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Black hole solutions of general relativity exhibit a symmetry for the static perturbations around these
spacetimes, known as “ladder symmetry.” This symmetry proves useful in constructing a tower of
solutions for perturbations and elucidating their general properties. Specifically, the presence of this
symmetry leads to the vanishing of the tidal Love number associated with black holes. In this work,
we find the most general spherical, symmetric, and static black hole spacetime that accommodates this
ladder symmetry for scalar perturbation. Furthermore, we extend our calculations beyond spherical
symmetry to find the class of stationary Konoplya-Rezzolla-Zhidenko black holes, which also possess a
similar ladder structure.
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Introduction. The concept of symmetry is arguably the
most profound principle in physics. Symmetry principles
often bear important theoretical consequences, which is
greatly exemplified in the construction of both the standard
model of particle physics and the theory of relativity. The
notion of symmetry may also play a further important role
to find physics beyond these established theories.
In the present era of gravitational wave astronomy, when

we are equipped with unprecedented technology to explore
the features of extreme gravity, the implications of various
symmetry principles might lead to far-reaching observa-
tional and theoretical consequences. A prime illustration of
this is to understand the response of black holes (BHs) in
an external tidal environment. The presence of a horizon
imparts distinct characteristics to BHs in comparison to
other astrophysical objects without horizons. Unlike such a
horizonless compact object, both Reissner-Nordström and
Kerr BH solutions in general relativity (GR) are known to
have zero Love number [1–7], quantifying the vanishing
tidal deformation under an external perturbation. This
intriguing result can be interpreted as a manifestation of
the celebrated no-hair theorems for BHs in GR [8–10],
establishing a natural connection between the presence of
BH hairs and their tidal response.
In the conventional method for computing the tidal Love

number (TLN), we study the linear perturbations around an
asymptotically flat BH spacetime. The radial component of
such a perturbation obeys a second-order differential equa-
tion, yielding two linearly independent solutions. At large
distances away from the central BH, these solutionsmanifest
as the tidal field growing as rl, and the static response

decaying as r−l−1. Here, the integer l ≥ 0 represents the
multipole order of the perturbing field. Then, motivated by
an analogous Newtonian calculation [1,2,11,12], the TLN is
defined as the ratio of the coefficient of the decaying tail to
that of the tidal field. Utilizing this definition and consid-
ering the divergence of the static response at the horizon, it
becomes evident that a Reissner-Nordström/Kerr BH has
zero Love number.
Apart from the aforesaid standard calculation, it has been

recently demonstrated that the vanishing of the TLNs of
BHs in GR can be attributed to a fundamental symmetry,
known as the ladder symmetry [13–17]. As a consequence
of this symmetry, the Hamiltonian corresponding to the
scalar/vector/gravitational perturbations in both Reissner-
Nordström and Kerr backgrounds enjoys a decomposition
in terms of the so-called raising and lowering operators
analogous to that of a quantum harmonic oscillator. Then,
the vanishing of the TLN follows directly by repeated
application of the raising operator on the “ground state”
solution, which has zero Love number.
Inspired by these interesting ideas, our aim is to conduct

a comprehensive study of the ladder symmetries associated
with general static and stationary BH spacetimes. In
particular, we try to answer the following question: How
does the existence of such a ladder structure constrain the
background BH spacetime? For this purpose, we start with
an arbitrary spherically symmetric static metric and find the
form of the metric components from the imposition of
generic ladder symmetry. To keep our analysis theory-
agnostic, we focus solely on the scalar perturbations. This
allows us to construct the most general static and spheri-
cally symmetric BH spacetime possessing a ladder struc-
ture for such scalar perturbations. It turns out that such a
metric must have a form given by
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ds2 ¼ −
ΔbðrÞ
hðrÞ dt2 þ hðrÞ

ΔbðrÞ
dr2 þ hðrÞdΩ2

ð2Þ; ð1Þ

where ΔbðrÞ ¼ r2 − c2rþ c3, with ðc2; c3Þ being some
constants and hðrÞ being an arbitrary radial function. The
zeros of the function ΔbðrÞ determine the location of the
horizon. We also extend our analysis to find the most
general metric within the so-called Konoplya-Rezzolla-
Zhidenko class that has a similar ladder structure.
It is intriguing that the imposition of the ladder symmetry

leads to such severe constraints on the form of the BH
metric. The same symmetry can then be used to conclude
the vanishing of the tidal Love number (TLN) associated
with these black hole solutions. Though the existence of the
ladder symmetry is not limited to black holes alone, it is
important to note that the mere presence of ladder sym-
metry does not automatically ensure the vanishing of the
TLN. In fact, to establish that the TLN vanishes from ladder
symmetry requires additionally the presence of a regular
horizon. Specifically, this condition is crucial for demon-
strating that the zeroth mode (l ¼ 0) of the perturbation has
a zero TLN. Only then can one show that all higher modes
also have zero TLN by a repeated application of the raising
operator. Considering that astrophysical BHs are rarely
isolated and are under constant external influence, our
explorations may enhance the understanding of how BHs
behave in the presence of perturbations—an aspect of
central observational importance [18–29].

Review of ladder symmetries in Reissner-Nordström
and Kerr cases. Before we move on to a more general
calculation, it is useful to recall the computation of ladder
symmetry in the Reissner-Nordström and Kerr BH space-
times. For our purpose, we shall only focus on the tidal
response of these BHs in a scalar environment.
In the presence of a massless, static scalar field, the

relevant perturbation equation takes the well-known Klein-
Gordon form: □Φðr; θ;ϕÞ ¼ 0. Here, the d’Alembertian
operator is defined with respect to the background metric,
which for a Reissner-Nordström BH with mass M and
electric charge Q (M ≥ jQj) is given by

ds2 ¼ −fRNðrÞdt2 þ
dr2

fRNðrÞ
þ r2dΩ2

ð2Þ; ð2Þ

where fRNðrÞ¼1−rs=rþr2Q=r
2, with rs¼2M and rQ¼Q.

Hence, the horizons are located at r� ¼ rs=2�
½ðrs=2Þ2 − r2Q�1=2. Then, using a mode decomposition of
the static scalar field in terms of spherical harmonics
Φlmðr; θ;ϕÞ ¼ ϕlðrÞYlmðθ;ϕÞ, the Klein-Gordon equa-
tion can be reduced to a second-order radial differential
equation: ∂rðΔ∂rϕlÞ − lðlþ 1Þϕl ¼ 0, where ΔðrÞ ¼
r2fRNðrÞ. This can be rewritten in a very suggestive form
as Hlϕl ¼ 0, with the following definition of the
Hamiltonian:

Hl ¼ −ΔðrÞ½∂rfΔðrÞ∂rg − lðlþ 1Þ�: ð3Þ

In analogy to quantum harmonic oscillators, the above
Hamiltonian then supports factorization in terms of two
first-order operators [13,16]:

Dþ
l ¼−ΔðrÞ∂r−

lþ1

2
Δ0ðrÞ; D−

l ¼ΔðrÞ∂r−
l
2
Δ0ðrÞ; ð4Þ

which are coined as the raising and lowering operators,
respectively. As their names suggest,D�

l connects the radial
solution ϕl to ϕl�1. In mathematical terms, this translates
into two commutation relations with the Hamiltonian:

Hlþ1D
þ
l ¼Dþ

lHl; Hl−1D−
l ¼D−

lHl: ð5Þ

Also, the Hamiltonian is related to the two ladder
operators as

Hl ¼ Dþ
l−1D

−
l −

l2

4
ðr2s − 4r2QÞ

¼ D−
lþ1D

þ
l −

ðlþ 1Þ2
4

ðr2s − 4r2QÞ: ð6Þ

The above set of relations in Eqs. (5) and (6) define a ladder
structure, which plays a key role in showing the vanishing of
Love numbers for Reissner-Nordström BHs. For this pur-
pose, let us first observe that for l ¼ 0, ϕ0 ¼ constant
represents an allowed solution to the radial equation
Hlϕl ¼ 0. Then, any other solution with higher l > 0
values can be constructed from ϕ0 by a repeated application
of the raising operator as ϕl ∝ Dþ

l−1D
þ
l−2…Dþ

1 D
þ
0 ϕ0. Note

that such a solution yields a growing rl branch at infinity,
which represents the tidal field in Newtonian terminology.
Moreover, the ladder symmetry leads to a Noether current
defined as PlðrÞ ¼ Δ∂rðD−

1D
−
2 � � �D−

lϕlÞ, which is con-
served, ∂rPlðrÞ ¼ 0 on-shell. The utility of this conserved
quantity lies in understanding how the asymptotic solutions
with particular behaviors get connected to the near-horizon
ones without explicitly solving the differential equation.
For example, it is easy to see that ϕl ∝

Dþ
l−1D

þ
l−2…Dþ

1 D
þ
0 ϕ0 for ϕ0 ¼ constant yields Pl ¼ 0,

and hence, the corresponding ϕl must be regular on the
horizon. Apart from this regular solution, there is an
independent decaying response proportional to r−l−1 at
infinity, which leads to a nonzero Pl at infinity. Then, the
conservation of Pl implies that this decaying solution at
infinity must diverge as ln ðr=rs − 1Þ near the horizon,
which must be discarded. Hence, the Love number,
specified by the ratio of the decaying tail to the growing
one, should vanish identically.
A similar line of reasoning follows in the case of a

rotating Kerr BH as well. For mass M and spin angular
momentum a (M ≥ jaj), the Kerr metric is given by
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ds2 ¼ −
Δ
ρ2

�
dt − asin2θdφ

�
2 þ ρ2

Δ
dr2 þ ρ2dθ2

þ sin2θ
ρ2

�
adt − ðr2 þ a2Þdφ�2; ð7Þ

where ρ ¼ r2 þ a2 cos2 θ andΔ ¼ r2 − rrs þ a2. Thus, the
inner/outer horizons are located at r� ¼ rs=2�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðrs=2Þ2 − a2

p
. In such a spacetime, the scalar perturbation

equation boils down to

∂rðΔ∂rϕlÞ þ
a2m2

Δ
ϕl − lðlþ 1Þϕl ¼ 0: ð8Þ

Then, following Ref. [13], we can rewrite the above
equation in a form analogous to the Reissner-Nordström
case:

Hlϕl ¼ 0; Hl ¼−Δ
�
∂rfΔðrÞ∂rgþ

a2m2

Δ
−lðlþ1Þ

�
:

ð9Þ

A ladder structure resembling the one described for the
static, spherically symmetric BH is present in the Kerr case
too, which becomes apparent by defining the ladder
operators as

Dþ
l ¼ −Δ∂r þ

lþ 1

2
ðrs − 2rÞ;

D−
l ¼ Δ∂r þ

l
2
ðrs − 2rÞ: ð10Þ

These operators follow relations similar to Eq. (5). The
behavior of Eq. (9) at the two asymptotes can be examined
here as well. At large r, the two independent solutions for
ϕl are rl and r−l−1, whereas in the near-horizon limit
z → zk, ϕl goes as either constant or as e−2iq lnðz=zk−1Þ,
where q ¼ am=zk with z ¼ r − r− and zk ¼ rþ − r−.
Among them, the former is regular at the horizon and
can be raised to the solution with multipole l using
ϕl ¼ Dþ

l−1D
þ
l−2…Dþ

1 D
þ
0 ϕ0. This implies that ϕl ∼ 1þ

zþ � � � þ zl manifests itself as a polynomial with no
decaying behavior. Moreover, following Ref. [13], one
may construct an analogous Noether current PlðrÞ in the
Kerr case also, which implies that the other decaying
solution at infinity must diverge at rþ. Combining these
two facts, it is evident that the scalar TLN vanishes for Kerr
BHs as well.
In Refs. [13,17,30,31], the authors have further shown

the presence of a ladder symmetry among different spin
perturbations—namely, the scalar (s ¼ 0), vector (s ¼ 1),
and gravitational (s ¼ 2) ones. We encourage our readers
to follow this nice construction, which demonstrates
why the Reissner-Nordström/Kerr BHs have vanishing
Love numbers even for static higher-spin perturbations.

However, for the purpose of this paper, we shall skip those
computations.
It is important to note that the structure of the ladder

operators D�
l and the ladder symmetry are closely tied to

the particular form of the Hamiltonian operator Hl, which
in turn depends on the background metric. Thus, such
ladder structure is not generally expected to hold for an
arbitrarily spacetime. As an example, suppose we consider
a theory of gravity with higher curvature terms; then its
solution may deviate from Reissner-Nordström and Kerr
metrics in such a way that does not support ladder structure
for scalar perturbations. This motivates us to find the most
general class of static and stationary spacetimes which
admit such ladder symmetry.

Generalization for static spherically symmetric black
holes. We shall now shift our attention to study the tidal
response of a general static and spherically symmetric
metric under the influence of a static and massless scalar
field. Our goal is to derive the constraints on the form of
such a metric by demanding the existence of a ladder
structure. A generic static, spherically symmetric metric is
given by

ds2 ¼ −fðrÞdt2 þ dr2

gðrÞ þ hðrÞdΩ2
ð2Þ: ð11Þ

In such a spacetime, the massless Klein-Gordon equation
can always be reduced to the form ΔbðrÞϕ00

lðrÞ þ
ΔcðrÞϕ0

lðrÞ − lðlþ 1ÞϕlðrÞ ¼ 0. Here, the explicit forms
of fΔb;Δcg depend on the components of the background
metric. Motivated by the Reissner-Nordström case pre-
sented earlier, it is suggestive to multiply the above
equation by Δb and define the general Hamiltonian as

Hl ¼ −ΔbðrÞ
�
ΔbðrÞ∂2r þ ΔcðrÞ∂r − lðlþ 1Þ�: ð12Þ

As before, this multiplicative factor makes the Hamiltonian
nicely factorizable, and all the subsequent expressions look
cleaner.
We want to derive conditions on fΔb;Δcg so that the

quadratic Hamiltonian given by Eq. (12) supports a ladder
structure similar to Eqs. (5) and (6). For this purpose, our
first step is to decompose this Hl into two first-order
raising and lowering operators. Taking inspiration from the
structure of ladder operators for the Reissner-Nordström
case, we define them as

Dþ
l ¼ −Δ1ðrÞ∂r þ

lþ 1

2
Δ2ðrÞ;

D−
l ¼ Δ3ðrÞ∂r þ

l
2
Δ4ðrÞ: ð13Þ

So far these Δ’s are some unknown functions of r only,
independent of l. To determine their functional forms, we
now employ the fundamental commutation relations given
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by Eq. (5), which they must satisfy with the Hamiltonian
for an arbitrary choice of ϕl. Therefore, we get the
following conditions:

Δ1ðrÞ¼ΔbðrÞ; Δ0
2ðrÞ¼−2−

s0ðrÞ
lþ1

;

Δ3ðrÞ¼ΔbðrÞ; Δ0
4ðrÞ¼−2þ s0ðrÞ

l
;

Δ0
bðrÞ¼−Δ2ðrÞ−

sðrÞ
lþ1

¼−Δ4ðrÞþ
sðrÞ
l

; ð14Þ

where sðrÞ ¼ ΔcðrÞ − Δ0
bðrÞ. Using the fact that Δ2 andΔ4

do not depend on l, we must set sðrÞ ¼ c1, with c1 being
an l-independent constant. Then, using the last relation
along with the fact that Δb is l independent, we get c1 ¼ 0.
As a result, Δ2ðrÞ ¼ Δ4ðrÞ ¼ −2rþ c2, and

ΔbðrÞ ¼ r2 − c2rþ c3; ð15Þ

where ðc2; c3Þ are again some l-independent constants. It is
remarkable that the imposition of the ladder symmetries led
to such simple forms of various functions like ΔbðrÞ.
Moreover, the Hamiltonian takes a form similar to Eq. (3),

Hl ¼ −ΔbðrÞ
�
∂rfΔbðrÞ∂rg − lðlþ 1Þ�: ð16Þ

Let us now summarize the ladder structure we have
obtained so far:

Dþ
l ¼ −ΔbðrÞ∂r −

lþ 1

2
Δ0

bðrÞ;

D−
l ¼ ΔbðrÞ∂r −

l
2
Δ0

bðrÞ;

Hl ¼ D−
lþ1D

þ
l −

ðlþ 1Þ2
4

ðc22 − 4c3Þ

¼ Dþ
l−1D

−
l −

l2

4
ðc22 − 4c3Þ: ð17Þ

Additionally, the form of the Hamiltonian given by Eq. (16)
along with Eq. (15) also requires that the metric compo-
nents in Eq. (11) satisfy the relation

fðrÞ ¼ gðrÞ ¼ ΔbðrÞ
hðrÞ : ð18Þ

We obtain this relation by comparing the Klein-Gordon
Hamiltonian obtained from Eq. (11) with that in Eq. (16).
Therefore, the most general static and spherically sym-

metric metric that supports the ladder symmetry can be
written as

ds2 ¼ −
ΔbðrÞ
hðrÞ dt2 þ hðrÞ

ΔbðrÞ
dr2 þ hðrÞdΩ2

ð2Þ; ð19Þ

where ΔbðrÞ is given by Eq. (15). The above metric is
spatially conformal to the Reissner-Nordström metric with
a conformal factor hðrÞ=r2, provided we identify c2 → rs
and c3 → r2Q. Some comments on the above construction
are in order:

(i) Note that the metric in Eq. (11) did not have the
property gttgrr ¼ −1 to begin with. However, the
imposition of the ladder symmetry has forced this
structure in Eq. (18). Hence, if we insist that the
metric in Eq. (19) is a solution of GR with some
matter Tμν, then it must have a vanishing radial null-
null component [32]—i.e., Tμνkμkν ¼ 0, with kμ

being the radial null vector. For example, it is easy to
check that this condition is satisfied both in vacuum
and in electrovacuum.

(ii) Since the function hðrÞ remains unconstrained, we
can maintain the ladder structure by choosing it at
our will (as long as it does not produce any
singularity in the domain of outer communication).
For example, the choice of hðrÞ ¼ r2 leads to a
Reissner-Nordström-type metric. Had we fixed
fðrÞ ¼ r2 from the beginning, we would have
missed this additional freedom.

(iii) However, for generic choices of hðrÞ, the metric will
not (in general) be diffeomorphic to Reissner-
Nordström, which can be readily checked by cal-
culating various curvature scalars. For the purpose of
illustration, let us consider the Ricci scalar,

R ¼ ½h0ðrÞ2 − 2hðrÞh00ðrÞ� ΔbðrÞ
2h3ðrÞ :

In contrast to the four-dimensional Reissner-
Nordström metric, R does not vanish unless
hðrÞ ¼ ðarþ bÞ2, with ða; bÞ being some constants.

(iv) The ladder structure does not determine the sign of
the constants ðc2; c3Þ appearing in the metric in
Eq. (19), though if we further require that the
associated spacetime be that of a BH, then we must
impose c22 ≥ 4c3. This would ensure the existence
of a positive real root of ΔbðrÞ ¼ 0 at r ¼
c2=2þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c22=4 − c3

p
.

(v) Moreover, since the metric in Eq. (19) gives rise to a
scalar Hamiltonian similar to the Reissner-Nordtröm
BH (assuming c22 ≥ 4c3), one can easily follow the
Love number calculation presented earlier to show
that these BHs also have zero TLN.

Generalization for rotating BH: Konoplya-Rezzolla-
Zhidenko class: In this section, we aim to extend our
previous result beyond spherical symmetry. Ideally, one
would like to find the most general stationary BH solution
which admits the ladder symmetry for static massless scalar
perturbations. However, in such a background, the Klein-
Gordon equation will not in general be separable into radial
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and angular parts. To avoid this difficulty, we instead start
with a well-motivated generalization of the Kerr-like
spacetimes—namely, the Konoplya-Rezzolla-Zhidenko
(KRZ) class1 of metrics [34,35]. These BH spacetimes
represent the most general stationary, axisymmetric, and
asymptotically flat Kerr-like spacetimes which admit the
separation of the scalar wave equation into radial and
angular parts in Boyer-Lindquist-type coordinates. Such a
metric can be written as [35]

ds2 ¼ −
	
N2

K2
−
a2R2

Mð1− y2Þ
r4Σ2K2



dt2 þK2r2ð1− y2Þdφ2

−
2aRM

rΣ
ð1− y2Þdtdφþ Σ

	
R2
B

N2
dr2 þ r2dy2

1− y2



; ð20Þ

with y ¼ cos θ as one of the coordinates, and the sepa-
rability requires that the functions have the following forms
(where a is the rotation parameter):

Σðr;yÞ¼RΣþ
a2y2

r2
; N2ðrÞ¼RΣ−

RM

r
þa2

r2
;

K2ðr;yÞ¼ 1

Σ

�
R2
ΣþRΣ

a2

r2
þa2RM

r3

�
þa2y2N2

r2Σ
: ð21Þ

The location of the event horizon (which is also the Killing
horizon) is given by NðrÞ ¼ 0. Thus, the metric solely
depends on the three functions of radial coordinates
RΣðrÞ; RMðrÞ, and RBðrÞ, out of which one can be fixed
as per the gauge freedom. We choose RBðrÞ ¼ 1, and the
other two are independent functions of r [35]. Moreover,
the asymptotic flatness is assured, if RΣðrÞ approaches

unity and RMðrÞ
r2 vanishes in r → ∞ limit.

Then, in the background of such a metric, the radial part
of the Klein-Gordon equation for a static scalar fieldΦlm ¼
ϕlðrÞYlmðy;φÞ simplifies to

Hlϕl ¼−Δ
�
∂rfΔðrÞ∂rgþδðrÞ−lðlþ1Þ�ϕl ¼ 0; ð22Þ

where Hl is the Hamiltonian, Δ and δ are given by

ΔðrÞ¼ r2N2ðrÞ¼ r2RΣðrÞ− rRMðrÞþa2; δðrÞ¼ a2m2

ΔðrÞ ;

ð23Þ

and m is the azimuthal number. We aim to study this scalar
field equation in the KRZ class of BH spacetimes and
investigate the existence of the ladder structure. We shall
show that the requirement of the ladder symmetry would fix

the functional form of Δ. For this purpose, we define the
raising and lowering operators as

Dþ
l ¼−Δ1∂rþ

lþ1

2
Δ2; D−

l ¼Δ3∂rþ
l
2
Δ4; ð24Þ

where Δ’s could in principle depend not only on r but also
on l due to the absence of spherical symmetry. Substituting
Dþ

l in the fundamental commutation relation given by
Eq. (5), we obtain

Δ1ðr;lÞ¼ΔðrÞ; Δ2ðr;lÞ¼−2rþe2;

δðrÞ¼ e4
ΔðrÞ−

ðlþ1Þ2ðr2−Δ−e2rþe3Þ
ΔðrÞ : ð25Þ

Comparing with Eq. (25), one further gets e4 ¼ a2m2, and

ΔðrÞ ¼ r2 − e2rþ e3: ð26Þ

Hence, the constants ðe2; e3; e4Þ are also independent of l.
Similarly, for the lowering operator D−

l , the fundamental
commutation relation in Eq. (5) gives

Δ3ðr;lÞ¼ΔðrÞ; Δ4ðr;lÞ¼−2rþe5;

ΔðrÞ¼ e6þ
ð2lþ1Þr2−e2ðlþ1Þ2rþe5l2r

2lþ1
: ð27Þ

Comparing this form of Δ with that given in Eq. (26), we
obtain e5 ¼ e2 and e6 ¼ e3. Then, it is easy to check that
Hl can be factorized as

Hl ¼ D−
lþ1D

þ
l −

ðlþ 1Þ2
4

ðe22 − 4e3Þ − a2m2

¼ Dþ
l−1D

−
l −

l2

4
ðe22 − 4e3Þ − a2m2: ð28Þ

Lastly, it remains to find the form of RΣðrÞ and RMðrÞ
appearing in the metric given by Eq. (20). This can be
achieved by comparing the functional form of ΔðrÞ in
Eqs. (23) and (26). Specifically, the coefficients of r2, r,
and the constant term in Eq. (23) should be 1, −e2, and e3,
respectively.
A simpler illustration could be to choose one of the radial

functions as a constant, and find the corresponding class of
metrics. If we set RMðrÞ ¼ e0 (constant), we would get the
second function as

RΣðrÞ ¼ 1þ b
r
þ d
r2
; ð29Þ

with b ¼ e0 − e2 and d ¼ e3 − a2. Note that both Kerr and
Kerr-Sen spacetimes are members of this class [35]. Also, it
is easy to check that in the limit of a → 0, the metric in
Eq. (20) [along with Eq. (26)] reduces to the spherically

1It extends the previously proposed framework of Ref. [33] for
a static and spherically symmetric metric in the presence of
rotation.
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symmetric spacetime given by Eq. (19), provided we make
the identification ΔbðrÞ¼ r2N2¼ΔðrÞ and hðrÞ ¼ r2ΣðrÞ.
Moreover, since the metric in Eq. (20) gives rise to a

scalar Hamiltonian similar to the Kerr BH (assuming
e22 ≥ 4e3), one can easily follow the Love number calcu-
lation presented earlier to show that these BHs also have
zero TLN.

Conclusion and discussions. Unlike horizonless compact
objects, the Reissner-Nordström and Kerr BHs exhibit zero
TLN, quantifying the vanishing tidal deformation under an
external perturbation. Consequently, any nonzero values of
TLN would indicate deviation from such spacetime geom-
etries [19,20,23,24] and/or departure from the classical BH
paradigm [12,28,29]. Both of these possibilities are well
studied in literature, as they provide us with a powerful
observational tool to probe such possibilities [25–27].
However, one faces two major difficulties in the tradi-

tional way of calculating TLN. First, apart from GR, the
Teukolsky-like equation for gravitational perturbations in
most of the modified theories is not known. Second, even
for scalar perturbations that do not require any field
equations, a case-by-case study of TLN for all possible
metrics is highly tedious and inefficient. In this context,
other tools such as the notion of ladder symmetry provide
us with a unified and efficient way to infer the Love
number. Interestingly, both the Reissner-Nordström and
Kerr BHs support such ladder structure for static scalar (and
also vector and gravitational) perturbations, indicating the
vanishing of TLN.
Motivated by this important result, we have presented the

most general static and stationary (in KRZ class) BH

metrics having ladder symmetry for static (with frequency
ω ¼ 0) scalar perturbations. This in turn implies that the
corresponding BHs have zero TLN for ω ¼ 0—i.e.,
Λ ¼ OðMωÞ. Actually, for the case of static BHs, our
result is even stronger. In particular, since Hlϕl ∝ ω2 for
nonstatic perturbations, the corresponding TLN must be
OðM2ω2Þ. However, a similar assertion does not hold for
the rotating case, because Hlϕl ∝ ω for nonstatic pertur-
bations. These conclusions match with the recent claim
reported in Ref. [36]. We have also found that for these
background spacetimes, the ladder symmetry is also a
symmetry at the level of the action of these perturbing
fields.
Given the immense theoretical and observational sig-

nificance, it will be interesting to extend our work for
gravitational perturbations, as well as for nonlinear pertur-
bations [37]. Another important prospect would be study-
ing various properties like geodesic structure, shadow, and
stability of the general class of BH spacetimes given by
Eqs. (19) and (20). We leave these analyses for a future
attempt.
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