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We study (near-)circular orbits of charged particles in the background of charged black holes in
asymptotically anti–de Sitter (AdS) spacetimes of arbitrary dimensionality. We calculate the energy and
angular momentum of such particles in a large-radius limit. This allows us to compute the anomalous
dimension of the dual charged double-twist operators in a large-spin expansion, making a prediction for the
bootstrap analysis at large charge and spin. We relate our result to the weak gravity conjecture (WGC) for
AdS black holes of all sizes. We also discuss the relation of WGC with the existence of the innermost stable
circular orbit (ISCO) in any dimension.
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Introduction. Gravitation and electromagnetism are the two
long-range forces present in nature. A quantitative under-
standing of the former began with Newton’s law of
gravitation, with Coulomb’s law having the corresponding
distinction for the latter. We focus our attention on the
interplay between the analogs of these force laws in this
article. This interplay has deep implications for quantum
gravity (QG). For instance, the weak gravity conjecture
(WGC) [1] posits that gravitation is weaker than electro-
magnetism in any consistent QG theory, an observed fact of
our universe. Isolating the space of consistent QG theories
is the goal of the Swampland program [2] in string theory.
The AdS=CFT correspondence [3] is one of the most

powerful tools in understanding QG. It allows us to map
QG questions in an asymptotically AdSdþ1 spacetime to
those in the d-dimensional conformal field theory (CFT) on
its conformal boundary and vice-versa. Depending on the
context, one can calculate certain quantities in the bulk or
the boundary side and translate it to the other side to extract
physically meaningful information. We will be studying the
motion of charged particles in AdS to understand some
aspects of the corresponding CFT.
Quite remarkably, one can actually learn a great deal by

studying such a simple system. There has been a recent focus
on understanding someCFToperatorswith bulk particles. In
[4], the authors considered the orbit of a massive neutral
particle in the AdS-Schwarzschild background and were

able to reproduce features of the CFT obtained from a
bootstrap analysis [5].
In this work, we extend these results in physically

significant ways by considering charged particles in a
charged black hole background. These considerations
introduce several new physical ingredients. The presence
of a bulk gauge symmetry translates to a global symmetry
on the boundary. Charged black holes in the bulk corre-
spond to heavy operators OQ with a large U(1) global
charge Q on the boundary. Charged probe particles in the
bulk would be represented as light operators Oq, charged
under the same global symmetry. This set-up is particularly
interesting from the perspective of recent explorations of
strongly coupled CFTs at large global charge [6]; see [7] for
a review of related developments.
In this work, we derive explicit analytic expressions for

the energy and angular momentum of charged particles in
large stable circular orbits in asymptotically AdS space-
times of arbitrary dimensionality (the asymptotic AdS
nature is crucial for the existence of stable orbits in five
or higher bulk dimensions). We also calculate the frequency
of radial oscillations when slightly perturbed about the
circular orbits. In the conformal bootstrap program, one is
accorded a noteworthy simplification in the limit of large
spin [8]. Our calculation allows us to deduce the anomalous
dimension of the double-twist operator ½OQOq�n;J in the
dual CFT in a large-spin expansion. Such operators,
associated with bulk orbits, have been related to light-cone
bootstrap [9] involving heavy and light operators, for
example in [10]. Our results thus make a new prediction
for a similar bootstrap analysis at large spin and charge.
One of the unique features of our set-up is the possibility

of the existence of extremal black holes—described by
CFTs at zero temperature and a finite chemical potential.
Such a setup is useful also for describing condensed matter
systems. One of the statements of WGC, originally
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formulated for flat spacetime, is that any consistent QG
theory must contain a particle with sufficiently high charge-
to-mass ratio such that an extremal blackhole is able to decay.
The authors of [11] were the first to explore WGC in the
context of AdS=CFT—they proposed a bound related to the
flat-space limit of AdS. An extrapolation of this limit to large
AdS black holes is, however, nonunique and as emphasized
in the recent review [12], an appropriate formulation ofWGC
in AdS has remained an open problem so far.
Our results have a direct bearing on the WGC, in a

manner which appears to be applicable for black holes of all
sizes. The anomalous dimension that we find is a gauge-
invariant characterization of the binding energy. Quite
importantly, and in contrast with previous studies, the
binding energy is sign-indefinite, reflecting the competition
between Newtonian attraction and Coulomb repulsion (for
like charges). Demanding that this quantity be positive
correlates exactly with the WGC bound in the flat-space
limit. We use this observation to make comments about a
possible formulation for WGC for large AdS black holes.
We further strengthen the connection between WGC and

bulk orbit states by studying the innermost stable circular
orbit (ISCO). Curiously, in dimensions five and above,
ISCOs do not exist in flat space. One expects ISCOs to exist
in the presence of even a small (negative) cosmological
constant. Working in a large-AdS-radius perturbation
theory, we determine analytic expressions for the ISCO
parameters for a charged particle and find that even in AdS,
ISCOs stop existing precisely above the charge-to-mass
ratio corresponding to WGC.
Let us mention some relevant literature before proceed-

ing. A CFT binding energy formulation of WGC was
proposed in [13]. WGC in the context of AdS3=CFT2 was
explored in [14,15]; some other efforts to relate WGC and
holography include [16,17].

Charged particle orbits in RN-AdS. We consider
Reissner-Nordström-AdS (RN-AdS) black holes in
(dþ 1)-dimensional spacetimes, which arise as solutions
to the Einstein-Maxwell-AdS action,

S ¼
Z

ddþ1x
ffiffiffiffiffiffi
−g

p �
Rþ dðd − 1Þ

L2
− FμνFμν

�
: ð1Þ

The asymptotically globally RN-AdS solution (with the
AdS “radius” L) is given by,

ds2 ¼ −fðrÞdt2 þ dr2

fðrÞ þ r2dΩ2
d−1; ð2Þ

where dΩ2
d−1 is the line-element on the unit Sd−1 and,

fðrÞ ¼ 1þ r2

L2
−

2M
rd−2

þ Q2

r2d−4
; ð3Þ

with the gauge field solution being given by,

Aμ dxμ ¼ AtðrÞ dt ¼ −kd
Q
rd−2

dt; ð4Þ

where kd ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðd − 1Þ=2ðd − 2Þp

. This is the most natural
gauge choice for our problem. The physical mass and
charge are proportional to M and Q respectively. We
always consider d ≥ 3.
For a fixed L, there is a one-parameter family of extremal

black holes, whose mass and charge parameters can be
expressed in terms of the extremal horizon radius rh
[fðrhÞ ¼ 0 ¼ f0ðrhÞ],

Mext ¼ rdh

�
d − 1

ðd − 2ÞL2
þ 1

r2h

�
;

Q2
ext ¼ r2ðd−1Þh

�
d

ðd − 2ÞL2
þ 1

r2h

�
: ð5Þ

We call an extremal AdS black hole large or small
depending on the whether rh=L ≫ 1 or ≪ 1. Small AdS
black holes correspond to the flat-space limit. We can relate
rh to the (extremal) chemical potential μ,

rh ¼ L

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðd − 2Þ½2ðd − 2Þμ2 − ðd − 1Þ�

ðd − 1Þd

s
: ð6Þ

We have jμj ≥ kd with jμj ≫ 1 for large extremal black
holes.
We now consider a probe particle of mass m and charge

q in this geometry. Instead of q, we will find it convenient
to work with the charge-to-mass ratio q̂≡ q=m. There are
two conserved quantities associated with its motion, arising
from the invariance of the standard point-particle action
under time translation and azimuthal translation: energy
Ê≡ E=m and angular momentum l̂≡ l=m (each defined
per unit mass). In contrast with the existing literature [18],
our goal is to derive specific formulas for arbitrary-dimen-
sional AdS=CFT.
In terms of these quantities, we have a particle moving in

an effective 1-dimensional potential,

ṙ2 þ
�
1þ l̂2

r2

�
fðrÞ − ðÊþ q̂AtÞ2|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼VðrÞ

¼ 0; ð7Þ

where ˙ refers to a derivative with respect to the proper
time of the particle. Circular orbits of radius rc satisfy
VðrcÞ ¼ 0 ¼ V 0ðrcÞ. The physically acceptable solutions
for Ê; l̂ are,
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Êc ¼ −q̂At þ f

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q̂2r2cA0

t
2 − 2rcf0 þ 4f

p
− q̂rcA0

t

2f − rcf0
;

l̂2
c ¼ r2cf

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q̂2r2cA0

t
2 − 2rcf0 þ 4f

p
− q̂rcA0

t

2f − rcf0

�2

− r2c: ð8Þ

The functions and derivatives appearing above are evalu-
ated at r ¼ rc.
In the asymptotically flat limit (L → ∞) we obtain for

large values of the orbit radius rc,

Ê≈ 1þd−4

2

M−kdq̂Q
rd−2c

; l̂2 ≈ ðd−2ÞM−kdq̂Q
rd−4c

: ð9Þ

For d ¼ 3, we recover the familiar expressions. Arbitrarily
large circular orbits exist only for M > kdq̂Q and are
unstable for d ≥ 4; the orbits can be stable only in d ¼ 3.
We seem to be living in exactly the right dimensions. This
can be explained physically: the term in the effective
potential representing the centrifugal barrier goes like
1=r2 in all dimensions; both Newtonian and Coulomb
potentials, on the other hand, go like 1=rd−2. It is thus easy
to see that Newtonian attraction and centrifugal repulsion
can play off against one another to create a stable minimum
only in d ¼ 3—in higher dimensions, the centrifugal
barrier cannot win over gravitational attraction at small
values of radius.
For a finite value ofL, however, the story will be different

since AdS acts as a confining box.We can consider different
regimes while taking the large-rc approximation. It is clear
from above that M

1
d−2 ≪ rc ≪ ðML2Þ1d is an uninteresting

domain (q̂Q is at most the similar order of magnitude asM),
since the finite-L corrections are not sufficient to guarantee a
stable orbit. An interesting regime is,

M
rd−2c

≪
r2c
L2

≪ 1; ð10Þ

which is appropriate for orbits barely feeling the effect of a
nonzero cosmological constant. This regime is well suited
for studying the effects of small extremal black holes.
In this approximation,

l̂2 ¼ r4c
L2

�
1þ L2ðd − 2ÞM − kdq̂Q

rdc

�
;

Ê ≈ 1þ r2c
L2

þ d − 4

2

M − kdq̂Q
rd−2c

: ð11Þ

We can invert the first relation to obtain rc as a perturbative
expansion in large l̂L, which allows us to express the
energy in a coordinate-independent manner:

Ê ≈ 1þ l̂
L
−
M − kdq̂Q

ðl̂LÞd=2−1 : ð12Þ

The terms that are neglected are suppressed by powers of
1=l̂L. We now consider the regime rc ≫ L;M

1
d−2, which is

necessary when we consider large black holes. This regime
is actually applicable for black holes of all sizes. The
perturbative expansion here is rather different (the follow-
ing expressions are valid for d ≥ 5),

l̂2 ≈
r4c
L2

�
1þ P

rd−2c
þ ðd − 2ÞL2

M − kdq̂Q
rdc

�
;

Ê ≈ 1þ r2c
L2

�
1þ P

2rd−2c
þ ðd − 4ÞL2

2

M − kdq̂Q
rdc

�
; ð13Þ

where P≡ dM − ðd − 2Þkdq̂Q. A similar exercise as
before yields exactly the same result for the energy as
(12). In fact, for rc ≫ L;M

1
d−2, (12) holds true for all d ≥ 3,

for large values of l̂, for black holes of all sizes.
We now consider the frequency of radial fluctuations

about the circular orbit. Starting from (7), staying at fixed
angular momentum and taking care to normalize to
boundary time [4], we have,

ωR ¼ fðrcÞ
Êc þ q̂AtðrcÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
V 00ðrcÞ

r
: ð14Þ

In the regime rc ≫ L;M
1

d−2, we obtain from (14),

ωRL ¼ 2 − d
ðdþ 2ÞM −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2
ðd − 2Þðd − 1Þ

q
q̂Q

4ðl̂LÞd=2−1 : ð15Þ

CFT and WGC. We are now ready to translate our results
into CFT language. A scalar field of massm and charge q in
the bulk is mapped to a boundary operator of dimension
Δq ¼ d=2þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2L2 þ ðd=2Þ2

p
. We take m ≫ L−1 so that

Δq ≈mL. By the AdS=CFT dictionary, single-particle bulk
states are mapped to single-trace CFT operators. As in
[4,10], we will use the map l̂ → JðL=ΔqÞ and also define
in the CFT q̂≡ qðL=ΔqÞ (where J and q are the angular
momentum and charge of the light operator respectively) to
obtain the Regge trajectory for large J,

ΔQ;qðJÞ ¼ ΔQ þ Δq þ J þ γðM;Q; q̂; JÞ; ð16Þ

where the first two terms correspond to “rest energies” of
the black hole and probe particle, J is the spinning
contribution to the energy and the anomalous dimension
γ corresponds to the binding energy,

γðM;Q;q̂;JÞ≈−Δq

 
M−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d−1

2ðd−2Þ

s
q̂Q

!�
Δq

JL2

�d−2
2

: ð17Þ
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In the Q → 0 limit, our results reproduce, for example, the
results in [4]. There is, however, a crucial difference with
their results. The anomalous dimension (17) can have either
sign. The possibility of γ being positive alerts us to a
connection with WGC. For a given black hole charge
Q ¼ Qext, the minimum value of the mass is that of an
extremal black holeM ¼ Mext, see (5). Therefore, the CFT
anomalous dimension of a (like-charged) operator is non-
negative if [19]

q̂2 ≥
2ðd − 2Þ
d − 1

M2
ext

Q2
ext

: ð18Þ

In the flat-space limit (rh ≪ L)Mext ¼ rd−2h ¼ Qext and we
obtain q̂2 ≥ 2ðd − 2Þ=ðd − 1Þ, which is precisely [20] the
WGC bound [1,12]. While this bound does not involve J,
considering the large-J regime might look unusual from the
WGC perspective. The usual formulation simply asserts the
existence of a particle; if it exists, the particle dynamics will
be controlled by the laws discussed above. Further studies
of such regimes would be helpful in elucidating the WGC
within AdS=CFT. It is worth emphasizing that the inequal-
ity (18), to begin with, is independent of any statement of
the WGC. Given an AdS charged black hole and charged
particles with parameters ðM;Q;m; qÞ (18), the inequality
(18) is simply the condition under which the gauge-
invariant binding energy—derived from the standard
extrapolate dictionary—is non-negative.
Since WGC requires the existence of particles meeting

(18) for small black holes, one is tempted to extrapolate its
validity in all regimes (this is not unnatural from the CFT
perspective). In other words, we want to see if the positive
binding energy condition (18) can be taken to be a possible
statement of the WGC in a general manner. We get Oð1Þ
bounds up to rh ∼ L. In the limit of large extremal black
holes ðrh ≫ LÞ, (18) is equivalent to,

q̂2 ≥ 2
d − 1

d

�
rh
L

�
2

: ð19Þ

This is a very large charge-to-mass ratio. While such a
particle orbiting a black hole is perfectly consistent in the
gravitational theory, the existence of such states in a CFT
would seem to be very unusual. In a supersymmetric setting
likeN ¼ 4 SYM, the mass is greater than the charge by the
BPS inequality [21]. It is thus prudent to exercise caution in
adopting (18) as the defining statement of WGC, in spite of
the agreement in the flat space limit. However, as empha-
sized in [10], the states we are discussing are narrow
resonances and not necessarily states in the Hilbert space—
WGC particles could also be resonances. It would be
interesting to explore this question from the bootstrap point
of view [22] especially in the nonsupersymmetric context.
Extremal black hole geometries have a near-horizon

AdS2 factor. As is well known in the holographic

superconductivity literature [23], a charged scalar can
violate the AdS2 Breitenlohner-Freedman bound [24] while
simultaneously meeting the AdSdþ1 bound. For large
extremal black holes, we find the AdS2 scaling dimension
for a bulk scalar of mass m and charge q given by,

Δð2Þ
q ðΔð2Þ

q − 1Þ ¼
m2L2ð1 − 1

2
q̂2Þ þ L2

r2h
jðjþ d − 2Þ

dðd − 1Þ ; ð20Þ

where j is the spin quantum number. In the s-wave sector,

for instance,Δð2Þ
q becomes complex well before (19) is met,

signifying an onset of horizon instability forOð1Þ values of
q̂. Unlike in the binding energy argument, this instability is
insensitive to the sign of q̂. For large j, one indeed needs a
high value of jq̂j for an instability.
Nevertheless, the principal lesson learned from WGC

works quite well for large extremal black holes and Oð1Þ
values of q̂ [25]. We note from (5) that in the large-charge
regime, M ∼ L−ðd−2Þ=ðd−1ÞQ

d
d−1. WGC tells us that the

effective field theory is valid when

L−d−2
d−1ðQþ qÞ d

d−1 > L−d−2
d−1Q

d
d−1 þ q: ð21Þ

On reinstating the Planck length, this means that the
dimensionless charge must satisfy Q > ðL=LPlÞd−2. We
know from (5) that Q ∼ rd−1h =LLd−2

Pl which meets this
bound because for large black holes, rh ≫ L ≫ LPl.
From (15), we can find corrections to (16) which are

suppressed in Δq, obtained by a Bohr-Sommerfeld–type
quantization [4,26],

δΔQ;qðnÞ ¼ 2n − nd
ðdþ 2ÞM −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2
ðd − 2Þðd − 1Þ

q
q̂Q

4ðJL2=ΔqÞd=2−1
;

ð22Þ

where n ≥ 0 is an integer. The second term above,
contributing to the binding energy, is also sign-indefinite,
but the sign changes at a different value of q̂ from (18). For
large black holes, the inequality (19) changes by only an
Oð1Þ factor. It is the lowest bound (19) that is the most
important.

ISCO and WGC. Stable circular orbits cannot exist for
arbitrary values of the radius. They stop existing at a radius
r ¼ ri, at which the orbit becomes marginally stable,
defined by the additional constraint V 00ðriÞ ¼ 0. Such orbits
are referred to as ISCO.
By numerical methods or otherwise, we can straightfor-

wardly demonstrate that for asymptotically flat RN black
holes, ISCOs can exist only for d ¼ 3, even when the probe
is charged. This is related to our previous observation that
in d ≥ 4, there exist no stable orbits in flat spacetimes. It
turns out that in d ¼ 3, an ISCO for a positively charged
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extremal black hole stops existing precisely when q̂ > 1 (or
q̂ < −1 for Q < 0) (see also [18]). This is the flat-space
WGC bound for d ¼ 3. We wish to connect WGC to ISCOs
in higher dimensions as well. We immediately run against
the aforementioned difficulty: there do not exist ISCOs in
the first place.
The situation for d ≥ 4 must change with a finite L. In a

large-L perturbation theory, we are able to derive the
following formula for ISCO radius for d ≥ 5,

ri ≈
�ðd − 4Þðd − 2Þ

4
ðM − kdq̂QÞL2

�
1=d

: ð23Þ

When it exists, ri diverges as L → ∞, explaining why we
do not see them. One can obtain the minimum value of
angular momentum and the corresponding energy:

l̂2
i ≈

d
d − 4

�ðd − 4Þðd − 2Þ
4

ðM − kdq̂QÞ
�4

d

L
8
d−2;

Êi ≈ 1þ d
d − 2

�ðd − 4Þðd − 2Þ
4

ðM − kdq̂QÞ
�2

d

L
4
d−2: ð24Þ

Here, however, there is no clear separation between rota-
tional and binding energies—they contribute to the same
order. For sufficiently large values of q̂Q, the quantity (23)
becomes complex or negative, which means that the ISCO
stops existing. For extremal black holes with L ≫ rh, this
happens precisely when the WGC bound (18) is satisfied.
The intuitive physical reasoning is that the Coulomb
repulsion is strong enough to prevent the unstable and
stable orbits from coalescing. The connection between
ISCO and WGC is thus intriguing and it is remarkable how
AdS enters the story in an essential manner.
For d ¼ 4, (23) is not valid and one instead has,

ri ≈
�
1

4
L2
�
16M2 − 8

ffiffiffi
3

p
Mq̂Q− ð4− 3q̂2ÞQ2

	�1=6
; ð25Þ

which might suggest that ISCO exists for large q̂ as well.
By examining the energy and angular momentum [we have
to insert (25) in the following expressions],

Ê ≈ 1þ 3r2i
2L2

; l̂2
i ≈ ð2M −

ffiffiffi
3

p
qQÞ þ 3r4i

L2
; ð26Þ

we conclude that even in this case ISCOs stop existing
above the WGC bound. It is an interesting fact that in
d ¼ 4, even when q̂ ¼ 0, ISCO radius (25) depends on Q,
which is not true for higher dimensions.
An analysis in the regime for large extremal AdS black

holes is more difficult. For uncharged probes, we can self-
consistently assume ri ≫ rh ≫ L and obtain approximate
expressions for the orbit parameters,

ri ≈
�
dðdþ 2Þðd − 1Þ

4ðd − 2Þ
rdh
L2

� 1
d−2
; ð27Þ

Ê ≈ l̂=L ≈
ffiffiffiffiffiffiffiffiffiffiffi
dþ 2

d − 2

r �
dðdþ 2Þðd − 1Þ

4ðd − 2Þ
� 2

d−2
�
r2h
L2

� d
d−2
: ð28Þ

We thus have Ê; l̂ ∼ μ2d=ðd−2Þ—this parametric dependence
on the chemical potential is the same as that observed for
the temperature in the uncharged case [4,26]. This is to be
expected since the chemical potential supplies the only
scale in the extremal case. Numerical investigations suggest
that for charged probes around large black holes, ISCO
stops existing near the same value as (19).

Discussion. It is worth emphasizing that all the results
derived here involve global AdS as the asymptotic geo-
metry. Rather strikingly, the analogs of ISCOs do not
exist in the planar geometry. This happens because, for
instance, there is no competing behavior between rh and L.
For the uncharged case, the authors of [4] interpreted
this as an evidence for a nonperturbative effect in the
boundary curvature, which appears to be true for our
scenario as well.
The CFT states we considered could be interpreted as

long-lived resonances, which could decay by some mecha-
nism. Being marginally stable, ISCOs separate stable and
unstable phases. It is remarkable that the existence of
ISCOs has a direct connection with WGC—it would be
interesting to explore the question of phase transitions in
AdS=CFT and WGC. Since extremal AdS black holes
correspond to CFTs at zero temperature, it would be
illuminating to connect our picture with thermalization
vis-à-vis the orbit states considered in this article. See [10]
for comments pertaining to the uncharged case.
In previous studies of binding energy in AdS, it was the

self-binding energy of particles in pure AdS spacetime that
was considered [13,27]. Our focus, instead, has been on
interaction between the particle and black holes of all
sizes. It would be interesting to explore the question of
self-binding in such backgrounds, in which case contact
terms would play a very important role, for small
enough values of Δq. We can also gain substantial insight
into these problems by considering specific examples of
(holographic) CFTs.
There is the prospect of extending this picture to other

interesting geometries, including rotating black holes
(for some very different approaches to WGC and related
questions, see for instance, [28]). We can also introduce
additional scalars. It would also be worthwhile to consider
in greater detail interactions with the black hole micro-
states, which might be helpful in furthering our under-
standing of the dynamics of black holes in AdS=CFT. We
leave such exciting possibilities for future investigations.
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