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We show that volume-preserving diffeomorphisms and the chemical shift symmetry defining relativistic
Lagrangian ideal fluid dynamics can be derived as an emerging symmetry when ergodicity is assumed to
apply locally in a way that is invariant under smooth spacetime foliations. This can be used as a way to
derive the ideal hydrodynamic limit in a strongly coupled but strongly fluctuating medium.We comment on
the connection with thermalization in small systems, the eigenstate thermalization hypothesis and
deviations from the ideal limit.
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Relativistic hydrodynamics has proven to be an
extremely useful phenomenological tool [1–3] in the study
of heavy ion collisions. This has also reignited the more
formal theoretical study of hydrodynamics [4–6], a subject
much more complex and subtle on a conceptual level than
one initially thinks. The observation of hydrodynamic
behavior in “small” systems, both in size and number of
degrees of freedom [7] (but also analogous nonrelativistic
examples such as ultracold atoms [8] and the “Brazil-nut
effect” [9]) demonstrates that conceptual ambiguities can
still be relevant for resolving mysteries given to us by
experimental data.
One such conceptual issue is that there are several

definitions to hydrodynamics: One usually thinks of it as
a coarse-grained, long-range effective theory written in
terms of conserved charges and their gradients [1,2,4]. In
this approach, hydrodynamic evolution is explicitly deter-
ministic, and the connection to local thermal equilibrium is
not “built in,” leading to concepts such as hydrodynamic
attractors far from thermal equilibrium [10,11]. The poten-
tial ambiguity comes from the fact that methods from
statistical mechanics are necessary to calculate the equation
of state and transport coefficients needed to close the
hydrodynamic system of equations.
Statistical mechanics however is not a deterministic

theory; at best, fluctuations vanish in the thermodynamic
limit, but in principle its only assumption is the equal
probability of microstates [12,13]. One therefore needs to

make sure fluctuations stay small, something usually
implicitly assumed in microscopic theories rather than
demonstrated [14–24] (Kubo formulas, for instance, are
based on taking limits much larger than the fluctuation
timescale [3]), though fluctuation-dissipation relations
apply also away from the thermodynamic limit [25,26].
As a perhaps related issue, away from perfect equilib-

rium the definition of “equilibrium” becomes itself ambigu-
ous [27–32]. A full definition of hydrodynamics in this
sense, as well as a connection to nonequilibrium quantum
field theory that encodes microscopic fluctuations and their
hydrodynamic response [33–35], is still missing.
A still different definition of hydrodynamics is based on

a Lagrangian picture, where instead of defining currents in
the lab frame we follow every cell of the fluid as it
propagates and deforms. This definition is particularly
elegant in that ideal hydrodynamics is based on local
diffeomorphisms [36–38], making it into a “poor people’s
general relativity” [5,39] (to the extent that perhaps the
problem of quantizing gravity can be related, via the
entropic hypothesis [40], to the problem, described in
the previous paragraph, of defining a fluctuating hydro-
dynamics where local symmetries still hold [25,41]).
This work makes a link between this last Lagrangian

definition of hydrodynamics and the previous two, by
showing its elegant local symmetries are in fact emerging if
one assumes the ergodic hypothesis [defined via Eq. (1)
rather than the usual Δ → ∞ limit [12]] applies in every
cell of the fluid. This link can then be used to define
hydrodynamics in a way that might be more appropriate to
small systems [7] and as a starting point to examine the
fluctuations and redundancies of [32].
Statistical mechanics is based on the emergence of an

approximately ergodic system [14] (or rather [12] of the
approximation that some observables are described by such
a system), whose evolution is governed by an equation of
the type

*torrieri@ifi.unicamp.br

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 109, L051903 (2024)
Letter

2470-0010=2024=109(5)=L051903(8) L051903-1 Published by the American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.109.L051903&domain=pdf&date_stamp=2024-03-28
https://doi.org/10.1103/PhysRevD.109.L051903
https://doi.org/10.1103/PhysRevD.109.L051903
https://doi.org/10.1103/PhysRevD.109.L051903
https://doi.org/10.1103/PhysRevD.109.L051903
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


Δx
Δt

����
t−t0≃Δt

≃
Z

Pðq0Þdq0; ð1Þ

where x is a microscopic phase space degree of freedom, t
is a time sampled across some average interval Δt, and dq0
is a time-invariant measure over an ensemble of states.
In other words when sampled under a certain coarse-

graining timescale, the system’s “evolution” can be approxi-
mated via a statistical distribution of microstates. As shown
in [12,13], while this is an extremely fragile assumption,
dependent on the “indecomposability” of the phase space
hypersurface constrained by conservation laws, it can be
thought of as an approximate assumption good enough to
calculate particular observables (in particular conserved
currents) and their ”typical” state in strongly coupled
systems whose initial conditions are sampled across a broad
ensemble. We also note that typically the ergodic hypothesis
is formulated for t − t0 → ∞, while here this interval defines
the size of some cell. This is in linewith thermalization going
from an asymptotic quantity to a local one in the definition of
fluid mechanics.
Thus, for a physical system moving in phase space

sufficiently chaotically, with conservation laws of energy
and momentum (Pμ and their invariant P) as well as charge
Q but not necessarily particle number

Δϕ
Δt

����
t−t0¼Δt

≃
1

dΩðQ;PμÞ
X

δ4Pμ;Pμ
macroðtÞδQ;QmacroðtÞδ

×

�X∞
j

pμ
j − Pμ

�
δ

�X∞
j

Qj −Q

�
; ð2Þ

where ϕ ¼ fx1;2;…N→∞g is some degree of freedom, pi is
the conjugate momentum and Qi some conserved charge
and dΩðPμ; QÞ is the normalization for that point in
spacetime (∼edS, where dS is the entropy density of the
cell). Note that for varying particle numbers the Gibbs
factor N! can be taken to be a correction of dΩ, so we do
not consider it further. From this the equilibrium state is in
the microcanonical ensemble. Other ensembles follow
when the number of degrees of freedom and volume are
taken to infinity.
It is immediately clear that the ergodic hypothesis is not

relativistically covariant, since there is a “t” coordinate on
the left-hand side (the right-hand side can be made
generally covariant by an on-shell condition). For “global”
equilibrium, this is of course not a problem: The system as
a whole carries momentum, so there is a preferred frame
where its momentum is zero and hence only the energy
constraint is needed to maximize entropy.
But this seems in contradiction [31] with the concept of

“local” equilibrium, where every cell of a fluid contains
“many” degrees of freedom in ergodic equilibrium. To an
extent, this is not a deep issue since local equilibrium is not
rigorously defined beyond the ideal limit. However, it
would be interesting to try to define it from the ergodic
hypothesis and approximate deviations from it. To do so,
we would like to investigate what kind of symmetries are
needed to be imposed on Eq. (2) for a relativistic local
ergodic evolution to emerge.
To try to add an element of covariance, we define t via a

foliation, Σμ.
1 Different Σμ’s are related via generally

noninertial transformations. We would like to concentrate
on transformations that respect the causality of the foliation

dΣμ ¼
∂Σμ

∂Σ0
ν
dΣ0

μ; ðdΣÞ2|fflffl{zfflffl}
dτ2

; ðdΣ0Þ2|fflffl{zfflffl}
dτ02

> 0;
d
dt

����
dt∼Δt

→
d

dΣ0

����
dτ∼Δt

; dΣμ det ð∂μΣνÞ−1 ≤ Δ: ð3Þ

A definition of “ideal” local equilibrium is to ensure that Eq. (2) stays true independently of Σμ as long as Σ is causal. In this
picture, the averaging is done not on dt ∼ Δt but on dτ ∼ Δt, for each cell. The change in foliation must be smooth enough
as to not disturb the average Δt (the “microscopic scale,” which in this case is the maximum allowed radius of curvature of
the foliations).
To see if this is possible, let us remember that pμ and Q are Noether currents, corresponding to symmetries of the

Lagrangian

pμ ¼
Z

d3ΣνTμν; Tμν ¼
∂L
∂∂

μϕ
Δνϕ − gμνL; ΔνϕðxμÞ ¼ ϕðxμ þ dxνÞ; ð4Þ

Q ¼
Z

d3Σνjν; jν ¼
∂L
∂∂

μϕ
Δψϕ; Δψϕ ¼ ϕðxμÞ þ δϕ�ðxμÞ ¼ jϕðxÞjeiðψðxÞþδψðxÞÞ; ð5Þ

and ψ ¼ fψ1;2;…N→∞g is a complex phase.

1Here we use the notation first introduced by Cooper and Frye in their treatment of freeze-out [42] and further used in Zubarev
hydrodynamics [6], where a “spacelike” volume element can be parametrized by a timelike four-vector denoted by Σmu whose exterior
derivative points to the 4-volume’s proper time. This notation is a bit different than the one usually used in general relativity [43], more
appropriate for curved spacetimes.
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These textbook formulas provide us with an intuition of
how to model local equilibrium. All one has to do is to
impose ergodicity on every spacetime point and then make
this hypothesis foliation independent. Combining Eq. (2)
with Eqs. (4) and (5) we get

Δϕ
ΔΣ0

����
t−t0¼Δt

¼ 1

dΩðdPμðΣ0Þ; dQðΣ0ÞÞ

×
X

δ4

0
BB@dΣν ∂L

∂∂
μϕ

∂νϕ−LdΣμ

|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
δLðaμÞ∼aα∂αðδμνLÞ

− dPμðΣ0Þ

1
CCA

× δ

0
BB@dΣμ ∂L

∂∂
μϕ

∂ψ

∂Σ0|fflfflfflfflffl{zfflfflfflfflffl}
δLðψÞ∼ψ∂μL

− dQðΣ0Þ

1
CCA ð6Þ

and enforce the covariance of these equations with any
change in foliation that respects causality (dΩ, dP, and dQ
refer to the phase space volume, momentum and charge

within the cell, respectively). Let us therefore use δaμ and
δψ as coarse-graining degrees of freedom for a generic
equation of motion:

Δϕ
ΔΣ0

����
t−t0¼Δt

¼ 1

dΩðPμ; Q;Σ0Þ
Z

daμdψδ4 ðdΣνaα∂αðδμνLÞ

− dPμðΣ0ÞÞδðdΣμψ∂μL − dQðΣ0ÞÞ: ð7Þ
Let us now rewrite Eq. (7) under a different foliation and
see what kind of constraints will foliation invariance of the
ergodic hypothesis bring. Provided both foliations are
smooth enough [according to Eq. (3)] the lhs simply
becomes

Δϕ
Δt

����
t−t0¼Δt

→
dΣ0

ν

dΣ0

Δϕ
ΔΣ0

����
Σ0−Σ0

0
¼Δt

¼ ∂Σ0
ν

∂Σ0

Δϕ
ΔΣν

����
xμ−x0μ<Δt

ð8Þ

and now we eliminate the lhs from the system of equations
of Eq. (7) in Σμ and Σ0

μ. The resulting equation, a ratio of the
rhss, will be

dΩðdP0
μ; dQ0;Σ0

0Þ
dΩðdPμ; dQ;Σ0Þ

¼ dΣ0
0

dΣ0

R
daμdψδ4ðdΣνaα∂αðδμνLÞ − dPμðΣ0ÞÞδðdΣμψ∂μL − dQðΣ0ÞÞR
da0μdψ 0δ4ðdΣ0

νa0α∂αðδμνLÞ − dP0
μðΣ0

0ÞÞδðdΣ0
μψ

0
∂
μL − dQ0ðΣ0

0ÞÞ
: ð9Þ

We also take advantage of the fact that Σμ are causal and
parametrize dΣμ by three Cartesian coordinates ΦI¼1;2;3

such that the tangent vector

dΣμ ¼ ϵμναβ
∂Σν

∂Φ1

∂Σα

∂Φ2

∂Σβ

∂Φ3

dΦ1dΦ2dΦ3; ð10Þ

where the Latin letters are 1, 2, and 3 and 0 would be the
time coordinate, is a timelike 3-volume element for a
certain normalization. Arbitrary changes in foliation can
also be decomposed in

∂Σ0
μ

∂Σν
¼ Λν

μ det
dΦ0

I

dΦJ
; detΛν

μ ¼ 1; ð11Þ

whereΛν
μ is a Lorentz transformation and det dΦI

dΦJ
a rescaling

of the volume. Physically, Λν
μ moves between the frame

dΣμ
rest ¼ dΦ1dΦ2dΦ3ð1; 0⃗Þ.
We can now try define an effective Lagrangian that

“automatically” solves Eq. (9) at every time step, thereby
guaranteeing Eq. (6) holds in every frame. Good coarse-
graining variables are generators of the transformation

LðϕÞ ≃ LeffðaμðΣÞ;ψðΣÞÞ;
LeffðaμðΣÞ;ψðΣÞÞ ¼ LeffðaμðΣ0Þ;ψðΣ0ÞÞ ð12Þ

with the latter equality being enforced by solving Eq. (9).
Concentrating on the momentum current conservation,

we notice that the dependence on foliation changes of the

ratio of Ωð…; PμÞ is the same as δð…; PμÞ, and the shift in
the Lagrangian can be reduced to a local symmetry shift.
The only change possible therefore is that of the foliation

inside the δ function δ4ðd3Σμ;…Þ. One can use the classic
relations of δ functions

δððfðxÞÞÞ ¼
X
i

δðxi − aiÞ
jf0ðxi ¼ aiÞj|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

fðaiÞ¼0

;

ϕ0
I ¼

∂αΣ0
I

∂
αΣJ ΦJ;

δ4ðΣμÞ ¼ detμν

���� ∂Σ
μ

∂Σν

����δ4ðΣ0
μÞ ð13Þ

to see that the ratio of δ4 (dΣνaα∂αðδμνLÞ − dPμðΣ0Þ) in
Eq. (9) will reduce to a ratio of det ∂ΦI

∂ΦJ
.

To construct the effective Lagrangian invariant under
such transformations from ΦI one therefore

(i) assumes dΩ is differentiable across changes
between Σ and Σ0 so dΩðPμ; Q;Σ0

0Þ=dΩðPμ; Q;
Σ0Þ ≃ dΣ0

0=dΣ0, Q transforms as a scalar and Pμ

as a four-vector under changes in foliation;
(ii) a local rescaling can add an overall normalization

factor to the Lagrangian, proportional to

T0 ¼ b
dLeff

db
; b ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det ∂μϕI∂

μϕJ

q
: ð14Þ
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To prevent this one must therefore normalize ΦI →
T−1
0 ϕI and write the Lagrangian in terms of ϕI (so

rescalings will cancel out). Note that this renders ϕI
unitless, as in [37,38].
This procedure gives us a physical intuition for

the physical interpretation of T0 and b in terms of the
coordinates ϕI. Under the rescaling, two volume
cells with the same T0 will have the same Lagran-
gian density and hence will be in equilibrium. It is
clear that T0 is therefore the microscopic temper-
ature, possibly weighted by a unitless microscopic
degeneracy g (as was done in [5,44]). We will later
use this to interpret b and Leff .

Once these steps are done all dΣ0=dΣ0
0 and the effective

Lagrangian Leff is invariant under transformations leaving
det ∂ϕI

∂ϕJ
unchanged:

Lðaμ;ψÞ→LeffðϕI;ψÞ; LðϕI;ψÞ¼Leff

0
BBBBB@

∂ϕ0
I

∂ϕJ|{z}
det

∂ϕ0
I

∂ϕJ
¼1

ϕJ;ψ

1
CCCCCA
;

ð15Þ
ratios of δ4 ðdΣνaα∂αðδμνLÞ − dPμðΣ0ÞÞ cancel out and
Eq. (9) reduces automatically to

1 ¼ δðdΣμψ∂μL − dQðΣ0ÞÞ
δðdΣ0

μψ
0
∂
μL − dQ0ðΣ0

0ÞÞ
ð16Þ

so all coordinate diffeomorphism dependence has been
eliminated. To complete our task, one must also construct
the symmetries allowing Eq. (16) to be satisfied automati-
cally. We remember that since dΣμ

∂μ is a scalar, we can

evaluate it in the frame where dΣμ ¼ dΦ1dΦ2dΦ3ð1; 0⃗Þ,
where it becomes clear that ∂μL will reduce to gradients of
∂μΦ1;2;3 and ∂μΨ. Since one can always choose coordinates
where ∂μΨ ¼ 0, imposing Eq. (16) is of course equivalent
to imposing invariance of LðψÞ under arbitrary shifts of
functions of ΦI.
Summarizing this main result of our work, for the local

ergodicity condition Eq. (7) to apply for a generic foliation
Σ, the effective Lagrangian Leff , written in terms of gen-
erators of local space translations ϕI and internal symmetry
phases ψ , must be invariant under any ϕI → ϕ0

I leaving

detIJ
∂ϕ0

I
∂ϕJ

and ψ → ψ þ fðϕIÞ invariant. These of course are
exactly the symmetries in [36–38].
The identification of conserved currents in terms of Leff

was done in [38] by the guaranteed existence, under the
above set of diffeomorphisms of the Killing four-vector
defined by

uμuμ ¼ −1; uμdΣμ ¼ uμ∂μΦI¼1;2;3 ¼ 0;

which defines the boost from a generic dΣμ to one

where it is of the form dϕ1dϕ2dϕ3ð1; 0⃗Þ as well as two
scalars, under diffeomorphism invariance, b introduced in
Eq. (14) and y ¼ uμ∂μψ . The latter is related to the Noether
current Eq. (5) via [38] the conserved charge current
JμQ ¼ uμdL=dy. Thus, the conservation equations defining
ideal hydrodynamics, the simplest equations of an infinite
family of currents determined by arbitrary fðϕIÞ:

∂μsμ ¼ ∂μJ
μ
Q ¼ ∂μðfðϕIÞJμQÞ ¼ 0; sμ ¼ buμ; ð17Þ

follow from local ergodicity via the symmetries already
developed in [38] (note that Kelvin’s theorem is a conse-
quence [37]). This confirms the identification of b with the
microscopic entropy and, via basic thermodynamic rela-
tions, Leff with the microscopic energy density.
Physically the point here is that in the ideal hydro-

dynamic limit with no fluctuations one can perform a
spacetime foliation [6] proportional to the four-vector of
Lagrange multipliers under which entropy is maximized,
uμ=T, which must define the direction of every conserved
current. Rotations and volume-preserving rescalings re-
present the residual symmetries after this vector is fixed.
While this ideal hydrodynamics is the same as the usual

one [1,2,4], this way of arriving at the ideal hydrodynamics
as a limit is profoundly different from the usual approach of
coarse-graining Boltzmann-type equations around conser-
vation laws, one perhaps more useful to study hydro-
dynamics in small systems such as droplets of quark-gluon
plasma [7], ultracold atoms [8] and perhaps the everyday
phenomenon of “the Brazilian-nut effect” [9].
In the usual approach [4] hydrodynamics is a limit of a

deterministic transport equation valid in the ensemble
average limit. This means a hierarchy

Lmicro ≪ Ldiss|{z}
∼η=ðsTÞ

≪ Lmacro|fflffl{zfflffl}
∼ð∂uμÞ−1

; ð18Þ

where Lmicro, the origin of stochasticity, is neglected and the
effective theory is obtained by a coarse-graining around
Ldiss=Lmacro (Ldiss determines mean free path, or viscosity
to entropy ratio η=s).
While the Lmicro expansion was not studied as extensively

as the gradient expansion, it is possible to include it via
diagrammatic techniques [21] as well as recently developed
approaches based on the Schwinger-Keldysh formalism
[22,24]. In these approaches, one can obtain an expansion
in Lmicro=Ldiss [14–24] as well as a renormalization of
dissipative coefficients [21] due to contributions of fluctua-
tions. Unsurprisingly, this approach almost invariably results
in Ldiss being renormalized to ≥ OðLmicroÞ even if the “bare”
Ldiss is small. This is a reasonable conclusion, but small
systems hydrodynamics [7–9] seems to contradict this
conclusion as the goodness of hydrodynamic expansions
is remarkably independent on Lmicro, suggesting that perhaps
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hydrodynamics is somehow nonanalytic in Lmicro=Ldiss, as
argued in [32].
In the approach taken in this work, we start with the

ergodic hypothesis to hold approximately in every cell at a
scale Δt, but we do not consider fluctuations to be
necessarily small. In fact, the deterministic continuum is
coincident with the onset of the regression to the mean by
the law of large numbers. Such “coarse graining around
ergodicity” in the ideal limit means

Ldiss ¼ 0; Lmicro ≡ Δ ≪ Lmacro: ð19Þ
If one could move beyond Ldiss ¼ 0 this could lead to a
limit to hydrodynamics that depends very differently on the
thermal and mean free path scale. The main point here
is that

(i) a strongly coupled system could be “close the
ergodic limit” at every cell even if the number of
d.o.f.s in each cell is small. In this case the
“Khinchin conditions” [12] are not satisfied, so
Gibbsian and Boltzmannian equilibria are very
different, but the system will be in a local Gibbsian
equilibrium at every point;

(ii) since ergodicity and frame independence are differ-
ent concepts, in such a limit, foliation independence
should still be valid. It is in fact far from clear that,
provided the system is strongly coupled and chaotic,
decreasing the number of d.o.f.s decreases the
applicability of the ergodic hypothesis. In this sense,
fluctuations should respect foliation independence.
Approximate foliation independence means fluctua-
tions are inherently nonlinear and in fact often help
the system thermalize. This is particularly appealing
if fluctuation-dissipation holds [26].

To expand on point (i), the considerations above are
particularly relevant when the system is small enough
for quantum effects to be relevant. In fact, one can use
the direct connection between the eigenstate thermalization
hypothesis [45] (or similarly Berry’s conjecture; see [46]
and references therein) and the microcanonical density
matrix to generalize the derivation here to a quantum
system. A generic mixed density matrix commuting with
the Hamiltonian of a theory with a conserved charge and
energy-momentum is characterized by the density matrix

ρ̂¼ δP;P0δQ;Q0cP;Qc�P0;Q0 ji;Pμ;Qihj;Pμ;Qj; Û−1ρ̂ Û¼ ρ̂;

ð20Þ
where

Û ¼ exp ½iP̂νδxν� exp ½iθδQ̂�j ð21Þ

the phase invariance θ in a first quantized theory just
reflects unitarity and Jμν are simply generators of momen-
tum and angular momentum. For a highly mixed thermal-
ized system, ρ becomes a pseudorandom matrix, averaged

to cP;Qc�P0;Q0 ≃ 1=dΣðP;QÞ, making it indistinguishable
from the microcanonical ensemble examined in this paper.
Applying the eigenstate thermalization hypothesis to

every cell in every foliation is equivalent to promoting Jμν,
θ, P, and Q to functions of xμ and imposing foliation
independence on the “pseudorandomness” of ρ̂:

dρ̂
dΣ0

����
Σ0−Σ0

0
≃Δt

¼ 0; ρ̂ ≃
1

dΣ
δ̂E;E0 δ̂Q;Q0 ð22Þ

and also

Û−1ðxÞρ̂ÛðxÞ≃ ρ̂;

ÛðxÞ¼ exp½iT̂μνd3Σμδxν� exp ½i∂αθd3ΣαδQ̂� ð23Þ
for arbitrary d3Σμ. By imposing Σ invariance on the first
equation it is not too difficult to see that from Eq. (8) with the
density matrix as an “observable” an equation equivalent to
Eq. (9) can be derived, and hence quantum dynamics will be
equivalent to the classical microcanonical one.
What this reasoning suggests is that if the system can be

divided into cells where the eigenstate thermalization
hypothesis applies, then a dynamics equivalent to ideal
fluid dynamics will naturally emerge even if the number of
degrees of freedom is comparatively low and fluctuations
are big. In the context of heavy ion physics, therefore, the
applicability of the eigenstate thermalization hypothesis
suggested in [46] should go hand in hand in the onset of
hydrodynamic behavior where spatial anisotropy is also
present. Whether the eigenstate thermalization hypothesis
can be applied to QCD in the strongly coupled regime of
course remains to be understood [47], but perhaps
the parton disentanglement mechanism suggested in [48]
can generate local ergodicity. To verify this the diffeo-
morphisms examined here must be examined on the
light cone.
Regarding point (ii), to try to relax the Ldiss ¼ 0 limit of

Eq. (19), let us now imagine the system is approximately
locally ergodic, defined by the idea that deviations from
ergodicity are within an standard fluctuation. ϕI can then be
thought of not as coordinates but as probability distributions,
each characterized by a Killing vector uμ. One heuristically
arrives at the picture in [32]. To do so one can use escort
distributions on top of the ergodic distribution [49]

ϕI → ϕ̂I ≡ exp

�
ϕI −

d lnZ
dΣI

�
; Z ¼ Tr exp ½dΣμβνT̂

μν�:

ð24Þ

One can then link Lagrangian hydrodynamics to Zubarev
relativistic hydrodynamics as developed in [6].
In addition let us suppose in accordance to (ii) that the

fluctuation-dissipation theorem still applies, so fluctuations
around equilibrium give a good estimate of deviations from
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ergodicity.Supposingfluctuation-dissipationapplies is equiv-
alent to supposing that while b as defined in Eq. (17) is not
conserved, the probability of a cell evolving from a starting
configuration at b ¼ b0, τ ¼ τ0 to b ¼ b0 þ db at τ ¼ dτ ¼
dΣμdΣμ is

PðϕI ¼ϕI0þdϕI;τ¼ τ0þdτjϕI ¼ϕI0;τ¼ τ0Þ
PðϕI ¼ϕI0;τ¼ τ0þdτjϕI ¼ϕI0þdϕI;τ¼ τ0Þ

¼fðbþdbÞ
fðbÞ ;

ð25Þ

i.e., a function of the entropy only. One can easily check that,
while this dynamics need not be compatible with Eq. (6), it
remains invariant under foliation changes. Keeping the idea
that thenumber ofmicrostates is∼ expðbÞ forcesfðbÞ to be an
exponential aswell. It is in fact the dynamics of [25] expressed
in Lagrangian hydrodynamics. The multiple definitions ofϕI
should therefore accommodate the gaugelike symmetry of
[25] described in [32]. Here, it is worth pointing out that if one
uses local ergodicity to describe microscopic fluctuations, it
becomes obvious that, as pointed out in [32], only fluctuations
of the totalTμν are physical, while fluctuations ofuμ, e,p, and
Πμν on their own are essentially equivalent to constrained
gauge redundancies, ensembles cannot depend on them
individually. In the Lagrangian picture this is evident from
the fact that [37,38] all perturbative degrees of freedom are
Goldstone modes of the symmetries emergent from ergo-
dicity. Distinguishing a nonhydrodynamic excitation of Πμν

from a fluctuation in equilibrium uμ; e is only possible when
theergodic limit is exact ineverycell aswell as in theensemble
average, i.e.,when thenumberofmicroscopicd.o.f.s is infinite
in every coarse-grained cell.
It is also worth pointing out that any long-range potential

between degrees of freedom will, by the fluctuation-
dissipation theorem applied to the microcanonical ensem-
ble [26], be indistinguishable from an anisotropic collective
flow in its sampling dynamics. This leads exactly to the
picture advocated around Eq. (36) [32], where a large class
of deformations of the phase space function has the
potential to make Vlasov-type and Boltzmann-type terms
in kinetic theory cancel out, leading to an ensemble of
equivalent local equilibrium states. Superficially this looks
like the plasma instability scenario [11], but the “equivalent
equilibrium” states are really indistinguishable from bona
fide equilibrium. One can see this by considering that if
local ergodicity is approximately respected in each cell as
well as across ensemble averages, hydrodynamic signatures
should be expected to translate across fluctuations, if their
fluctuation should reflect initial state fluctuations, as indeed
seems to be the case [1,50]. If hydrodynamical observables
show thermalization driven by plasma instabilities, one
would expect parametrically larger fluctuations [51].
The above reasoning assumes that the potentials are

local and symmetric enough to not generate long-range

correlations. The alternatives of course are “solids” and
“jellies” [37,52–54], where long-range correlations break
local deformation, isotropy and translation symmetries.
Looking at the arguments governing the applicability of
the ergodic hypothesis [12], it is clear that while such
systems have an equilibrium state characterized by the
local maximum of entropy, their accessible phase space
volume is generally far away from the indecomposable
limit [12] because of long-range correlations imposing
constraints local to phase space. Thus, local ergodicity in
the sense of this work does not apply to these systems.
Moreover, the arguments presented here make apparent
why such systems are generally fragile: The lack of phase
space indecomposability [12] ensures that small pertur-
bations will lead to large deviations from the ergodic
hypothesis in every cell, and hence it is expected that it
becomes relatively easy to “break” such systems, i.e.,
bring them far away from local equilibrium. The prepa-
ration of such states will require a careful cancellation of
dynamics at different scales. Thus, relativistic fluids and
the symmetries defining them are unique in that local
ergodicity ensures both the existence of continuous
deformation symmetries and the fact that adjacent
microstates to equilibrium will be sampled, by local
perturbations, in a way that guarantees the continuation
of near-local equilibrium.
Making a link of this work with hydrodynamics with

spin [5,55] is a nontrivial endeavor because of the fact
that the interplay of spin with angular momentum lead to
nonlocal phase space hypersurfaces with a high deviation
from indecomposability [12] (the presence of subregions
of phase space with limited connection can be interpreted
as the appearance of an intermediate scale [56]).
Nevertheless, it is possible that hydrodynamics with spin
can only be defined this way, given the fact that spin-
vorticity coupling alters microstate distributions at the
same order as hydrodynamic fluctuations [5], something
arising as nonlocality from transport models [57].
Finally, as a wild speculation taking inspiration

from [40], the addition of a horizon term to the entropy,
dΩ, and a generalization of the ergodicity hypothesis from
time averages to worldline or proper time averages might
open the way to an entropic gravity scenario where the
equivalence principle is respected exactly, as suggested
in [25,41].
In conclusion we have shown that the local symmetries

associated with ideal Lagrangian hydrodynamics can be
thought of as emerging from a hypothesis of local ergodicity
strong enough to be invariant under smooth spacetime
foliations. This opens awayof thinking about hydrodynamics
which is explicitly “nonperturbative” with respect to fluctua-
tionsandmoreappropriate to study theonsetofhydrodynamic
behavior in small systems.
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