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Based on lattice QCD results of equation of state and baryon number susceptibility at zero baryon
chemical potential, and supplemented by machine learning techniques, we construct the analytic form of
the holographic black hole metric in the Einstein-Maxwell-Dilaton framework for pure gluon, 2-flavor, and
(2þ 1)-flavor systems, respectively. The dilaton potentials solved from Einstein equations are in good
agreement with the extended nonconformal DeWolfe-Gubser-Rosen type dilaton potentials fixed by lattice
QCD equation of state, which indicates the robustness of the Einstein-Maxwell-Dilaton framework. The
predicted critical end point in the (2þ 1)-flavor system is located at (Tc ¼ 0.094 GeV, μcB ¼ 0.74 GeV),
which is close to the results from the realistic Polyakov-Nambu-Jona-Lasinio model, the functional
renormalization group, and the holographic model with extended DeWolfe-Gubser-Rosen dilaton potential.
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Introduction. Exploring phase transitions and phase struc-
tures of quantum chromodynamics (QCD) matter under
extreme conditions is essential for understanding phenom-
ena in heavy ion collisions, the early Universe, and neutron
stars. It has been predicted that a critical end point (CEP)
exists at a finite baryon chemical potential μB [1], and it has
attracted extensive attention for several decades both in
theory and experiment [2–7]. Searching for the CEP has
become one of the most important goals at high baryon
densities in heavy ion collisions at relativistic heavy ion
collision [8–13], as well as in future facilities, e.g., FAIR at
Darmstadt, NICA in Dubna, and HIAF in Huizhou.
Due to the sign problem, lattice QCD is not well adapted

to finite chemical potential regions. The CEP has been
extensively investigated in four-dimensional effective
QCD models, e.g., the Nambu-Jona-Lasinio, linear sigma
model [14,15], and their Polyakov-loop extended version
[16–19], the Dyson-Schwinger equations (DSEs) [20–23],
and the functional renormalization group (FRG) [24,25]. In
recent decades, the holographic gauge-gravity duality [26]
has been widely applied as an important nonperturba-
tive method in describing hadron physics [27–30] and

QCD matter under extreme conditions [31–48]. The five-
dimensional Einstein-Maxwell-Dilaton (EMD) framework
[34–39,45–48] has been adapted as the working frame-
work for describing QCD matter at finite temperature and
density.
A family of five-dimensional black holes dual to QCD

equation of state has been constructed in Refs. [31,49] with
a non-conformal dilaton potential, and a CEP was first
obtained from holographic dual black hole by DeWolfe-
Gubser-Rosen (DGR) in [32]. Further careful studies have
been conducted with extended DGR nonconformal dilaton
potential with more parameters [42,43,50–53], see review
in [54]. Another equivalent method is the potential
reconstruction method, where one can input the dilaton
or a metric to determine the dilaton potential. Although this
approach results in a temperature-dependent dilaton poten-
tial, the model can still capture many QCD properties
through analytical solutions.
Machine learning has become a useful tool in high-energy

physics; for a recent review, see Ref. [55]. Furthermore, the
integration of deep learning with holographic QCD has been
explored in recent studies [56–63]. Unlike conventional
holographic models, this approach first employs specific
QCD data to determine the bulk metric (as well as other
model parameters) through machine learning. Subsequently,
the model utilizes the determined metric to calculate other
physical QCD observables, serving as predictions of the
model. This Letter will offer an approach to construct a
holographic model with the help of machine learning.
In this study, we will employ the potential reconstruction

method, supplemented by machine learning, to extract the
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black hole metric of the EMDmodel from the lattice results
of the equation of state (EOS) at zero chemical potential for
pure gluon, 2-flavor, and (2þ 1)-flavor systems, respec-
tively. This model will then be used to predict the location
of CEP.

The general EMD framework. Firstly, we review
the five-dimensional Einstein-Maxwell-Dilaton systems
[34–38,45–48]. The action includes a gravity field gμν, a
Maxwell field Aμ and a dilaton field ϕ. In the Einstein
frame, it is expressed by the following equation:

SE¼
1

16πG5

Z
d5x

ffiffiffiffiffiffi
−g

p �
R−

fðϕÞ
4

F2−
1

2
∂μϕ∂

μϕ−VðϕÞ
�
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ð1Þ

where fðϕÞ is the gauge kinetic function coupled with the
gauge field Aμ, F is the tensor of Maxwell field, VðϕÞ is the
dilaton potential, and G5 is the Newton constant in five
dimensions. The explicit forms of the gauge kinetic
function fðϕÞ and the dilaton potential VðϕÞ can be solved
consistently from the equations of motion.
We give the following ansatz of metric

ds2 ¼ L2e2AðzÞ

z2

�
−gðzÞdt2 þ dz2

gðzÞ þ dx⃗2
�
; ð2Þ

where z is the fifth-dimensional holographic coordinate and
the radial L of AdS5 space is set to be one, i.e., L ¼ 1. The
boundary conditions are

Að0Þ ¼−
ffiffiffi
1

6

r
ϕð0Þ; gð0Þ ¼ 1; Atð0Þ ¼ μþ ρ0z2þ�� � :

ð3Þ

μ can be regarded as baryon chemical potential and ρ0 is
proportional to the baryon number density. μ is related to
the quark-number chemical potential μ ¼ 3μq. The baryon
number density can be calculated as [42,64]

ρ ¼
����limz→0
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����;

¼ −
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L is the Lagrangian density in the Einstein frame.
To obtain the analytical solution, we assume the form of

fðϕÞ and AðzÞ with several parameters. From experience
in [46], we take the ansatz of the metric

AðzÞ ¼ d lnðaz2 þ 1Þ þ d lnðbz4 þ 1Þ; ð5Þ

and the gauge kinetic function fðzÞ is taken as

fðzÞ ¼ ecz
2−AðzÞþk: ð6Þ

Then, we can get

gðzÞ ¼ 1 −
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where
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The Hawking temperature and entropy of this black hole
solution are given by

T¼ z3he
−3AðzhÞ

4π
R zh
0 dyy3e−3AðyÞ

�
1

þ2cμ2ekðe−cz2h R zh
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s ¼ e3AðzhÞ

4G5z3h
: ð10Þ

After knowing the entropy, the free energy can be
calculated as

F ¼ −
Z

sdT − ρdμ: ð11Þ

The pressure is defined as p ¼ −F. The energy density of
the system can be derived as

ϵ ¼ −pþ sT þ μρ: ð12Þ
The second-order baryon number susceptibility is defined as

χB2 ¼ 1

T2

∂ρ

∂μ
: ð13Þ
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Machine learning the holographic metric. There are three
undetermined parameters a, b, d in AðzÞ, see Eq. (5) and
two parameters c, k in fðzÞ, see Eq. (6), together with the
Newton constant G5, the parameter space is six dimen-
sional. All of these parameters can be simultaneously
constrained by machine learning the lattice QCD results
on the EOS and the baryon number susceptibility at zero
chemical potential. The lattice QCD results on EOS at zero
chemical potential are taken from Refs. [65–67] for pure
gluon, 2-flavor and (2þ 1)-flavor systems, respectively.
The lattice results of baryon number susceptibility χB2 are
taken from Refs. [68,69].
We implement a deep neural network for regression

analysis using the TensorFlow framework as shown in
Fig. 1. The structure of the neural network consists of an
input layer, three hidden layers with sigmoid activation
functions, and a single-node output layer. The model
employs mean squared error as the loss function and uses
the Adam optimizer for parameter optimization. In our
approach, we extract 35, 12, 55 points from the lattice’s
entropymeasurements for pure gluon, 2-flavor, and (2þ 1)-
flavor systems. Additionally, we use 8 and 15 points from
the lattice’s baryon number susceptibility for 2- and (2þ 1)-
flavor systems, respectively. The training process for our
model encompasses 10 000 training epochs. After the
training of the neural network model, we can obtain the
relationship between the input variable, i.e., the temperature
T, and the target output variable, i.e., the entropy s or baryon
number susceptibility χB2 , so that the model can predict the
target output as accurately as possible on the test set.
Now we turn to solving an optimization problem to find

the optimal parameter values through a gradient descent
algorithm. The program defines a loss function that
employs the least squares method to measure the difference
between the predictions of the model and the output from a
pretrained neural network. This comparison is utilized to
evaluate the performance of model parameters a, b, c, d, k,
andG5. Initial values are assigned to these parameters, with
constraints applied to a ≥ 0 and b ≥ 0 to maintain AðzÞ
within real number ranges. The optimization of parameters
is conducted using the Adam optimizer through 5000
iterations of gradient descent, during which the loss is
calculated and parameters are updated iteratively. Upon

completion, it reports the final optimized values for all the
parameters involved.
The machine learning process gives six optimized param-

eters as well as the predicted critical temperature Tc at μ ¼ 0
for pure gluon, 2-flavor and (2þ 1)-flavor systems, respec-
tively. The minimum of the speed of sound determines Tc ¼
0.265 GeV for pure gluon, Tc ¼ 0.189 GeV for 2-flavor,
and Tc ¼ 0.128 GeV for (2þ 1)-flavor system at vanishing
chemical potential. The results are listed in Table I.
The machine learning results, in comparison with lattice

results for the entropy density, pressure, energy density, and
trace anomaly as functions of temperature, are shown for
pure gluon, 2-flavor, and (2þ 1)-flavor systems in Figs. 2–4.
The results of ϕðzÞ and the baryon number susceptibility χB2

FIG. 1. A sketch of the neural network used in our model. The
input is the temperature T and the output is the entropy s or
baryon number susceptibility χB2 .

TABLE I. Parameters given by the machine learning of pure
gluon system, 2-flavor, and (2þ 1)-flavor system, respectively.
Tc is the predicted critical temperature at vanishing chemical
potential. The unit of T is GeV.

a b c d k G5 Tc

Nf ¼ 0 0 0.072 0 −0.584 0 1.326 0.265
Nf ¼ 2 0.067 0.023 −0.377 −0.382 0 0.885 0.189
Nf¼2þ1 0.204 0.013 −0.264 −0.173 −0.824 0.400 0.128

FIG. 2. The machine learning results (lines) of the entropy
density, pressure, energy density, and trace anomaly as a function
of the temperature for pure gluon system at μ ¼ 0, comparing
with lattice results in different symbols with error bar [65]. The
unit of T is GeV.

FIG. 3. The machine learning results (lines) of the entropy
density, pressure, energy density and trace anomaly as a function
of the temperature for the two-flavor gluon system at μ ¼ 0,
comparing with lattice results in different symbols with error bar
[66]. The unit of T is GeV.
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calculated frommachine leaningAðzÞ and fðzÞ are shown in
Fig. 5. It shows that the results of χB2 are in good agreement
with lattice results for 2-flavor and (2þ 1)-flavor systems at
μ ¼ 0 around the phase transition temperature.

Comparing with extended DGR models. In our framework,
with given AðzÞ and fðzÞ from machine learning, we can
easily solve the dilaton field ϕ and dilaton potential VðϕÞ as
well as fðϕÞ. As introduced in Introduction, by incorpo-
rating lattice fitting, the DGR model [31,32] and its
extended versions [42,43,52,53,70,71] also construct a
family of five-dimensional black holes through a non-
conformal dilaton potential VðϕÞ. Therefore we can com-
pare our machine learning model with extended DGR
models. The results of VðϕÞ and fðϕÞ, obtained from
machine learning AðzÞ and compared with extended DGR
models, are shown in Fig. 6. It is observed that the results
obtained by inputting AðzÞ are in qualitatively good agree-
ment with those from the extended DGR models using the
nonconformal dilaton potential VðϕÞ, indicating the suc-
cess of the EMD framework in describing QCD matter.

Phase diagram in ðT; μBÞ plane and the location of CEP.
The critical temperature at finite μ can be determined by the
minimum of the sound velocity. The phase diagram in
the T − μ plane obtained in the machine learning holo-
graphic model is shown in Fig. 7. For both 2-flavor and

(2þ 1)-flavor systems, the phase transition is crossover at
small chemical potentials and first order at large chemical
potentials. The CEP for 2-flavor system is located at
(μcB ¼ 0.46 GeV, Tc ¼ 0.147 GeV) and for (2þ 1)-flavor
system is at (μcB ¼ 0.74 GeV, Tc ¼ 0.094 GeV). The
predicted location of CEP for the (2þ 1)-flavor system
from this model is very close to recent results from other
nonperturbative models, e.g., DSE-FRG [72], FRG [24],
and realistic Polyakov-Nambu-Jona-Lasinio (PNJL) model
[18] as well as the extended DGR model in [42]. The
freeze-out line with corresponding collision energy is also
shown in Fig. 7. Our predicted CEP is above the freeze-out
line, from analysis in [18], it might indicate a peak of
baryon number fluctuation κσ2 appears in the collision
energy of

ffiffiffi
s

p
∼ 3–5 GeV.

Conclusion and outlook. In this work, by using the
machine learning method, an analytic holographic QCD
model is constructed from the lattice QCD results at zero

FIG. 4. The machine learning results (lines) of the entropy
density, pressure, energy density and trace anomaly as a function
of temperature for the (2þ 1)-flavor system at μ ¼ 0, comparing
with lattice results in different symbols with error bar [67]. The
unit of T is GeV.
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FIG. 5. ϕðzÞ (a) and χB2 (b) for pure gluon (green), 2-flavor
(blue) and (2þ 1)-flavor (red) systems, respectively. Lattice
results come from Refs. [68,69]. The unit of z is GeV−1. The
unit of T is GeV.
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FIG. 6. fðϕÞ (a) and VðϕÞ (b) for pure gluon (green), 2-flavor
(blue) and (2þ 1)-flavor (red) systems, respectively. Solid lines
represent the results obtained through machine learning, while
dashed lines depict the outcomes from the extended DGR model
in Ref. [70].

FIG. 7. The location of CEP for 2 flavor and 2þ 1 flavor from
theory predictions. Red dots are our results, blue dots [53], dark-
blue dots [51], and green dots [43] are from DGR-type holo-
graphic QCD models. The pink triangles, the blue squares, and
the orange stars are from DSE-FRG [72], FRG [24], and realistic
PNJL model [18], respectively. The gray dashed line is the freeze-
out line TðμÞ ¼ 0.158 − 0.14μ2 − 0.04μ4 and the gray dots are
corresponding

ffiffiffi
s

p
with μBð

ffiffiffi
s

p Þ ¼ 1.477=ð1þ 0.343
ffiffiffi
s

p Þ alone
the freeze-out line [11].
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chemical potential onEOSandbaryonnumber susceptibility.
With machine learning analytic AðzÞ and fðzÞ, it is straight-
forward to calculate other quantities. We showed the pre-
dicted critical temperatures at vanishing chemical potential
and the location of CEP for different systems. The different
locations of CEP in 2-flavor and (2þ 1)-flavor systems
reveal that dynamic quarks influence the location of the CEP.
Notably, theCEP location in ourmodel for the (2þ 1)-flavor
case is close to those fromother nonperturbativemodels, e.g.,
DSE-FRG [72], FRG [24], and realistic PNJL model [18] as
well as the extended DGR model in [42]. The consistent
results from the machine learning metric and the noncon-
formal dilaton potential indicate the robustness of the EMD
framework in describing QCD matter at finite temperature
and chemical potential.
This work represents the first attempt to construct an

analytical holographic model using machine learning. This
analytical model can give different phase structures for
different flavors. We hope that this method will be

beneficial for the search of CEP in the QCD phase diagram
and help us get a deeper understanding of the hadron
spectra within the domain of strong interactions. We aim to
incorporate more information into the holographic QCD
and construct an even more realistic holographic model in
future work with machine learning.
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