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We study information-theoretic properties of scalar models containing two Higgs doublets Φa, where
a ¼ 1, 2 is the flavor quantum number. Considering the 2-to-2 scattering ΦaΦb → ΦcΦd as a two-qubit
system in the flavor subspace and the S-matrix as a quantum logic gate, we analyze the entanglement power
of the S-matrix at the tree level, in the limit the gauge coupling is turned off. Demanding the suppression of
flavor entanglement during the scattering, the perturbative S-matrix in the broken phase can only be in the
equivalent class of the Identity gate and the scalar potential exhibits a maximally enhanced SOð8Þ
symmetry acting on the eight real components of the two doublets. The SOð8Þ symmetry leads to the
alignment limit naturally, giving rise to a Standard-Model-like Higgs boson as a consequence of
entanglement suppression.
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Introduction. The concept of symmetry is among the most
powerful organizing principles in nature. However, very
little has been said about its origin and whether symmetry
can be derived from more fundamental principles. On the
other hand, J. A. Wheeler famously coined the phrase
It-from-bit, stipulating that all things physical are informa-
tion theoretic in its origin [1]. Given that entanglement is
one of the most prominent features of quantum mechanics,
one wonders if symmetry could arise out of a quantum
information-theoretic origin.
Indeed, recent studies in low-energy QCD revealed

intriguing connections between the presence of emergent
global symmetries and the suppression of spin-entanglement
in nonrelativistic scattering of spin-1=2 baryons [2–4].
Of particular interest is the interaction of neutron (n) and
proton (p) in the low-energy, which exhibits an approximate
SUð4Þsm spin-flavor symmetry first observed by E. P.
Wigner [5] more than half a century ago, and studied in
modern perspective in Ref. [6]. Moreover, s-wave scattering
lengths of np are unusually large in both the spin-singlet

(1S0) and spin-triplet (3S1) channels, which are indicative of
nonrelativistic conformal invariance, also known as the
Schrödinger symmetry [7,8]. These emergent symmetries
in the infrared are usually characterized as fine-tuned or
accidental.
Reference [2] first made the fascinating observation that,

within the pionless effective field theory [9,10], regions
of parameter space where SUð4Þsm and Schrödinger
symmetry emerge coincide with regions where the spin-
entanglement is suppressed in np scattering. In addition,
entanglement suppression in flavor-diagonal scattering of
octet baryons leads to an even larger SUð16Þ spin-flavor
symmetry [2]. Reference [3] studied these findings in an
information-theoretic context and identified the association
of the Identity gate with SUð4Þsm and SUð16Þ, as well as
the SWAP gate with the Schrödinger symmetry. These
turned out to be the only two minimal entanglers for two
qubit-systems [3]. Subsequently, Ref. [4] extended the
analysis to flavor-changing scattering of octet baryons
and identified scattering channels whose entanglement
suppression are indicative of emergent SUð6Þ, SOð8Þ,
SUð8Þ and SUð16Þ symmetries.
Given the nascent nature of this subject, it is important

to proceed in an exploratory spirit and search for more
examples of physical systems exhibiting a correlation
between emergent symmetry and entanglement suppres-
sion. In this work we study a system of very different nature
from the nonrelativistic np interaction; a model of
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electroweak symmetry breaking containing two Higgs
doublets Φa ¼ ðΦþ

a ;Φ0
aÞT , a ¼ 1, 2, commonly referred

to as two-Higgs-doublet models (2HDMs), which are the
prototypical example for physics-beyond-the-Standard
Model. We will analyze 2HDMs from a new perspective,
focusing on entanglement property of the S-matrix for the
scattering ΦaΦb → ΦcΦd, in the limit the gauge coupling
is turned off. The Yukawa coupling, on the other hand,
allows us to define flavor quantum number of the Higgs
doublets and does not contribute to tree amplitudes. We
find that, in the broken phase, requiring the perturbative
S-matrix to be a minimal entangler in the flavor space leads
to a maximal SOð8Þ symmetry, acting on the eight real
components of the two doublets.
The SOð8Þ symmetry has an important consequence

phenomenologically. Since measurements at the Large
Hadron Collider indicate properties of the 125 GeV Higgs
is standard-model (SM) like [11,12], any viable 2HDMs
must be in the “alignment limit” [13–17], where one of
the CP-even mass eigenstates is SM-like. It turns out that
imposing the SOð8Þ symmetry, which is broken down to
SOð5Þ upon switching on the SUð2ÞL gauge interactions,
leads to “natural alignment” [18,19]. Therefore, entanglement
suppression in 2HDMs gives rise to a SM-like Higgs boson.

Two-Qubit System Essentials. Here we briefly summarize
the key concepts of quantum information needed for the
present work. More comprehensive details can be found in
Refs. [3,4].
We start with two distinguishable qubits, Alice (A)

and Bob (B), each with its own basis vectors fj1iI; j2iIg,
I ¼ A, B. It is conventional to define the computation basis
fj11i; j12i; j21i; j22ig, where jiji ¼ jiiA ⊗ jjiB. There are
several quantitative measures of entanglement in two-qubit
systems [20], although Ref. [3] showed that all of them are
related to the concurrence Δ [21,22], which for a normal-
ized state jΨi ¼ c11j11i þ c21j21i þ c12j12i þ c22j22i is
defined as

ΔðΨÞ ¼ 2jc11c22 − c12c21j: ð1Þ

The concurrence has a minimum at 0, if jΨi is not
entangled, and a maximum at 1 if it is maximally entangled.
Other commonly employed entanglement measures include
the von Neumann entropy EvNðρÞ ¼ −TrðρA ln ρAÞ and the
linear entropy ELðρÞ¼−Tr½ρAðρA−1Þ�, where ρ ¼ jΨihΨj
is the density matrix and ρA=B ¼ TrB=AðρÞ is the reduced
density matrix for Alice=Bob.
Entanglement is a property of quantum states.

Nevertheless we are more interested in the ability of a
quantum operator U to generate entanglement. In this
regard, the entanglement power of a unitary operator is
defined by averaging over all direct product states that U
acts upon [23,24]:

ΔðUÞ ¼ ΔðUjψA >⊗ jψB >Þ; ð2Þ

where the average is over each Bloch sphere. Importantly,
local operators which can be written as the product of
singlet-qubit quantum gates, V ¼ UA ⊗ UB do not gen-
erate entanglement. This defines an equivalent class among
the two-qubit gates,

U ∼U0; if U ¼ V1U0V2: ð3Þ

Operators in the same equivalent class have the same
entanglement power. Classification of all nonlocal, and
hence entanglement generating operators in a two-qubit
system has been achieved long ago [20,25,26]. However,
for our purpose we focus on entanglement suppressing
operators characterized byΔ ¼ 0, which consist of only the
Identity gate and the SWAP gate [3], as well as their
equivalent classes. In the computational basis they are
defined by 1jiji ¼ jiji and SWAPjiji ¼ jjii. We will
represent equivalent classes of 1 and SWAP by ½1� and
[SWAP], respectively.
In low-energy QCD, nonrelativistic np scattering is

dominated by the s-wave and the S-matrix can be written
as [3]

S ¼ 1

2
ðe2iδ1 þ e2iδ0Þ1þ 1

2
ðe2iδ1 − e2iδ0Þ SWAP; ð4Þ

where δ0 and δ1 are the scattering phases in the 1S0 and 3S1
channels, respectively. Then, Alice and Bob are the
spin-1=2 proton and neutron, respectively. One can see
from Eq. (4) that S ∝ 1 if δ0 ¼ δ1 and S ∝ SWAP if
jδ0 − δ1j ¼ π=2. The observation in Ref. [2] is that δ0 ¼ δ1
corresponds to Wigner’s SUð4Þsm spin-flavor symmetry
[5,6] and jδ0 − δ1j ¼ π=2 gives rise to the Schrödinger
symmetry [7,8]. Both are emergent symmetries not present
in the fundamental QCD Lagrangian.

2HDM Essentials. In 2HDM there are two hypercharge-
one, SUð2Þ doublet fields Φa ¼ ðΦþ

a ;Φ0
aÞT; a ¼ 1, 2, and

the most general potential is given by, following the
notation of Ref. [27],

V ¼ m2
1Φ

†
1Φ1 þm2

2Φ
†
2Φ2 − ½m2

12Φ
†
1Φ2 þ H:c:�

þ λ1
2
ðΦ†

1Φ1Þ2 þ
λ2
2
ðΦ†

2Φ2Þ2 þ λ3ðΦ†
1Φ1ÞðΦ†

2Φ2Þ
þ λ4ðΦ†

1Φ2ÞðΦ†
2Φ1Þ

þ
�
λ5
2
ðΦ†

1Φ2Þ2 þ λ6ðΦ†
1Φ1ÞðΦ†

1Φ2Þ

þ λ7ðΦ†
2Φ2ÞðΦ†

1Φ2Þ þ H:c:

�
: ð5Þ

For simplicity we assume CP conservation and λi are real
parameters, although our results can be easily generalized
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to the CP-violating case. We also assume a Uð1Þem-
preserving vacuum, leading to two scalar vacuum expect-
ation values (VEVs), v1 and v2, that are real and non-
negative, with ðv21 þ v22Þ1=2 ≡ v ¼ 246 GeV. We define
tβ ¼ v2=v1 ≥ 0, 0 ≤ β ≤ π=2, such that cβ ≡ cos β ¼ v1=v
and sβ ≡ sin β ¼ v2=v.
Before considering the couplings of the two Higgs

doublets to fermions, the flavor quantum number of
Higgs doublets is not well-defined. This is because Φ1

and Φ2 have identical SM quantum numbers and one is
free to redefine the scalar fields by a global Uð2Þ rotation
of Φ⃗ ¼ ðΦ1;Φ2ÞT , which leaves the scalar kinetic term
invariant, Φ⃗ → Φ⃗0 ¼ UΦ⃗, U†U ¼ I. Parameters appearing
in Eq. (5) are not invariant under Uð2Þ rotations, whereas
the potentials related by Uð2Þ rotations are physically
equivalent. One can remove the Uð2Þ redundancy by
introducing couplings to fermions. That is, once Yukawa
couplings are introduced, flavor can be defined. For
example, in type II 2HDMs [28,29], one doublet couples
to the up-type fermions while the other couples to the
down-type fermions, thereby allowing us to distinguish
the two doublets. Another choice of basis, which is
convenient for studying the phenomenological property
of 2HDMs, [14–17], is the Higgs basis [30], defined by
ðH1; H2Þ with the property; hH0

1i ¼ v=
ffiffiffi
2

p
and hH0

2i ¼ 0.
In the Higgs basis the scalar potential is the same as
in Eq. (5) but with the coefficients fm2

1; m
2
2; m

2
12g →

fY1; Y2; Y3g and λi → Zi. The minimization of scalar
potential gives Y1 ¼ −Z1v2=2 and Y3 ¼ −Z6v2=2. The
entanglement power of the S-matrix does not depend on
the operator basis since making a Uð2Þ rotation corre-
sponds to single-qubit operation and preserves the entan-
glement power.
The alignment limit is defined as the case when the scalar

h≡ ReðH0
1Þ coincides with the 125 GeV mass eigenstate.

In this case h, which carries the full VEV, couples to the
massive gauge bosons with the SM strength when the
gauge coupling is turned on. It is shown in Refs. [14–17]
that the alignment is achieved by the condition,

Z6 ¼ 0: ð6Þ

In the case of CP-violation, Z6 is complex and the
alignment condition is really two equations; ReðZ6Þ ¼ 0
and ImðZ6Þ ¼ 0, which eliminate mass mixings of h with
the other two neutral scalars. In any case, when jZ6j ≪ 1, h
is approximately aligned with the 125 GeV mass eigen-
state, which then becomes SM-like. Moreover, in this limit
Z1v2 is the dominant contribution to the mass of h;
M2

h ≈ Z1v2 ¼ −2Y1. To summarize, the mass of the
SM-like Higgs boson is controlled by Z1 while the
departure from Higgs alignment is given by Z6.

S-matrix as an Identity gate. We now investigate the
information-theoretic properties of 2HDMs, focusing
on the S-matrix as an entanglement operator in the
flavor-space in the scattering ΦaΦb → ΦcΦd. In terms
of Alice and Bob qubits, we identify jiiA ¼ Φþ

i and
jiiB ¼ Φ0

i , i ¼ 1, 2, respectively. The reason for choosing
different electroweak quantum numbers is that Alice and
Bob are then associated with distinguishable qubits. The
S-matrix, being a unitary operator, then can be thought of as
a two-qubit quantum logic gate. Recall that the S-matrix is
related to the transition matrix T:

S ¼ 1þ iT; ð7Þ

where the matrix elements of the T-matrix are given by

hΦcΦdjiTjΦaΦbi ¼ ið2πÞ4δð4Þðpa þ pb − pc − pcÞMab;cd:

ð8Þ

Mab;cd are the scattering amplitudes one typically computes
in perturbation theory. Notice that the T-matrix, and
therefore the amplitude itself, is not a unitary operator
and does not admit an interpretation as a quantum gate. In
fact, unitarity of the S-matrix requires

iðT† − TÞ ¼ TT†; ð9Þ

which is nothing but the optical theorem. At the tree-level,
the amplitude does not have an imaginary part and the
T-matrix is Hermitian. This can be seen from the fact that,
if T ∼OðλÞ in perturbation, T†T ∼Oðλ2Þ is higher order in
the coupling constants and the right-hand side of Eq. (9)
can be ignored; perturbative unitarity of the S-matrix is
fulfilled at OðλÞ. It is worth pointing out that our approach
is different from some in the literature which looked at
the entanglement property of the amplitude, instead of the
S-matrix [31–33].
We are interested in an S-matrix which suppresses

flavor entanglement in 2-to-2 scattering, when turning
off the gauge fields. A priori we need to consider the
two equivalent classes associated with the Identity and the
SWAP gates, ½1� and [SWAP], respectively [3]. However,
we argue that perturbatively the S-matrix could only be
in ½1� and not [SWAP]. This is most clear by looking at
Eq. (7), which implies

S ∼ ½1� ⇔ T ∼ ½1�; ð10Þ

S ∼ ½SWAP� ⇔ T ∼ ið½1� þ ½SWAP�Þ: ð11Þ

In other words, the S-matrix being in [SWAP] requires a
tree-level cancellation between the T-matrix, which we
compute in perturbation, against the noninteracting part
of the S-matrix. This can only be achieved in a strongly-
coupled theory. Indeed, Refs. [7,8] found the SWAP gate
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is associated with fermionic systems interacting with
the largest strength allowed by unitarity—fermions at
unitarity—and Schrödinger symmetry emerges from it.
For weakly coupled theories, an entanglement-suppressing
S-matrix can only be in ½1� at finite orders in perturbation
theory, except when a certain class of diagrams is
resummed to all orders [34].
In what follows we will focus on the flavor subspace of

the amplitudeMab;cd defined in Eq. (8), which is Hermitian
at the tree level, and work out the conditions on the
amplitude in order for the S-matrix to be in ½1�. Starting
from an initial product state in the flavor space, jΦaΦbi ¼
ðκj1i þ ϵj2iÞ ⊗ ðγj1i þ δj2iÞ, where jκj2 þ jϵj2 ¼ jγj2 þ
jδj2 ¼ 1. The outgoing state then has the flavor structure,

jΦcΦdi ¼ ðδacδbd þ iMab;cdÞjΦai ⊗ jΦbi: ð12Þ

Demanding that the concurrence in Eq. (1) vanishes,
ΔðjΦcΦdiÞ ¼ 0, and working to the first order in pertur-
bation by keeping only terms linear in Mab;cd, we obtain

M11;11 þM22;22 ¼ M12;12 þM21;21; ð13Þ

M11;22 ¼ M12;21 ¼ M21;12 ¼ M22;11 ¼ 0; ð14Þ

M11;12 ¼ M21;22; M11;21 ¼ M12;22;

M22;21 ¼ M12;11; M22;12 ¼ M21;11: ð15Þ

More details can be found in the Supplemental Materials.
These are the conditions the tree-level amplitude must
satisfy in order for the S-matrix to be in the equivalent class
of the Identity gate, S ¼ ½1�, which are more general than
simply requiring Mab;cd ¼ 1. This situation is markedly
different from that in the np scattering, where rotational
invariance constrains the s-wave S-matrix to be exactly 1
perturbatively. If we had imposed the SUð2Þ flavor sym-
metry in our 2HDMs, we would have arrived at the same
situation.

SOð8Þ Symmetry. In this section we compute the tree-
level scattering amplitude for Φþ

aΦ0
b → Φþ

c Φ0
d in the

broken phase. The goal is to demonstrate that, when the
2-to-2 amplitude minimizes entanglement and satisfies
Eqs. (13)–(15), a maximal SOð8Þ symmetry arises.

The 2-to-2 amplitude includes four Feynman diagrams
shown in Fig. 1; the 4-point contact interaction and the
s=t=u-channels mediated by cubic vertices in the broken
phase. The internal propagators in Fig. 1 necessitates a
rotation into the mass eigenstates, which in general is
different between the charged sector and the neutral sector.
However, an advantage of the Higgs basis is that the
charged sector is already diagonal since tβ ¼ 0. So we will
perform that calculation in the Higgs basis, H1 ¼
ðGþ; v=

ffiffiffi
2

p þH0
1ÞT and H2 ¼ ðHþ; H0

2ÞT , where Gþ is
the charged Goldstone boson and Hþ is the massive
charged scalar. In the neutral sector there are four mass
eigenstates which we denote by ðh;H;G0; AÞ; h is
the lightest CP-even scalar, which we assume to be the
125 GeV Higgs boson, H and A ¼ Im½H0

2� are the
CP-even and CP-odd heavy scalars, respectively, and
G0 ¼ Im½H0

1� is a Goldstone boson. The rotation matrix
R in the neutral sector is given by

0
BBB@

h

H

G0

A

1
CCCA¼R

0
BBBB@

H0
1

H0
1
�

H0
2

H0
2
�

1
CCCCA; R¼1

2

0
BBB@
−sα̃ −sα̃ cα̃ cα̃
cα̃ cα̃ sα̃ sα̃
−i i 0 0

0 0 −i i

1
CCCA; ð16Þ

where α̃ is the mixing angle in the neutralCP-even sector in
the Higgs basis. It is related to the corresponding mixing
angle α in the general basis by α̃ ¼ α − β. Observe that the
alignment condition corresponds to cα̃ ¼ 0.
The full amplitude is

iMab;cd ¼ iM0
ab;cd −

v2

2

X
i

X
r¼s;t;u

Mr
i ab;cdPr;i; ð17Þ

M0
ab;cd ¼

0
BBBB@

Z1 Z6 Z6 Z5

Z6 Z3 Z4 Z7

Z6 Z4 Z3 Z7

Z5 Z7 Z7 Z2

1
CCCCA; ð18Þ

Ms
i ab;cd ¼ MabiM�

cdi; Mu
iab;cd ¼ MadiM�

cbi; ð19Þ

Mt
i ab;cd ¼

X
j;k

RijMajcðRikMdkb;0Þ� þ H:c:; ð20Þ

FIG. 1. Feynman diagrams of Φþ
aΦ0

b → Φþ
c Φ0

d scattering in the symmetry broken phase.
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where the propagators entering the s=t=u-channel diagrams
are Pt;i¼ i=ðt−m2

0;iÞ and Pr;i ¼ i=ðr −m2
þ;iÞ, for r ¼ s, u.

Masses in the propagator run throughm0;i¼fmh;mH;0;mAg
and mþ;i ¼ fmH� ; 0g. Moreover, the cubic vertices Mdkb
and Mdkb;0 are

∂V
∂v

����
v¼0

¼ 1ffiffiffi
2

p
X
a;b;c

�
MabcHþ

a H0
bH

−
c

þ 1

2
Mabc;0H0

aH0
bH

0
c
� þ H:c:

�
: ð21Þ

In order for the S-matrix to minimize entanglement and be in
½1� for arbitrary kinematics,wewill demand that every term in
Eq. (17) satisfies the conditions in Eqs. (13)–(15). ForM0

ab;cd
in Eq. (18), they lead to Z1 þ Z2 ¼ 2Z3, Z4 ¼ Z5 ¼ 0, and
Z6 ¼ Z7. These relations greatly simplify expressions in
Mr

i ab;cd. Solving for entanglement suppressing amplitudes in
the s=t=u-channel then requires [35]:

Z1 ¼ Z2 ¼ Z3 ≡ Z; Zi ¼ 0; i ≠ 1; 2; 3; ð22Þ

Y1 ¼ Y2 ≡ Y ¼ −Zv2=2; Y3 ¼ 0; ð23Þ

which lead to the scalar potential,

V ¼ YðH†
1H1 þH†

2H2Þ þ
Z
2
ðH†

1H1 þH†
2H2Þ2

¼ Z
2

�X
i¼1;2

jH0
i j2 þ GþG− þHþH− −

v2

2

�
2

: ð24Þ

(Complete Feynman rules and full expressions for the
amplitudes can be found in the Supplementary Material.)
The above potential exhibits a maximal SOð8Þ symmetry
acting on the eight real components of the two doublets and is
spontaneously broken to SOð7Þ. The spectrum contains a
massive scalar h with m2

h ¼ −2Y ¼ Zv2, while all other
scalars are exact Goldstone bosons and massless. However,
recall that the SOð8Þ symmetry is explicitly broken by
Yukawa and gauge couplings (when turned on) and the
Goldstone bosons will either become massive or be “eaten”
by the W and Z bosons. Furthermore, to achieve a realistic
mass spectrum consistent with null searches at the LHC,
SOð8Þ needs to be broken softly by the mass terms [19].
Since one of the minimization conditions relates Y3 to Z6,
which controls the alignment condition, one could leave
Y3 ¼ 0 and introduce an additional Y2 contribution, which
fixes the nonstandard Higgs spectrum m2

H ¼ m2
A ¼ m2

H� ¼
Y2 þ Zv2=2 (see, for example, Ref. [36]). The latter clearly
shows that, in the SOð8Þ symmetric limit, Eq. (23) leads to
massless nonstandard Higgs bosons.

Conclusions. In this work we analyzed information-theo-
retic properties of general 2HDMs, a prototypical example
for beyond-the-SM theories. When the gauge and Yukawa
couplings are turned off, demanding that the perturbative S-
matrix suppresses flavor entanglement in ΦaΦb → ΦcΦd,
and is in the equivalent class of the Identity gate, singles
out regions of parameter space where the SUð2Þ ×Uð1Þ
symmetry is enhanced to SOð8Þ, which in turn is broken
spontaneously to SOð7Þ and gives rise to a SM-like Higgs
boson as a consequence of entanglement suppression.
Turning on the Yukawa and gauge couplings results in
explicit SOð8Þ breaking and lifts the otherwise massless
non-SM Higgs bosons. However, at the tree-level Yukawas
do not enter the 2-to-2 scattering of scalars and therefore
will not affect the conditions for entanglement suppression.
As for the impact of gauge couplings on entanglement
suppression, we plan to investigate in the near future. In any
case, a realistic spectrum compatible with current LHC
bounds requires the SOð8Þ to be further broken softly by
mass terms and the entanglement suppression is approxi-
mate. We leave for future work a detailed analysis of the
degree of entanglement suppression and its phenomeno-
logical implications for LHC data. In particular, there are
several symmetry groups leading to the alignment con-
ditions which are discovered in Refs. [18,19], but only a
specific symmetry group [for instance the SOð8Þ in
the absence of gauge and Yukawa couplings] is predicted
by the entanglement suppression. Therefore, an experi-
mental test of the predicted symmetry would be an
experimental test of entanglement suppression, but a test
of the other symmetries will not be related to entanglement
properties.
To summarize, the unexpected connections between

quantum entanglement, emerging symmetries and a SM-
like Higgs boson provide potentially rich and fruitful
insights for the exploration of physics beyond-the-SM
using tools in quantum information science.
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