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We show via explicit construction that for six or more parties, there exist extreme rays of the
subadditivity cone that can be realized by quantum states, but not by holographic states. This is a
counterexample to a conjecture first formulated in Hernández-Cuenca et al. [The holographic entropy cone
from marginal independence, J. High Energy Phys. 09 (2022) 190.], and implies the existence of deep
holographic constraints that restrict the allowed patterns of independence among various subsystems
beyond the universal quantum mechanical restrictions.
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Introduction. A central question in the context of the gauge/
gravity duality [1–3] is to understand how the bulk classical
geometry is encoded in the entanglement structure of the
boundary state, and one might hope to extract useful
information about such encoding by investigating properties
of the von Neumann entropy which are specific to this
setting. The discovery of monogamy of mutual information
(MMI) [4,5] showed that for geometric states, i.e., states of
holographic conformal field theories (CFTs) which are dual
to classical geometries, the Hubeny-Rangamani-Ryu-
Takayanagi prescription [6,7] implies that the entropies of
spatial subsystems in the boundary CFT satisfy constraints
that in general do not hold for arbitrary quantum systems.
Since then, new holographic entropy inequalities have been
found, and the holographic entropy cone (HEC) [8] has been
studied extensively [9–20].
As the number of parties N increases, the search for new

inequalities quickly becomes computationally unfeasible

due to the fact that the combinatorics governing the number
of inequalities typically grows doubly exponentially as a
function of N. Furthermore, fixing N is immaterial in
quantum field theory (QFT), since one can always imagine
further partitioning the N regions into smaller subregions.
For these reasons, [21] took a different approach to the
characterization of the HEC. Rather than looking for the
explicit expression of the inequalities at some given N, [21]
attempted to provide a more implicit description of the HEC
for an arbitrary number of parties by relating it to thequantum
entropy cone (QEC) [22], and to distill the essential infor-
mation that would allow for its reconstruction (at least in
principle). Drawing from the ideas of [12,14,21] suggested
that this essential information is the solution to the holo-
graphic marginal independence problem (HMIP) [23].
The HMIP is the restriction of the more general quantum

marginal independence problem (QMIP), introduced in
[23], to geometric states. The QMIP asks the following
question: Given an N-party system and a complete speci-
fication of the presence of correlation (or conversely the
lack thereof) among the various subsystems, is there a
density matrix that satisfies these constraints? This problem
can be conveniently formalized using the polyhedral cone
in entropy space carved out by all instances of subadditivity
(SA) at given N, called the subadditivity cone (SAC). The
SAC is an outer bound to the HEC, and a pattern of
marginal independence (PMI) is defined as the linear
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subspace spanned by one of its faces [24]. The HMIP then
asks which faces of the SAC, and therefore which PMIs,
can be reached by the HEC.
The analysis of [21] suggested that the HEC can be

reconstructed if the solution to the extremal version of the
HMIP is known, i.e., if it is known which extreme rays of
the SAC (or equivalently one-dimensional PMIs) can be
realized by geometric states. Specifically, [21] provided
strong evidence that the extreme rays of the HEC can
simply be obtained from one-dimensional PMIs involving
more subsystems by particular projections that correspond
to coarse grainings [25]. Holographic entropy inequalities
can then be derived, at least in principle, using standard
algorithms to convert the description of a polyhedral cone
in terms of extreme rays into one given by facets [26].
If this reconstruction is indeed possible, then the char-

acterization of the HEC would reduce to the characteriza-
tion of the set of extreme rays of the SAC that can be
realized by geometric states. A natural guess suggested in
[21], which is consistent with the SAC for all N ≤ 5, is that
these are all the extreme rays that can be realized in
quantum mechanics. The aim of this Letter is to show that
this is not the case, implying that even if the reconstruction
argued in [21] is possible, extremal quantum marginal
independence alone is not enough to fully characterize the
HEC, since there exist deeper constraints which restrict the
set of extremal PMIs that can be realized in holography.
The structure of the paper is as follows. In the next section,

we review the definition of the HEC from [8], the notion of
holographic marginal independence from [23], and the
reconstruction of the HEC from the solution to the extremal
HMIP argued in [21]. Then, we review the machinery from
[27], which allows us to efficiently derive extreme rays of the
SAC that satisfy strong subadditivity (SSA) and therefore
have a chance of being realizable by quantum states. We will
use these techniques to find such an extreme ray that violates
MMI, and therefore cannot be realizedbyanygeometric state.
Nevertheless, we will demonstrate next that this extreme ray
is in fact realized by a quantum state. Finally, we comment on
the implications of this result for the characterization of the
HEC for an arbitrary number of parties.

The holographic entropy cone frommarginal independence.

Definition of the holographic entropy cone: The HEC was
introduced in [8], following the analogous program for
arbitrary quantum states [22], as a convenient framework to
analyze the set of inequalities implied by the Ryu-
Takayanagi (RT) formula [6]. For our purposes, it will
be sufficient to view the HEC as the convex cone of entropy
vectors which are realized by graph models of holographic
entanglement, which we now briefly review. For the
original definition of the HEC, and for a detailed explan-
ation of how a graph model is related to the RT surfaces that
compute the entropies of a collection of boundary spatial

subsystems, we refer the reader to [8] (see also [9,12,14] for
additional subtleties).
AnN-party graph model is a simple weighted graphG ¼

ðV; EÞ with positive weights, a specification of a subset
∂V ⊆ V of vertices called boundary vertices, and a surjec-
tive (but not necessarily injective) map ξ∶∂V → ½Nþ 1� ¼
f1; 2;…;Nþ 1g, where 1;…;N label the parties and
Nþ 1 labels the purifier. Given a graph model, one

associates to it an entropy vector S⃗∈RD, with D ¼
2N − 1, as follows. For a nonempty subset I ⊆ ½N�, a
cut “homologous to I” (I-cut) is a subset VI ⊂ V such that
∂V ∩ VI ¼ ξ−1ðIÞ, where ξ−1 denotes the preimage of ξ.
The cost of any such cut is the sum of the weights of the
edges that connect a vertex in VI to one in Vc

I , the
complement of VI in V. The entropy SI is then defined
as the cost of the I-cut with minimal cost.
It is straightforward to see that the set of entropy vectors

obtained from all such graph models at any fixed N is a
convex cone. This follows from the fact that given any two

graph models G1, G2 with entropy vectors S⃗1; S⃗2, the

conical combination S⃗ ¼ αS⃗1 þ βS⃗2, with α, β > 0, is
realized by the graph G ¼ αG1 ⊕ βG2, where αG1 is a
graph model obtained from G1 by rescaling the weights
with the coefficient α (and similarly for βG2), and ⊕
denotes the disjoint union. As shown in [8], this cone is
identical to the HEC, and it is polyhedral for anyN, i.e., it is
specified by a finite number of inequalities, or equivalently,
by a finite number of extreme rays. It was further shown in
[28] that, for any N, the cone of graph models, or
equivalently the HEC, is contained in the QEC [29].

Formalization of the HMIP and its extreme version: An
obvious outer bound to the QEC, and therefore also the
HEC, is the SAC, i.e., the polyhedral cone carved out by all
instances of SA:

SI þSK−SIK ≥ 0 ∀ I ; K⊂ ½Nþ1�; I ∩K¼∅; ð1Þ
where underlined indices indicate subsystems that can
include the purifier Nþ 1 (as opposed to I ⊆ ½N�).
Thus, the Araki-Lieb inequality conveniently takes the
form of an SA involving the purifier.
Consider now a face F of the SAC and a vector

S⃗∈ intðF Þ. Notice that the collection of SA instances

which are saturated by S⃗ is independent from the specific
choice of this vector. Furthermore, the saturation of SA is
equivalent to the vanishing of the mutual information
IðI∶KÞ, which in quantum mechanics is attained if and
only if the density matrix factorizes, i.e., if the subsystems
I and K are independent. We can then interpret the linear
subspace spanned by F as corresponding to a specification
of which subsystems are independent and which manifest
some correlation, while remaining agnostic about the
specific values of the entropies. This subspace is in fact
a PMI as defined in [21].
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The QMIP and HMIP then ask which PMIs can be
realized by quantum states and graph models, respectively.
More specifically, they ask which PMIs correspond to faces
of the SAC such that there exist in the interior at least one
entropy vector realized by a quantum state or, respectively,
a graph model. In the following sections we will be
interested in the extremal version of these problems, which
we denote by EQMIP and EHMIP, and only focus on the
one-dimensional PMIs. These correspond to the one-
dimensional faces of the SAC, i.e., its extreme rays.

Reconstructing the HEC from the solution to the EHMIP:
The intuition that the solution to the HMIP could provide
sufficient information for the derivation of the HEC was
first suggested in [12,14], based on the observation that the
PMI of a choice of boundary regions in a geometric state is
captured by the connectivity of the RT surfaces, while the
specific value of the entropy is immaterial in QFT because
it depends on the choice of cutoffs. This intuition was then
further developed in [21], which formulated the following
conjecture and checked that it holds for N ≤ 5 [30]:
Conjecture 1. For any extreme ray R⃗N of the N-party

HEC, there exists for some N0 ≥ N an extreme ray R⃗0
N0 of

the N0-party SAC such that R⃗0
N0 can be realized by a graph

model and

ΛN0→NR⃗
0
N0 ¼ RN; ð2Þ

where ΛN0→N is a map associated to a coarse-graining of the
N0 parties into N blocks [31].
If proven to be true, then Conjecture 1 would have

important implications for the characterization of the HEC.
It would imply that for any N, there exists some finite
N0 ≥ N such that the N-party HEC can be obtained as the
conical hull of all possible coarse grainings of the extreme ray
of theN0-party SAC realizable by graphmodels [21]. In other
words, to reconstruct the N-party HEC it would be sufficient
to know the solution to theEHMIP for a certainN0 ≥ Nwhich
dependsonN (itwas shown in [21] that forN ¼ 3, 4 it suffices
to have N0 ¼ N, whereas for N ¼ 5 one needs N0 ¼ 8).
While a proof of Conjecture 1 is still lacking, and it is far

beyond the scope of this Letter, considering the strong
evidence given in [21], it is natural to focus on the solution
to the EHMIP, since this distills the essential information
underlying theHEC.The immediate question then iswhether
there is some physical principle that identifies the SAC
extreme rays realizable by graph models. A possibility
suggested in [21], which holds for N ≤ 5, is that there is
in fact nothing special about graph models, and that the
EHMIP and EQMIP have the same solution:
Conjecture 2. For any N, all extreme rays of the N-party

SAC that can be realized by quantum states can also be
realized by graph models.

In the rest of this work wewill construct a counterexample
to Conjecture 2. Its implication for the characterization of the
HEC will then be discussed in the final section.

Deriving extreme rays of the SAC which satisfy SSA. As we
mentioned, Conjecture 2 holds for N ≤ 5, so to look for a
counterexample we need to consider at least N ¼ 6.
However, in this case the combinatorics of the faces of
the SAC is sufficiently complicated that an explicit deri-
vation of all extreme rays is not feasible even using state of
the art algorithms [32]. Instead, we should restrict ourselves
to the relatively few extreme rays which satisfy SSA, since
these are the only ones that can possibly be realized by
quantum states.
A first useful result in this direction was recently

obtained in [27].
Theorem 1. For any N, all extreme rays of the SAC that

can possibly be realized by quantum states (other than the
ones realized by Bell pairs) belong to the face that spans the
subspace given by

Iðl∶l0Þ ¼ 0 ∀l; l0 ∈ ½Nþ 1�: ð3Þ
Proof. See Corollary 1 in [27]. ▪
While Theorem 1 gives a considerable speed-up in the

computation of the extreme rays of the SAC that satisfy
SSA [33], it is still not sufficient to obtain all such extreme
rays for N ¼ 6. To obtain these rays, one can generalize
Theorem 1 and derive new constraints using extreme rays
that are already known, in a similar fashion to how [27]
proved Theorem 1 using the extreme rays realized by Bell
pairs. This program is currently being explored systemati-
cally in [34], but for the purpose of providing a counter-
example to Conjecture 2, it suffices to construct a single
extreme ray with the requisite conditions.
Labeling the six parties by A;B;C;D; E; F, and ordering

the components of an entropy vector lexicographically, as in

ðA;…; F;AB; AC;…; EF;ABC;…;ABCDEFÞ; ð4Þ
the example we consider is

R6 ¼ ð2;1;1;1;2;2;3;3;3;4;4;2;2;3;3;2;3;3;3;3;4;
2;4;5;5;4;5;5;3;5;4;3;4;4;4;4;5;4;4;5;3;3;

4;4;4;4;3;4;4;3;3;3;5;4;4;4;3;3;2;2;2;3;1Þ: ð5Þ
The reader can easily verify that (5) is indeed an extreme
ray of the six-party SAC by first checking that it satisfies all
instances of SA, and that the set of vanishing mutual
information instances has rank D − 1 ¼ 62, where D ¼
26 − 1 is the dimension of the N ¼ 6 entropy space.
Furthermore, as the reader can check, (5) violates one
instance of MMI, in particular

−I3ðA∶BC∶DEÞ ¼ −2 ≱ 0; ð6Þ

GAP BETWEEN HOLOGRAPHIC AND QUANTUM MECHANICAL … PHYS. REV. D 109, L041901 (2024)

L041901-3



where

I3ðX∶Y∶ZÞ
≔ SX þ SY þ SZ − SXY − SXZ − SYZ þ SXYZ: ð7Þ

This implies that (5) cannot be realized by a graph model.
To complete the proof that Conjecture 2 is false, we now

need to show that even though (5) cannot be realized by a
graph model, it is nevertheless the entropy vector of a
quantum state. This is the goal of the next section.

Quantum state realization. To show that (5) is the entropy
vector of a quantum statewewill use the hypergraphmodels
introduced in [35]. Hypergraph models are defined analo-
gously to the graph models presented above, with the only
difference being that in addition to edges one also allows for
hyperedges connecting three or more vertices. Therefore we
only need to clarify under what circumstances the weight of
a hyperedge contributes to the cost of an I-cut. As for
standard edges, given an I-cut VI , and a hyperedge h
(thought of as a collection of vertices), the weight of h
contributes to the cost of the cut if and only if h contains at
least onevertex in bothVI andVc

I . As usual, the entropyofI
is then given by the cost of the I-cut with minimal cost.
We can now try to construct a hypergraph model whose

entropy vector is the extreme ray (5). There is currently no
systematic procedure to construct a hypergraph (or even
graph) realization of a given entropy vector, but a convenient
starting point is the observation from the previous section
that (5) violates only a single instance of MMI [cf. (6)]. The
prototypical example of a quantum state that violatesMMI is
the GHZ state, which is realized by a hypergraph with just
a single hyperedge. To realize (5) we then start from a
hypergraph with a single weight 2 hyperedge [2 is the value
of the instance of I3 in (6) obtained from (5)] connecting
four vertices labeling the coarse-grained subsystems
A;BC;DE; FO. With a few manipulations we then arrive
at the hypergraph shown in Fig. 1.
We are now ready to prove the main result of this Letter.
Theorem 2. The extreme ray of the six-party SAC given

in (5) is the entropy vector of a quantum state.
Proof. We leave it as a simple exercise for the reader to

explicitly verify that the entropy vector of the hypergraph
model shown in Fig. 1 is precisely (5). The fact that (5) is
the entropy vector of a quantum state then follows
immediately from the result of [36], which showed that
(similar to the case of a standard graph) any entropy vector
realizable by a hypergraph model is the entropy vector of a
quantum stabilizer state. ▪

Discussion. We conclude with a few comments about
the implications of the failure of Conjecture 2 for the
reconstruction and the physical interpretation of the HEC.
If Conjecture 1 is true, then the HEC can be fully
reconstructed from the solution to the EHMIP. In that

case, if Conjecture 2 were also true, then the HEC would be
the largest possible polyhedral cone compatible with this
reconstruction procedure and quantum mechanics. One
should then question the actual physical meaning of holo-
graphic entropy inequalities, since they would just follow
from the bound on N, which is artificial in QFT. The failure
of Conjecture 2 proves that this is not the case, even if the
reconstruction procedure of Conjecture 1 can indeed be
achieved. In that case, one should then try to understand
what distinguishes the extreme rays of the SAC that can be
realized by graph models from the larger set of quantum
mechanical ones.
A first step in this direction is the derivation of all extreme

rays which are compatible with SSA for N ¼ 6 [34]. Since
this is the smallest value of N where the solutions to the
EQMIP and EHMIP differ, it is a useful testing ground to
develop intuition. Next, one should determine which of
these rays can be realized in quantum mechanics, and as
demonstrated here, the hypergraph construction could be a
useful tool in this direction. Ultimately, one may then
attempt to use the construction suggested in [35], or the
techniques from [28,36] to explicitly construct the corre-
sponding quantum states and find a new characterization
from the perspective of quantum information theory. We
leave these questions for future investigation.
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FIG. 1. The hypergraph model that realizes the entropy vector
(5). The (yellow) blob describes the only hyperedge in the model,
which connects the boundary vertex A and the three bulk vertices
(red), and has weight 2. All other edges (blue) have weight 1,
except for the E leaf which has weight 2.

HE, HUBENY, and ROTA PHYS. REV. D 109, L041901 (2024)

L041901-4



[1] Juan Martin Maldacena, The large N limit of superconfor-
mal field theories and supergravity, Adv. Theor. Math. Phys.
2, 231 (1998).

[2] S. S. Gubser, Igor R. Klebanov, and Alexander M.
Polyakov, Gauge theory correlators from noncritical string
theory, Phys. Lett. B 428, 105 (1998).

[3] Edward Witten, Anti-de Sitter space and holography, Adv.
Theor. Math. Phys. 2, 253 (1998).

[4] Patrick Hayden, Matthew Headrick, and Alexander
Maloney, Holographic mutual information is monogamous,
Phys. Rev. D 87, 046003 (2013).

[5] Aron C. Wall, Maximin surfaces, and the strong subaddi-
tivity of the covariant holographic entanglement entropy,
Classical Quantum Gravity 31, 225007 (2014).

[6] Shinsei Ryu and Tadashi Takayanagi, Holographic deriva-
tion of entanglement entropy from AdS=CFT, Phys. Rev.
Lett. 96, 181602 (2006).

[7] Veronika E. Hubeny, Mukund Rangamani, and Tadashi
Takayanagi, A covariant holographic entanglement entropy
proposal, J. High Energy Phys. 07 (2007) 062.

[8] Ning Bao, Sepehr Nezami, Hirosi Ooguri, Bogdan Stoica,
James Sully, and Michael Walter, The holographic entropy
cone, J. High Energy Phys. 09 (2015) 130.

[9] Donald Marolf, Massimiliano Rota, and Jason Wien,
Handlebody phases and the polyhedrality of the holographic
entropy cone, J. High Energy Phys. 10 (2017) 069.

[10] Massimiliano Rota and Sean J. Weinberg, New constraints
for holographic entropy from maximin: A no-go theorem,
Phys. Rev. D 97, 086013 (2018).

[11] Shawn X. Cui, Patrick Hayden, Temple He, Matthew
Headrick, Bogdan Stoica, and Michael Walter, Bit threads
and holographic monogamy, Commun. Math. Phys. 376,
609 (2019).

[12] Veronika E. Hubeny,Mukund Rangamani, andMassimiliano
Rota, Holographic entropy relations, Fortschr. Phys. 66,
1800067 (2018).

[13] Ning Bao and Márk Mezei, On the entropy cone for large
regions at late times, arXiv:1811.00019.

[14] Veronika E. Hubeny,Mukund Rangamani, andMassimiliano
Rota, The holographic entropy arrangement, Fortschr. Phys.
67, 1900011 (2019).

[15] Sergio Hernández Cuenca, Holographic entropy cone for
five regions, Phys. Rev. D 100, 026004 (2019).

[16] Bartlomiej Czech and Xi Dong, Holographic entropy cone
with time dependence in two dimensions, J. High Energy
Phys. 10 (2019) 177.

[17] Temple He, Matthew Headrick, and Veronika E. Hubeny,
Holographic entropy relations repackaged, J. High Energy
Phys. 10 (2019) 118.

[18] Temple He, Veronika E. Hubeny, and Mukund Rangamani,
Superbalance of holographic entropy inequalities, J. High
Energy Phys. 07 (2020) 245.

[19] David Avis and Sergio Hernández-Cuenca, On the founda-
tions and extremal structure of the holographic entropy
cone, Discrete Appl. Math. 328, 16 (2023).

[20] Bartlomiej Czech and Yunfei Wang, A holographic inequal-
ity for N ¼ 7 regions, J. High Energy Phys. 01 (2023) 101.

[21] Sergio Hernández-Cuenca, Veronika E. Hubeny, and
Massimiliano Rota, The holographic entropy cone from

marginal independence, J. High Energy Phys. 09 (2022)
190.

[22] N. Pippenger, The inequalities of quantum information
theory, IEEE Trans. Inf. Theory 49, 773 (2003).

[23] Sergio Hernández-Cuenca, Veronika E. Hubeny, Mukund
Rangamani, and Massimiliano Rota, The quantum marginal
independence problem, arXiv:1912.01041.

[24] This is the definition of a PMI given in [21], whereas the
original definition from [23] was weaker.

[25] Notice that this implies that to reconstruct the extreme rays
of the N-party HEC, one needs to know the extreme rays of
the SAC for some N0 ≥ N. We will return to this point in the
next section.

[26] Since no efficient algorithm is known, such explicit deri-
vation of the inequalities remains computationally unfea-
sible for large N.

[27] Temple He, Veronika E. Hubeny, and Massimiliano Rota,
On the relation between the subadditivity cone and the
quantum entropy cone, J. High Energy Phys. 08 (2023)
018.

[28] Patrick Hayden, Sepehr Nezami, Xiao-Liang Qi, Nathaniel
Thomas, Michael Walter, and Zhao Yang, Holographic
duality from random tensor networks, J. High Energy Phys.
11 (2016) 009.

[29] This is not a priori obvious because the original definition
of the HEC in [8] is a purely geometric one, and it does
not assume that the bulk geometry corresponds to a CFT
state [9].

[30] Most of the machinery developed in [1] was used to show
that Conjecture 1 would follow from other purely graph
theoretic conjectures, but this machinery is not necessary for
the purpose of this Letter.

[31] The precise expression of ΛN0→N is not necessary for this
discussion, but for clarity we give a simple example of such

a projection. Consider the three-party entropy vector S⃗ ¼
ð1; 1; 1; 2; 2; 2; 1Þ for A, B, C [the entropies are ordered
conventionally as exemplified in (4) for N ¼ 6], and define
the new parties A0 ¼ A; B0 ¼ BC. The two-party entropy

vector for these coarse-grained parties is then S⃗0 ¼ ð1; 2; 1Þ,
and it is obtained from S⃗ by simply dropping the compo-
nents that separate B from C, i.e., B;C; AB; AC.

[32] W. Bruns, B. Ichim, C. Söger, and U. von der Ohe,
Normaliz. Algorithms for rational cones and affine monoids,
Available at https://www.normaliz.uni-osnabrueck.de.

[33] The computation of all the extreme rays of the SAC for
N ¼ 5 takes several days on a standard laptop, but the
extreme rays of the face identified by Theorem 1 only takes
a few minutes.

[34] Temple He, Veronika Hubeny, and Massimiliano Rota,
Algorithmic construction of SSA-compatible extreme rays
of the subadditivity cone and the N ¼ 6 solution (to be
published).

[35] Ning Bao, Newton Cheng, Sergio Hernández-Cuenca, and
Vincent P. Su, The quantum entropy cone of hypergraphs,
SciPost Phys. 9, 5 (2020).

[36] Michael Walter and Freek Witteveen, Hypergraph min-cuts
from quantum entropies, J. Math. Phys. (N.Y.) 62, 092203
(2021).

GAP BETWEEN HOLOGRAPHIC AND QUANTUM MECHANICAL … PHYS. REV. D 109, L041901 (2024)

L041901-5

https://doi.org/10.4310/ATMP.1998.v2.n2.a1
https://doi.org/10.4310/ATMP.1998.v2.n2.a1
https://doi.org/10.1016/S0370-2693(98)00377-3
https://doi.org/10.4310/ATMP.1998.v2.n2.a2
https://doi.org/10.4310/ATMP.1998.v2.n2.a2
https://doi.org/10.1103/PhysRevD.87.046003
https://doi.org/10.1088/0264-9381/31/22/225007
https://doi.org/10.1103/PhysRevLett.96.181602
https://doi.org/10.1103/PhysRevLett.96.181602
https://doi.org/10.1088/1126-6708/2007/07/062
https://doi.org/10.1007/JHEP09(2015)130
https://doi.org/10.1007/JHEP10(2017)069
https://doi.org/10.1103/PhysRevD.97.086013
https://doi.org/10.1007/s00220-019-03510-8
https://doi.org/10.1007/s00220-019-03510-8
https://doi.org/10.1002/prop.201800067
https://doi.org/10.1002/prop.201800067
https://arXiv.org/abs/1811.00019
https://doi.org/10.1002/prop.201900011
https://doi.org/10.1002/prop.201900011
https://doi.org/10.1103/PhysRevD.100.026004
https://doi.org/10.1007/JHEP10(2019)177
https://doi.org/10.1007/JHEP10(2019)177
https://doi.org/10.1007/JHEP10(2019)118
https://doi.org/10.1007/JHEP10(2019)118
https://doi.org/10.1007/JHEP07(2020)245
https://doi.org/10.1007/JHEP07(2020)245
https://doi.org/10.1016/j.dam.2022.11.016
https://doi.org/10.1007/JHEP01(2023)101
https://doi.org/10.1007/JHEP09(2022)190
https://doi.org/10.1007/JHEP09(2022)190
https://doi.org/10.1109/TIT.2003.809569
https://arXiv.org/abs/1912.01041
https://doi.org/10.1007/JHEP08(2023)018
https://doi.org/10.1007/JHEP08(2023)018
https://doi.org/10.1007/JHEP11(2016)009
https://doi.org/10.1007/JHEP11(2016)009
https://www.normaliz.uni-osnabrueck.de
https://www.normaliz.uni-osnabrueck.de
https://www.normaliz.uni-osnabrueck.de
https://www.normaliz.uni-osnabrueck.de
https://doi.org/10.21468/SciPostPhys.9.1.005
https://doi.org/10.1063/5.0043993
https://doi.org/10.1063/5.0043993

