it predicts zero fluxes. When applied to Iþ, it yields the
expressions of BMS fluxes with all the subtleties, e.g.,
including both the so-called “hard and soft terms” in the
expression of the BMS supermomenta.
Finally, a natural extension of this framework leads to

2-surface charges Qξ½S� associated with cross section S of
Iþ or Δþ. The starting point is the observation that
(conformal) Einstein’s equations (and Bianchi identities)
imply that the flux 3-forms—that constitute the integrand
of the right side of (9)—are exact, whence the integrals of
their 2-forms potentials provide us with charges Qξ½S�.
However, this procedure requires us to go beyond the phase
spaces of local degrees of freedom and use additional
inputs. In particular, one has to return to full Γcov since one
needs to use full field equations, not just their pullbacks to
the WIHs. In the case ofIþ, Γcov enables one to access the
“Coulombic” degrees of freedom that are absent in ΓR̂ but
are needed to obtain the explicit expressions of the charge
2-forms. These results, together with a comparison with
other procedures [13,21] to define charges, appear in the
companion paper [1].

Discussion. To summarize, Δþ and Iþ share a number of
properties inherited directly from geometric WIHs h. In
particular, their intrinsic metrics are nondynamical and their
symmetry groups are almost the same. In both cases, the
intrinsic connections D and D̂ are dynamical, satisfying
Eq. (2) that holds on any h. But complementary terms on
the right side of this equation trivialize: While the Ricci
terms vanish inΔþ, the Weyl term vanishes onIþ. Thanks
to this subtle and surprising “complementarity,” Δþ and
Iþ can share a large number of properties and, at the same
time, display diametrically opposite physics. Δþ represents
black hole horizons in equilibrium that lie in the strong field

1If one cannot, then one would have the “nonintegrability”
problem discussed in other approaches; see e.g., [13,15,21,26–30].
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regime, and no radiation crosses them.Iþ lies in the near-
flat asymptotic regime and provides the arena for discus-
sions of fluxes carried away by gravitational waves. This
unified WIH framework can provide a foundation for
“gravitational wave tomography” [31]—imaging horizon
dynamics using black hole mergers using waveforms at
Iþ–and also have applications to the analysis of black hole
evaporation in quantum gravity.
This interwoven structure is reminiscent of a musical

fugue in four voices. The first voice is that of a geometric
WIH h. It introduces the theme/subject. The second voice is
that of black hole horizonsΔþ. It picks up on the theme and
further develops it, providing us with one interpretation of

the main subject that conveys the serenity of equilibrium.
The third voice is that of null infinity Iþ. It continues the
main theme but is contrapuntal because it exudes change
and dynamism, with potential for bursts of energy and
momentum. The fourth voice returns to the central idea
enunciated by the first: A single theme—now, the phase
space of local degrees of freedom—can display the deep-
down unity in spite of the diversity of manifestations.
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