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Moduli stabilization is key to obtaining phenomenologically viable string models. Nongeometric
compactifications, like T-duality orbifolds (T folds), are capable of freezing many moduli. However, in this
paper we emphasize that T folds, admitting free fermionic descriptions, can be associated with a large
number of different T folds with varying number of moduli, since the fermion pairings for bosonization are
far from unique. Consequently, in one description a fermionic construction might appear to be asymmetric,
and hence nongeometric, while in another it admits a symmetric orbifold description. We introduce the
notion of intrinsically asymmetric T folds for fermionic constructions that do not admit any symmetric
orbifold description after bosonization. Finally, we argue that fermion symmetries induce mappings in the
bosonized description that extend the T-duality group.
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Introduction. String theory realizes a unification of gravity,
gauge interactions, and their charged matter via the proper-
ties of conformal field theories (CFTs) residing on its two-
dimensional (2D) worldsheet. Heterotic strings on toroidal
orbifolds [1,2] led to some of the most realistic string-
derived models to date [3–5]. However, orbifolds and other
geometrical backgrounds result in free moduli (such as the
metric, B-field, or Wilson lines) on which detailed physics,
like gauge and Yukawa couplings, depend.
Strings on tori and their orbifolds admit exact quantiza-

tion. This was instrumental in the discovery of T dualities
[6], like the famous R → 1=R duality, which sets the
effective minimum of the radius R equal to the string
scale. Investigations of string backgrounds had a profound
impact on mathematics as mirror symmetry showed, which
was argued to be a form of T duality [7].

Modding out T-duality symmetries may lead to exotic
nongeometric backgrounds [8,9], dubbed T folds. Hence,
the landscape of string vacua may be much vaster than
suggested by geometrical compactifications alone. Even
though nongeometric constructions have been studied far
less than their geometric counterparts, they may be vital for
phenomenological string explorations, as they are capable
of freezing many moduli.
Such T folds may have different actions on their left- and

right-moving bosonic coordinate fields, and are thus referred
to as asymmetric orbifolds [10,11]. If only order-two
symmetries are modded out, an alternative fermionic
description may be obtained by bosonization, a CFT
equivalence of chiral bosons and fermions in 2D [12].
This led to a detailed dictionary between these two for-
mulations explicated for symmetric Z2 × Z2 orbifolds [13].
Asymmetric boundary conditions in the fermionic formalism
have profound phenomenological consequences, such as the
doublet-triplet splitting mechanism [14,15], Yukawa cou-
pling selection [16], and moduli fixing [17].
Although a similar dictionary for asymmetric orbifolds is

not this paper’s aim, heterotic bosonization ambiguities
suggest identifications of seemingly unrelated T folds. This
sheds new light on nongeometric moduli stabilization.
Fermionic symmetries parametrizing these ambiguities
suggest an extension of the T-duality group.
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Order-two bosonic T-fold models. The bosonic formulation
of the heterotic string [18] describes d-dimensional
Minkowski space by coordinate fields x ¼ ðxμ¼2…d−1Þ
in the light-cone gauge. The internal coordinate fields
X ¼ ðXRjXLÞ, with right and left chiral parts, XR ¼
ðXi¼1…D

R Þ and XL ¼ ðXa¼1…Dþ16
L Þ,D ¼ 10 − d, are subject

to torus periodicities

X ∼ X þ 2πN; N ∈Z2Dþ16: ð1Þ

The worldsheet supersymmetry current,

TFðzÞ ¼ iψμ∂xμ þ iχi∂Xi
R; ð2Þ

involves the real holomorphic superpartners ψ ¼ ðψμÞ and
χ ¼ ðχiÞ of x and XR, respectively. Here, ð∂Þ ∂ denotes
the (anti)holomorphic worldsheet derivative, and repeated
indices are summed over.
An order-two generator, defining the orbifold action

X ∼ e2πivX − 2πV; ð3Þ

with v ¼ ðvRjvLÞ, V ¼ ðVRjVLÞ∈ 1
2
Z2Dþ16), is called a

shift, a twist, or a rototranslation if V ≢ 0≡ v, v ≢ 0≡ V,
or v; V ≢ 0, respectively. (≡ means equal up to integral
vectors.)
An orbifold is called symmetric if there is a basis

such that the left- and right-twist parts are equivalent
according to

vL ≡ ðvR; 016Þ ð4Þ

for all its generators simultaneously [19–21], and asym-
metric if no such basis exists. The addition of 016 is
essential, as the vectors vL and vR have unequal lengths.

Real free fermionic models. In the free fermionic formu-
lation [22–24], the internal degrees of freedom are
described by real holomorphic fermions f ¼ ðy; wÞ with
y ¼ ðyiÞ and w ¼ ðwiÞ and real antiholomorphic fermions
f̄ ¼ ðf̄u¼1…2Dþ32Þ. Worldsheet supersymmetry is realized
nonlinearly,

TFðzÞ ¼ iψμ∂xμ þ iχiyiwi: ð5Þ

A fermionic model is defined by a set of basis vectors with
entries 0 or 1 for real fermions. Each basis vector β ¼ ðβjβ̄Þ
defines boundary conditions

f ∼ −eπiβf; f̄ ∼ −eπiβ̄f̄: ð6Þ

Bosonizations.

Holomorphic bosonization: Assuming that the fermions χ
are identical in the supercurrents (2) and (5) and that they
generate the same worldsheet supersymmetry in the
bosonic and fermionic descriptions, bosonization uniquely
relates the currents

Ji≕ ðλiÞ�λi ≔ ∶yiwi∶ ≅ i∂Xi
R ð7aÞ

and complex fermions

λi ¼ 1
ffiffiffi

2
p ðyi þ iwiÞ ≅ ∶eiXi

R∶ ð7bÞ

to normal ordered exponentials of chiral bosons. Here, ≅
emphasizes that these expressions are not identities, but
rather that both sides have identical operator product
expansions in either formulation.
The bosonization formula relates the boundary condi-

tions in both descriptions. The torus periodicities (1) reflect
the 2π ambiguities of XR in the complex exponentials (7b).
Comparing the orbifold conditions (3) of the right-moving
bosons XR with the boundary conditions (6) of the
holomorphic fermions y and w in (7) leads to the following
identifications:

vR ¼ 1

2
βðwÞ − 1

2
βðyÞ; VR ¼ 1

2
ð1DÞ − 1

2
βðyÞ: ð8Þ

Antiholomorphic bosonization: Contrary to the holomor-
phic side, the pairing of the antiholomorphic fermions is
arbitrary. Associating odd and even fermion labels to the
real and imaginary parts of complex fermions results in an
antiholomorphic bosonization procedure given by

J̄a ≕ ðλ̄aÞ�λ̄a ≔ ∶f̄2a−1f̄2a∶ ≅ i∂Xa
L; ð9aÞ

with

λ̄a ¼ 1
ffiffiffi

2
p ðf̄2a−1 þ if̄2aÞ ≅ ∶eiXa

L∶ ð9bÞ

for a ¼ 1;…Dþ 16.
Then, by similar arguments as above, the torus perio-

dicities (1) for XL follow. And splitting β̄ ¼ ðβ̄o; β̄eÞ into
two (Dþ 16)-dimensional vectors, β̄o ¼ ðβ̄1;3…2Dþ31Þ and
β̄e ¼ ðβ̄2;4…2Dþ32Þ, leads to the identifications

vL ¼ 1

2
β̄e −

1

2
β̄o; VL ¼ 1

2
ð1Dþ16Þ − 1

2
β̄o: ð10Þ
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Extension of the T-duality group.

Fermionic inversions and permutations: On the anti-
holomorphic side, the fermionic symmetries contain
inversions and permutations: (u) denotes the fermion inver-
sion f̄u → −f̄u. The permutation ðu1 � � � upÞ acts as f̄u1 →
f̄u2 � � � → f̄up → f̄u1 , leaving the remaining fermions inert.
The permutation group contains elements which consist
of multiple factors like this, provided their entries are all
distinct. It is generated by permutations of two elements
ðuvÞ. The induced fermionic symmetry actions within the
bosonic formulation can be identified using the bosoniza-
tion (9).

Induced bosonic coordinate transformations: The fermionic
symmetries that leave these fermion bosonization pairs
intact realize mappings of the bosonic coordinate fields XL
to themselves. Their generators and their realizations on the
bosonic coordinates are listed in Table I. The bosonic
transformations above the middle line of this table are part
of the T-duality group, while those below involve trans-
lations as well.

Induced mappings of bosonic boundary conditions: Other
fermionic symmetries break up fermion bosonization pairs,
and hence correspond to mappings between different
coordinate fields between which no obvious coordinate
transformation exists. However, all fermionic symmetries,
generated by inversions and permutations, map the boun-
dary conditions of one orbifold theory to another. The
mappings induced by the generators of the fermionic
symmetries are collected in Table II. The transformations

induced by permutations ð2a 2bÞ and ð2a-1 2b-1Þ com-
bined (in whatever order) lead to the boundary condition
mapping associated with ð2a-1 2b-1Þð2a 2bÞ, as the group
property would suggest. Since some actions can be
interpreted as T-duality transformations, while others
cannot, this hints at an extension of the T-duality group.
The Table II mappings ð2a-1 2aÞ, ð2a-1 2b-1Þ, and

ð2a 2bÞ are of special significance: they mix the twist
and shift vector entries. The action of ð2a-1 2aÞ recalls that
the shift part of a rototranslation in directions, where the
twist acts nontrivially, can be removed via the associated
coordinate transformation in Table I. The actions
ð2a-1 2b-1Þ and ð2a 2bÞ imply that a pure shift boundary
condition can be turned into a rototranslation. By combin-
ing these mappings, a web of equivalent (mostly asym-
metric) orbifold theories emerges.
Since all these T folds are just different bosonic

representations of the same fermionic theory, their physical
properties are identical, even though they may not look
alike. For example, their modular invariance conditions
may seem to disagree, as the number of nonzero entries in
the twist vectors under mappings, like ð2a 2bÞ, changes.
However, since only the part of the shift of (3) on which the
twist acts trivially takes part in the modular invariance
condition [21], their consistency conditions are numerically
identical.

A free fermionic T-fold web: The basis vectors β for a
simple illustrative 6D fermionic model are given in
Table III, together with associated twist and shift vectors
using the odd-even pairings (9). Within this bosonization,
the model is understood as an asymmetric orbifold.
The interpretation may change by applying fermionic
symmetries.
The permutations ð2 6Þp1ð4 8Þp2ð10 14Þp1ð12 16Þp4 with

pi ¼ 0, 1, map the twist vector vLð1 − bÞ ¼ 1
2
ð020Þ →

jp1p2p3p4Þ ¼
1

2
ðp1p2p1p2p3p4p3p4 0

12Þ; ð11Þ

while the other twists and shifts remain the same, since
ð2a 2bÞ leave VL inert (see Table II). When these permu-
tations are successively switched on, the T-fold web, given
in Fig. 1, is obtained.

TABLE I. Fermionic-symmetry-induced bosonic coordinate
field transformations. (Only noninert fields are given.).

Fermionic symmetry Action on left-moving bosons

ð2a-1 2b-1Þð2a 2bÞ Xa
L ↔ Xb

L
ð2aÞ Xa

L → −Xa
L

ð2a-1Þ Xa
L → π − Xa

L
ð2a-1 2aÞ Xa

L → 1
2
π − Xa

L

TABLE II. Fermionic-symmetry-induced bosonic boundary
condition mappings. (Only noninert entries of the vectors vL
and VL modulo integral vectors are given.).

Fermionic symmetry Action on twist and shift entries

ð2a-1 2b − 1Þð2a 2bÞ vaL ↔ vbL; V
a
L ↔ Vb

L
ð2aÞ vaL → −vaL þ 2Va

L; V
a
L → Va

L

ð2a-1 2aÞ vaL → −vaL; Va
L → Va

L − vaL
(2a 2b) vaL → vbL þ Va

L − Vb
L; V

a
L → Va

L;
vbL → vaL þ Vb

L − Va
L; V

b
L → Vb

L
(2a-1 2b-1) vaL → vaL þ Va

L − Vb
L; V

a
L → Vb

L;
vbL → vbL þ Vb

L − Va
L; V

b
L → Va

L
ð2a-1Þ vaL → vaL − 2Va

L; V
a
L → −Va

L

TABLE III. Fermionic basis vectors β with the twists v and
shifts V corresponding to 1 − β obtained via (8) and (10).

Fermionic basis vectors Twist and shift vectors

β v ¼ ðvRjvLÞ V ¼ ðVRjVLÞ
1 ¼ fψ1…4χ1…4y1…4w1…4jf̄1…40g ð04j020Þ 1

2
ð14j120Þ

S ¼ fψ1…4χ1…4g ð04j020Þ ð04j020Þ
ξ ¼ ff̄9…40g ð04j020Þ 1

2
ð04j04116Þ

b ¼ fχ1…4w1;…4jf̄1…4f̄9…12g 1
2
ð14j020Þ 1

2
ð04j120212014Þ
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For the cases with two nonzero pi’s, (11) implies that
vL ¼ ðvR; 016Þ, possibly up to a change of basis. Thus, the
resulting bosonic models are interpreted as symmetric
orbifolds. In particular, the model obtained after the
fermionic permutation (2 6)(4 8) is conventionally consid-
ered as the bosonic representation of this fermionic model
in which ξ just separates out the SOð32Þ gauge group, while
for all the other cases with two nonzero pi’s, ξ acts as an
asymmetric Wilson line.
Table IV provides an overview of all inequivalent T-fold

models associated with this fermionic model. It indicates in
how many directions b and ξ act as left-moving twists.
Apart from the 16 models depicted in Fig. 1 (of which nine
are inequivalent), ξ has an asymmetric twist action, as can
inferred from this table. The total number of inequivalent
T-fold models associated with the fermionic basis vectors
given in Table III is 213. This number rapidly increases for
fermionic models defined with more basis vectors. For
example, for the fermionic model in which ξ is split into ξ1
and ξ2, the number of inequivalent bosonizations becomes
11 273; and for the NAHE set [25–27], it is 85 735.

Moduli. The unfixed Narain moduli (mij ¼ gij þ bij with
metric gij, B-field bij, and Wilson lines mix¼1…16) of a T
fold correspond to the operators

mia∂Xi
R∂X

a
L; ð12Þ

left inert by (3). Symmetric orbifolds always leave at least
the diagonal metric moduli mii ¼ gii free; asymmetric
orbifolds may fix all moduli.
This would suggest that the number of frozen moduli

may vary dramatically depending on which bosonic
description of a given fermionic model is used. There is
no paradox here either: the unfixed scalar deformations of
the fermionic model can be identified by the Thirring
interactions

miuvyiwif̄uf̄v ð13Þ

left inert by (6). Thus, the total number of massless
untwisted scalars is bosonization independent, and there-
fore identical in any bosonic realization. Which of them are
interpreted as free Narain deformations, however, does
depend on the choice of bosonization, as XL in (12) does.

Intrinsically asymmetric T folds. The previous section
showed that whether a real fermionic model should be
considered as a symmetric or asymmetric model is very
much bosonization dependent. A free fermionic model is
called intrinsically asymmetric if for any bosonization it
corresponds to an asymmetric orbifold. An intrinsically
asymmetric T fold is a bosonic model associated with an
intrinsically asymmetric fermionic model.
In light of the observation below Eq. (12), a fermionic

model that admits a symmetric interpretation has at least
inert Thirring interactions (13) with different u ≠ v for each
i. If not, the fermionic model is intrinsically asymmetric,
and hence in any bosonic realization all Narain moduli are
frozen. This is, in particular, the case when no Thirring
interactions (13) are invariant under (6). An example of
such a model is given in Ref. [28].
Simple examples of intrinsically asymmetric free fer-

mionic models can be obtained by taking basis vectors that
act as purely holomorphic twists. (For example, consider
the twist basis vector b ¼ fχ1…4; y1…4g in 6D or b1 ¼
fχ1…4; y1…4g and b2 ¼ fχ3…6; y3…6g in 4D.) As there
are no invariant Thirring interactions (13) possible, the
corresponding T-fold models are necessarily intrinsically
asymmetric.

Discussion. This letter focused on heterotic T folds that
admit fermionic descriptions. Even though the key obser-
vation that bosonization in a fermionic CFT is not unique is
not new—its striking consequences seem not to have been
appreciated so far: a single free fermionic model can be
associated with a large number of seemingly unrelated

|0101)

|0110)

|1001)

|1000) |0001)

|0011)|1010)

|0111)|1110)

|1011)

|0010)|0100)

|1101)

|1111)

|0000)

|1100)

FIG. 1. Web of T folds associated with the fermionic model
given in Table III in which only b acts as a twist (11).

TABLE IV. The number of b and ξ twists for the inequivalent T
folds associated with the fermionic model in Table III.

b

ξ

0 2 4 6 8 Sum

0 1 2 3 2 1 9
2 2 11 18 12 3 46
4 3 18 32 19 6 78
6 2 12 19 18 7 58
8 1 3 6 7 5 22

Sum 9 46 78 58 22 213
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bosonic theories. Some may admit a symmetric orbifold
interpretation, while most others are asymmetric, but in
many different ways.
In light of this, studies of nongeometric constructions,

and T folds in particular, may need to be revised, since
seemingly different nongeometries may, in fact, be equiv-
alent. In particular, in the bosonic orbifold literature, it
would be inconceivable that symmetric and asymmetric
orbifolds can be identified. Moreover, the number of frozen
moduli turns out to be a bosonization-dependent quantity;
only the total number of massless untwisted scalars is
identical in any description. Only for an intrinsically
asymmetric T fold are all Narain moduli fixed in any
bosonic description. In addition, the induced bosonic
actions of fermionic symmetries hint at an extension
of the T-duality group of toroidal and Z2 orbifold
compactifications.
The findings presented here were derived at free fer-

mionic points. However, the induced transformations of the
bosonic boundary conditions by the fermionic symmetries
may be considered without referring to the fermionic
description. Hence, it is an interesting question whether
the suggested extension of the T-duality group discussed
above is a general duality symmetry of string theory or if it
exists at free fermionic points only.
Our analysis is partially motivated by quasirealistic

model building using the free fermionic formulation
(see, e.g., Ref. [28]) to give rise to some central features

of the Standard Model and its supersymmetric extensions,
such as the existence of three generations charged under the
Standard Model gauge group with potentially viable
Yukawa couplings to Higgs doublets. While this paper
focused on the moduli of the internal manifolds, there exist
free fermionic models in which the moduli space is further
restricted [29], which shows the need for a deeper under-
standing of the moduli space in these quasirealistic exam-
ples, which our analysis may provide. Moreover, the
methods adopted in the supersymmetric cases considered
here can also be utilized in nonsupersymmetric string
constructions, as well as in tachyon-free models that
are obtained from compactifications of tachyonic ten-
dimensional string vacua [30]. In this respect, the under-
standing of the correspondence between the fermionic and
bosonic representations of string vacua is essential in order
to obtain a more profound understanding of the string
dynamics at the Planck scale.
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