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We construct a one-dimensional dual theory that effectively describes the sector of the ð2þ 1ÞD flat
gravity phase space near a flat space cosmology saddle labeled by definite mass and angular momentum.
This Schwarzian-type action describes the dynamics of the (pseudo-)Goldstone bosons of BMS3 algebra on
a circle as the symmetry is spontaneously and anomalously broken. This 1D theory, living on the celestial
circle, provides the first explicit construction of a celestial dual theory in ð2þ 1ÞD. We use it to calculate
the semiclassical entropy of flat space cosmologies and find perfect agreement with existing literature.
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Introduction. Understanding the holographic principle in
flat spacetime is an intriguing problem; ð3þ 1ÞD flat
spacetime has been shown to have a 2D celestial conformal
field theory (CFT) description in several scenarios: via
holographic reduction [1]; recasting 4D scattering ampli-
tudes in terms of CFT2 correlators [2,3] from an asymptotic
symmetry analysis [4–6]; interpreting bulk soft theorems as
CFT2 Ward identities [7,8] etc. This connection, which can
be generalized as a correspondence between (dþ 1)-
dimensional gravitational theories in flat space and
(d − 1)-dimensional CFTs, is in stark contrast with the
more familiar AdSdþ1=CFTd holographic principle. The
complete description of a celestial dual theory for 4D flat
space is however not understood yet. We pose the question
for gravity in ð2þ 1ÞD flat spacetime, which is a much
simpler setup due to the absence of local gravitons.
However, the gravity phase space is spanned by the
asymptotic symmetry modes. The asymptotic symmetries
form the BMS3 group [9] consisting of 3D versions of
supertranslations and superrotations, which is an infinite
extension of Poincaré symmetry. There are also solutions
resembling asymptotically flat black holes, called flat space
cosmological (FSC) solutions.
One of the standard approaches towards flat space holog-

raphy in 3D is to take a large radius limit of AdS3=CFT2,
dubbed as the BMS3=GCFT2 correspondence [10,11].

Using an analog of the Cardy regime, the entropy of FSCs
was calculated from this dual 2D description [12,13].
Another approach is to recast the 3D gravity theory as a
3D Chern-Simons theory, where the dual theory turns out to
be a 2D Liouville-like theory [14–16]. These results suggest
that the holographic dual must be a 2D theory lying on the
null boundary of 3D flat spacetime, which is in apparent
contradiction with the celestial holography program [17].
Our major goal would be to show that indeed ð2þ 1ÞD
asymptotically flat spacetimes can be endowed with a 1D
celestial dual structure and understand the FSC thermody-
namics from a 1D perspective. Thus in this regime, the
effective 1D theory encapsulates all the details of the BMS2
field theory.
In our earlier work [20], we have shown the emergence

of an effective 1D Schwarzian theory dual to the subspace
of ð2þ 1ÞD asymptotically flat spacetimes, closed under
superrotations. The computations rely on foliating these
“superrotated” spacetimes into asymptotically ðAÞdS2
leaves and use Wedge holography [21] to obtain the dual
description. Foliation of supertranslated spacetimes is
however much more involved [22]. The superrotation
symmetries in 3D form a Virasoro subgroup which is
softly broken by the Schwarzian theory. This pattern can be
seen in [23,24] where the holomorphic part of the CFT2

partition function was realized as the path integral of a
Schwarzian theory of pseudo-Goldstone modes corre-
sponding to softly broken Virasoro symmetry.
In this work, we take a group theoretic approach [25,26]

to incorporate supertranslations into the picture to describe
the full phase space of the theory via a one-dimensional
dual. This leads us to obtain an effective action for
the (pseudo-)Goldstone modes of BMS3 group. As we
will see, the superrotation part of the dual theory is again a
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Schwarzian, agreeing with the results of [20]. The 1D
theory is the anticipated celestial dual which effectively
describes the dynamics of ð2þ 1ÞD gravity near an FSC
solution. To understand the validity of this proposal, in this
work, we also compute the semiclassical entropy of 3D flat
cosmological solutions from the 1D theory perspective and
find agreement with [12]. This also implies that our 1D
theory is able to capture the Cardy regime of a GCFT2 [13].

Gravity in ð2þ 1ÞD and BMS3 symmetry. The general
form of ð2þ 1ÞD asymptotically flat spacetimes in leading
order is [9]

ds2 ¼ MðθÞdu2 − 2dudr

þ ðuM0ðθÞ þ 2J ðθÞÞdudθ þ r2dθ2: ð1Þ

The vector fields that leave the form of the above metric
invariant up to leading order are called asymptotic Killing
vectors and they form the infinite-dimensional BMS3
algebra. These vectors are parametrized by arbitrary func-
tions TðθÞ and YðθÞ generating supertranslations and
superrotations, respectively. Starting from the flat space
solution M ¼ −1=8G and J ¼ 0, a generic superrotation
would generate “superrotated spacetimes” with nontrivial
angle dependentMðθÞ ¼ fYðθÞ; θg and J ¼ 0 [20]. Here,
fYðθÞ; θg denotes the Schwarzian derivative of YðθÞ. The
corresponding conserved charge is given by [27]

Q½M;J � ¼ 1

16πG

Z
dθðMT þ J YÞ: ð2Þ

G is the 3D Newton constant. These charges, when
endowed with a proper Dirac bracket, satisfy the 3D
BMS (Bondi–van der Burg–Metzner–Sachs) algebra or
bms3. Written in terms of the modes of M and J , the
algebra takes the following form:

½Jm; Jn� ¼ ðm − nÞJmþn þ
c1
12

ðm3 −mÞδmþn;0;

½Jm;Mn� ¼ ðm − nÞMmþn þ
c2
12

ðm3 −mÞδmþn;0;

½Mm;Mn� ¼ 0: ð3Þ

For pure gravity, c1 ¼ 0 and c2 ¼ 3=G. Nonzero c1 arises
if we add a Lorentz Chern-Simons term along with pure
gravity.
Since pure gravity in (2þ 1) dimensions does not

contain local degrees of freedom, the only nontriviality
comes from the boundary. Hence the functions MðθÞ and
J ðθÞ span the phase space of the theory. On the other hand,
the vector field labeled by TðθÞ and YðθÞ transforms the
elements of this phase space into one another. These two
sets of functions can then be thought of as elements of dual
spaces where the inner product is given by the surface
charge (2).

Superrotated spacetimes and their dual theory: In an
earlier work [20], we have considered the part of the phase
space consisting of superrotated spacetimes. Choosing an
origin in the bulk, we may slice up these spacetimes into
foliations of fixed proper time (distance). The region inside
the light cone looks like warped product of ðAÞAdS2 ⋉ R,

ds2 ¼ −dτ2 þ τ2
�
dρ̃2 þ

�
1

4
e2ρ̃ −

M
2

þM2

4
e−2ρ̃

�
dθ2

�
;

ð4Þ

where (A)AdS2 stands for asymptotically anti–de Sitter
spacetimes in 2D in the sense of [28]. Similarly, the
spacetime outside of the light cone has an asymptotically
dS2 ⋉ R geometry. Next, we consider a wedge region in
the future light cone bounded by two ðAÞAdS2 surfaces at
τ1 and τ2 and perform a dimensional reduction of the pure
gravity theory inside the wedge onto these boundaries via
wedge holography [20,21,29]. The idea is to eventually
cover the full spacetime by taking τ1 → 0, τ2 ≡ τ∞ → ∞
and also by doing the same procedure for dS slices. We find
that the massless modes of the dimensionally reduced
theory give us the nondynamical pure gravity action on
the boundary ðAÞAdS2 slices, proportional to the Euler
character of the manifold. This led us to the insight that if
superrotation symmetry is unbroken, then there is no
dynamics in this smaller subspace of phase space.
To get nontrivial dynamics, we break the superrotation

symmetry by fluctuating the ðAÞAdS2 slices along the
transverse direction, sourced by a scalar mode ϕ. This gives
an effective Jackiw-Teitelboim (JT) theory on the ðAÞAdS2
slices, where ϕ plays the role of dilaton. Integrating the
dilaton, we get a 1D Schwarzian theory on the celestial
circle [20],

S1D ¼ ϕr

8πG2

Z
dθMðθÞ; G2 ≡ G

τ∞
; ð5Þ

here ϕr is the boundary value of dilaton. The insight we get
from this is that the bulk superrotation symmetry has a
nonlinear realization in terms of Goldstone modes on the
celestial circle. Thus to generalize this result for the full
phase space of the 3D gravity theory, we need to understand
the effective field theory of Goldstone modes correspond-
ing to the full asymptotic symmetries. Around a classical
solution of Einstein’s equations, this effective theory would
govern the semiclassical dynamics and would describe an
explicit celestial holographic dual description. Below we
describe the bulk solutions in brief detail along with their
thermodynamic properties. We will see that these solutions
and their properties emerge from the explicit 1D dual that
we will construct later.
Flat space cosmologies: Among the asymptotically flat

metrics, we will be particularly interested in FSCs, which
are analogs of black holes in 3D flat space. They are
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parametrized by massM > 0 and angular momentum J and
their form is described below [12,30],

ds2 ¼ 8GMdu2 − 2dudrþ 8GJdudθ þ r2dθ2: ð6Þ

In the phase space of 3D gravity, the flat space is
disconnected from the FSC solutions [30], much like the
spectrum of Bañados-Teitelboim-Zanelli (BTZ) black hole
and global AdS3. The FSC solution has a cosmological
horizon generated by the Killing vector K ¼ ∂u þΩ∂θ and
it is located at

r ¼ rC ¼
ffiffiffiffiffiffiffiffiffiffiffi
2GJ2

M

r
: ð7Þ

The FSC can be associated with angular velocity and
inverse temperature given by

Ω ¼ −
2M
J

; T ¼ β−1 ¼ 2

π

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2GM3

J2

s
: ð8Þ

The thermodynamics [31] of these solutions are well
studied in the literature [12]. The Bekenstein-Hawking
entropy is given by

SFSC ¼ 2πrC
4G

¼ πjJjffiffiffiffiffiffiffiffiffiffiffi
2GM

p : ð9Þ

In [12], it was shown that the thermodynamics of these
solutions can have a holographic interpretation similar to
BTZ black holes in AdS3. Here, the entropy can be derived
from a suitable limit of the Cardy formula in CFT. This was
also computed from a 2D perspective in [13] along the
line of BMS3=GCFT2 correspondence. Logarithmic cor-
rection to the semiclassical entropy has also been calculated
in [32]. To make this connection, the FSC solution is
analytically continued to the Euclidean signature. The
demand of a smooth geometry fixes the periodicity of
the Euclidean time direction to β. Whereas, the periodicity
of the angular direction gets fixed to iβΩ ¼ iΦ, typical for
rotating black holes [12].
The main aim of this paper is to compute the semi-

classical entropy from an independent 1D celestial dual
theory.

Pseudo-Goldstone bosons of BMS3. To construct the 1D
dual theory of pseudo-Goldstone modes of BMS3, we
would extensively use the alternate representation of bms3
algebra in terms of vector fields on a circle [25,26,33]. The
superrotations of bulk act on the circle as diffeomorphisms,
which form the Virasoro subgroup of the centrally extended
BMS3 group. Infinitesimal diffeomorphisms are generated
by the vector fields on the circle, which span the adjoint
space of Virasoro group. The BMS3 group is the centrally
extended exceptional semidirect product of the group of
superrotations and the Abelian group of vector fields

corresponding to supertranslations, which are acted on
by the Virasoro group according to the adjoint action. The
elements of the BMS3 group are labeled as ðf; λ; α; μÞ
where ðf; λÞ constitutes the superrotation subgroup and
ðα; μÞ constitutes the supertranslation subgroup. λ and
μ∈R are the central extensions. The infinitesimal trans-
formations are generated by the elements of the corre-
sponding Lie algebra bms3. The dual space of the Lie
algebra, on which the BMS3 group has a coadjoint action, is
the space of quadratic densities, whose conformal trans-
formation properties resemble that of a weight-2 primary
operator in CFT. The coadjoint elements are labeled by
ðj; c1;p; c2Þ, where ðj; c1Þ corresponds to the “stress
tensor” dual to superrotation and ðp; c2Þ is a “weight-2
current” dual to supertranslation.
We begin by defining the states in the Hilbert space of

the dual theory. Since ðjðθÞ; pðθÞÞ are the stress tensor
equivalents for BMS3, we should label the states on the
Hilbert space via the mutually commuting zero modes of
these two fields. This precisely follows [11] where a similar
description comes from considerations of Galilean con-
formal algebra, gca2. Thus the states are labeled as jhj; hpi
such that

hhj; hpjjðθÞjhj; hpi ¼ hj; hhj; hpjpðθÞjhj; hpi ¼ hp:

ð10Þ

The modes of the fields ðjðθÞ; pðθÞÞ satisfy the bms3
algebra (3) when the zero modes are shifted accordingly.
Thus in the holographic setup, these zero modes are related
to the mass M and angular momentum J of the corre-
sponding bulk FSC as J ¼ hj þ c1

24
;M ¼ hp þ c1

24
.

Now suppose we have a state labeled by ðhj; hpÞ on the
dual theory. For large charges hj; hp ≫ c1; c2, i.e. in the
“Cardy regime,” the state has a large degeneracy. Hence,
this can be thought of as an ensemble labeled by a finite
temperature and a chemical potential, which arise due to the
stress tensor and the weight-2 current respectively. This
finite energy density of these states breaks the BMS3
symmetry spontaneously into the global Poincaré sub-
group, giving rise to an infinite number of massless
Goldstone modes. However, BMS symmetry is also
anomalous due to the presence of the central charges.
Thus we expect that the symmetry is nonlinearly described
in this part of the Hilbert space via the pseudo-Goldstone
Bosons, where the Goldstone modes acquire small mass
sourced by the central charges. This idea imitates [23]
where the authors describe the holomorphic sector of
a CFT near a finite energy state in terms of pseudo-
Goldstone modes.
To identify the pseudo-Goldstone modes, we start from

our chosen state jhj; hpi and do a small BMS3 trans-
formation labeled by ðfðθÞ; λ; αðθÞ; μÞ such that the trans-
formed state still belongs to the same region of the Hilbert

ENTROPY OF FLAT SPACE COSMOLOGIES FROM CELESTIAL … PHYS. REV. D 109, L041902 (2024)

L041902-3



space in appropriate sense. Then the expectation values of
the charges change according to the coadjoint action of the
BMS3 group [25,26,33],

hpðθÞi ¼ hp½f0ðθÞ�2 −
c2
12

S½f�ðθÞ; ð11Þ

hjðθÞi ¼ hj½f0ðθÞ�2 −
c1
12

S½f�ðθÞ

− αðfðθÞÞ
�
2f00ðθÞhp −

c2
12

S½f�0ðθÞ
f0ðθÞ

�
: ð12Þ

Here, S½f�ðθÞ ¼ − 1
2
ðf00f0 Þ2 þ ðf00f0 Þ0 is the Schwarzian deriva-

tive of f. Let us look at the transformation properties
closely. The central terms of the BMS transformation do
not affect the transformations. The supertranslation param-
eter α does not appear at all in the transformation (11).

Under pure superrotation (α ¼ 0), both the charges trans-
form like holomorphic weight-2 operators of CFT. If we
restrict ourselves to the superrotation subsector of the
asymptotic symmetries, we only get nontrivial transforma-
tion for the supertranslation charge in pure Einstein gravity
(c1 ¼ 0). This feature will essentially connect the 1D dual
theory obtained here with the results of [20].
The main idea is to promote these transformation

parameters fðθÞ and αðθÞ to local quantum fields. In fact,
these are the Goldstone bosons of BMS3. Then if we
enlarge the part of the Hilbert space near the state jhj; hpi,
we can promote the expectation values (11) and (12) to
operator identities. From the knowledge of the conserved
charges, we can write down an effective action on the
celestial circle,

I ¼ −
β

2π

Z
2π

0

dθ

�
½f0ðθÞ�2hp −

c2
12

S½f�ðθÞ
�
−

Φ
2π

Z
2π

0

dθ

�
ðf0ðθÞÞ2hj −

c1
12

S½f�ðθÞ − γðθÞ
�
2f00ðθÞhp −

c2
12

S½f�0ðθÞ
f0ðθÞ

��
;

ð13Þ

where γ ≡ α∘f acts as a Lagrange multiplier. The coupling
constants β and Φ are still arbitrary but they will soon be
related to bulk quantities as suggested by the notations.
We propose that the above action captures the gravita-

tional dynamics near a flat space cosmological solution. As
a consistency check, let us return to the case of purely
superrotated spacetimes in Einstein gravity. For these
spacetimes hj ¼ 0; c1 ¼ 0 and also γ is absent. We rescale

the field fðθÞ ⟶
ffiffiffiffiffiffiffi
24hp
c2

q
fðθÞ and then define YðθÞ ¼

tanhðfðθÞ=2Þ such that the action becomes

Is ¼
β

8πG

Z
2π

0

dθfYðθÞ; θg: ð14Þ

We exactly get the form of (5) back given that the parameter
β and the dilaton boundary value ϕr are related appropri-
ately. In the next section we use the action (13) to calculate
the bulk thermodynamic properties providing further
evidence of its validity.

Properties of the effective action. Our claim is that the path
integral corresponding to the celestial dual theory is
equivalent to the 3D gravity path integral around an
FSC saddle. To check the validity of this statement, our
preliminary goal would be to understand whether we can
map 3D gravity solutions in this 1D theory language. Then
we would like to obtain the Bekenstein-Hawking entropy
of FSCs, which are labeled by mass M and angular
momentum J. These saddle points belong to different
coadjoint orbits of the BMS3 group.

1D representative of FSC saddle: Let us start with the
state jhj ¼ 0; hp ¼ 0i, which corresponds to the trivial flat
space cosmology with zero temperature and zero angular
velocity. Then we would try to evaluate the representative
state at finite eigenvalues. To do so, locally we will think of
BMS3 as the following set of infinitesimal transformations,

θ→ θþ ϵðθÞ; x→ xþgðθÞ; gðθÞ≡αðθÞ
ϵðθÞ ; ð15Þ

where θ is the coordinate along the circle on which
diffeomorphism acts. The interesting point to note is that
the transformation of the parameter x depends only on the
coordinate of the circle; i.e. we have an angle-dependent
translation along the x direction. To understand the impli-
cations of such an auxiliary direction, we can start from the
usual 2D notion of BMS3 group where it transforms the
coordinate along null infinity u → uþ uϵ0ðθÞ þ αðθÞ and
then define x via u≡ ϵðθÞx. Note that we have already
discussed that both αðθÞ and ϵðθÞ are generated by vector
fields on S1. Hence, the transformation properties of gðθÞ
dictate that it is a function or a density of weight zero. The
effective 1D description comes because the transformation
parameters depend only on the coordinate on the circle and
the u dependence is trivial. Hence, all the data available at a
particular constant u-slice can be trivially evolved to any
other slice. Thus from a Kaluza-Klein perspective, we can
exactly interpret the 2D coordinate transformations as
coordinate and gauge transformations in 1D. The trans-
formations (15) exactly do this job. Now we can think of
the direction x to be trivially parametrizing the fiber on the
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base manifold S1 and null infinity can essentially be
thought of as the principal bundle.
Then we can consider a finite version of the above

transformations by exponentiating the infinitesimal ones,

θ → fðθÞ; x → xþGðθÞ: ð16Þ

To go to the finite parameter saddle from the hj ¼ hp ¼ 0

vacuum, we would like to put certain periodicity conditions
on the circle and the fiber [34,35]. Thus we have the
following BMS3 transformations:

fðθÞ¼ e
2πθ
Φ ; GðθÞ¼−

β

Φ
θ; ⇒ α∘fðθÞ¼−

2πβ

Φ2
θfðθÞ;

ð17Þ
wherewe get the identification ðθ; xÞ ∼ ðθ þ iΦ; x − iβÞ and
the conditions fðθ þ iΦÞ ¼ fðθÞ þ iΦ and Gðθ þ iΦÞ ¼
GðθÞ. We can put these forms back in (11) and (12) to get
the following relations:

hp ¼ c2π2

6Φ2
; hj ¼

c1π2

6Φ2
−
c2π2

3

β

Φ3
: ð18Þ

For a cosmological solution with M; J ≫ c2, and for pure
gravity c1 ¼ 0. So, from above equation, it follows that for
pure gravity,

M ¼ c2π2

6Φ2
; J ¼ −

c2π2

3

β

Φ3
: ð19Þ

These match with [12] and also justify our notation of the
parameters β and Φ as inverse temperature and angular
velocity. Having correctly identified the 3D saddles from a
1D perspective, we will now show the computation of the
thermodynamic variables using the 1D theory (13), when we
identify the couplings with these β and Φ.
Entropy of flat space cosmologies: With the information

of the coadjoint orbits at hand, we may now write down the
path integral of the 1D theory formally as

Z ¼
Z

DfDαe−I; ð20Þ

with I given by (13) with the couplings identified with the
“inverse temperature” and “angular velocity” parameters
obtained in the earlier part of this section. To evaluate this
partition function completely would require us to under-
stand the measure in the phase space. We leave this
complete analysis for a later work and instead focus here
on a semiclassical computation.
In the large charge limit, the path integral can be

approximated by saddle point contributions only. For this,
we would consider the solutions to the equations of motion
of the action (13). The Lagrange multiplier field γ ¼ α∘f
puts a constraint on f given as

2f00ðθÞhp −
c2
12

S½f�0ðθÞ
f0ðθÞ ¼ 0: ð21Þ

The solutions to this equation are of the form f ¼ Aθ. The
solution for γ comes from the equation of motion of the
field f. γ being a Lagrange multiplier, its explicit form does
not appear in the construction. Under saddle point approxi-
mation, the partition function is given by the on shell action
for f ¼ Aθ such that

logZ ¼ −Ion shell ¼ −A2
c2π2

6

β

Φ2
þ A2

c1π2

6Φ
: ð22Þ

From the definition of charges, i.e. −∂β logZ ¼ hp and
−∂Φ logZ ¼ hj, we fix the constant A ¼ 1. Therefore, we
have identified a solution in the 1D theory that is the
representative of the FSC solution in 3D gravity.
Now we consider the entropy that is given by the Laplace

transform of partition function [36],

e−Sðhj;hpÞ ¼
Z

dβdΦeβhpþΦhjZðβ;ΦÞ: ð23Þ

Under saddle point approximation, we have −Sðhj; hpÞ ¼
βhp þΦhj þ logZ, where β, Φ take the thermodynamic
values. Using (18) and hp ≈M; hj ≈ J, we get the semi-
classical entropy,

S ¼ πffiffiffi
6

p
� ffiffiffiffiffi

c2
M

r
J þ c1

ffiffiffiffiffi
M
c2

s �
: ð24Þ

Our result is in perfect agreement with the galilean
conformal field theory (GCFT) computation in [13,32].
For pure gravity, we have c1 ¼ 0 and c2 ¼ 3=G, such that

S ¼ π
jJjffiffiffiffiffiffiffiffiffiffiffi
2GM

p : ð25Þ

This agrees with the semiclassical entropy of FSC [12].

Discussions. In this work, we have found a 1D theory (13)
of pseudo-Goldstone modes corresponding to the sponta-
neously and anomalously broken BMS3 symmetry. This
theory lies on the celestial circle of flat space. To arrive at
this theory, we have considered the transformation proper-
ties of supertranslation and superrotation charges under the
action of finite BMS3 transformations. We have identified a
solution in this 1D theory that represents the 3D FSC
solution with definite mass and angular momentum. Using
saddle point approximation to compute the path integral
corresponding to the 1D theory, we have obtained the
semiclassical entropy for this 1D solution. This perfectly
agrees with the Bekenstein-Hawking entropy of the 3D
FSC [12] in Einstein gravity. The 1D theory also captures
the Cardy regime of a GCFT2 [13]. This generalizes the
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relation between Carollian and celestial approaches to flat
space holography [18,19] in lower dimensions.
In an earlier work [20], we obtained a Schwarzian theory

on the celestial circle describing the dynamics of super-
rotation modes. We arrived at this theory via holographic
reduction of 3D Einstein theory to JT gravity on a cutoff
(A)dS surface and eventually using JT-Schwarzian duality.
We observed that the boundary theory is an integration of
the supertranslation current, which is a Schwarzian deriva-
tive of the reparametrization mode of the boundary. This
theory also depends on two arbitrary parameters τ∞ and ϕr.
Here τ∞ is the choice of cutoff surface and ϕr governs the
boundary behavior of the fluctuation in the location of this
cutoff surface. As pointed out earlier, from (11) we
understand how supermomentum is blind to the super-
translation transformations. To compare with pure Einstein
theory we consider c1 ¼ 0 and c2 ¼ 3=G. Considering the
action (13) of our current work, we identify that the first
part of the action coming from pðθÞ is what we have
obtained via dimensional reduction. This matching can be
obtained by fixing the parameters τ∞ and ϕr to appropriate
values, which were arbitrary in the context of our ear-
lier work.
Therefore, we have explicitly given an example of

“celestial holography” for 3D gravity with zero cosmo-
logical constant. Part of this theory was obtained via

holographic reduction as well. Our theory correctly repro-
duces the semiclassical entropy of 3D FSC, which further
validates the claim. We would like to compute the loga-
rithmic corrections to FSC entropy [32] from the 1D theory
in a future work.
We are interested in computing the complete one-loop

path integral of this 1D theory, which can potentially capture
the 3D gravity path integral around an FSC saddle. The 1D
theory is a Schwarzian coupled to a Lagrange multiplier
field, thus it would be intriguing to analyzewhether there is a
connection between this 1D effective theory and BMS3
invariant matrix models [37] along the line of Schwarzian
and Hermitian matrix model duality [38]. It would be
interesting to properly compare the 2D holographic notion
and our 1D approach with other observables. In this
context, the geometric action on BMS3 coadjoint orbits
and their connection to Liouville-like theories could be
helpful [39,40].
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