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The knowledge of what entered a black hole (BH) is completely lost as it evaporates. This contradicts the
unitarity principle of quantum mechanics and is referred to as the information loss paradox. Understanding
the end stages of BH evaporation is key to resolving this paradox. As a first step, we need to have exact
models that can mimic 4D BHs in general relativity in classical limit and have a systematic way to include
high-energy corrections. While there are various models in the literature, there is no systematic procedure
by which one can study high-energy corrections. In this work, for the first time, we obtain Callan, Giddings,
Harvey, and Strominger (CGHS)—a (1þ 1)-D—model from 4D Horndeski action—the most general
scalar-tensor theory that does not lead to Ostrogradsky ghosts. We then show that 4D Horndeski action can
systematically provide a route to include higher-derivative terms relevant at the end stages of black hole
evaporation. We derive the leading order Hawking flux while discussing some intriguing characteristics of
the corrected CGHS models. We compare our results with other works and discuss the implications for
primordial BHs.

DOI: 10.1103/PhysRevD.109.L041502

Introduction. The observation of the merging black holes
(BHs) by LIGO-VIRGO served as an extraordinary vali-
dation of the tenets of general relativity (GR). However, it
remains unclear whether BHs adhere to the same principles
of quantum mechanics (QM) as all other known objects
[1,2]. Classically, BHs are perfect absorbers but cannot
emit anything; their physical temperature is absolute zero,
and their entropy is infinite [3–7]. Nevertheless, once QM
is applied, the BH evaporates by emitting Hawking
radiation that carries no information about their microstates
[8]. This conundrum known as BH information paradox
has remained unresolved for four decades [9–20].
Most BHs detected by LIGO-VIRGO are heavier than the

previously known population of stellar-mass BHs that were
indirectly inferred from EM observations [21,22]. The
anomalously heavy BHs detected by LIGO have renewed
interest in primordial black holes (PBHs) [23–25]. Current
constraints suggest the PBHs inmasswindows1017–1023 gm
are potential dark matter candidates [26–29]. Interestingly,
Hawking radiation is significant for these masses, and
Hawking temperature [8,30,31]

TH ¼
�
ℏc3

GkB

�
1

8πM
∼ 10−7

�
M⊙

M

�
K ð1Þ

is large. Note kB(G) is Boltzmann (4D Newton’s) constant,
andM is the BHmass. Higher-order curvature terms must be
considered since smaller masses experience substantial tidal
forces. For Schwarzschild BH, this is evident from
Kretschmann scalar:

RμνρσRμνρσ ∝ ðGMÞ−4: ð2Þ

From the above two expressions, we see that as the BH mass
decreases due to evaporation, the Hawking temperature and
the strength of the Kretschmann scalar near the horizon
increase rapidly. This clearly shows that the evaporation of
small mass PBHs whose mass ranges from 10−15 − 10−5M⊙
necessitates includinghigher-order curvature terms andhence
requires one to go beyond GR [32]. The accelerated emission
process for smallermassBHs leads to a cataclysmic release of
radiation, annihilating the BHs [8,30,31].
The evolution of radiating BH requires the theory of

quantum gravity, which remains elusive. Due to the non-
linear nature of gravity, semiclassical gravity fails at the
Planck length scale or involving singularities [33,34].
Hence, accurate characterization of the ultimate phase of
BH evaporation within a semiclassical framework is
unattainable. However, the situation is not entirely pessi-
mistic; a glimmer of hope exists. Numerical results of 4D
BHs show around 90% of Hawking radiation is in s waves
[30,31]. Thus, restricting to s waves captures almost all the
essential physics of BH radiation [35,36].
For 4D spherically symmetric space-times, the s wave

corresponds to picking out the t-r plane and ignoring (or
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integrating) the two angular degrees of freedom—effective
2D gravity. However, 2D gravity must be distinct from GR
since the Einstein tensor is topologically trivial. The
simplest possible modification to obtain dynamics in 2D
is via direct coupling of the Ricci scalar and scalar (dilaton)
field [37–48]. Such a 2D gravity can be obtained by either
treating the system as D ¼ 4 and imposing spherical
symmetry in the equations of motion [49] or imposing
spherical symmetry in the action [37,38,50]. Both
approaches are classically equivalent.
Given this, we ask: Can we study the modifications to

Hawking radiation in s waves due to the higher-order
curvature corrections? If yes, what modifications must be
included, and how can the comparison be made? In this
work, we address these issues within the framework of the
CGHS model [40,51] described by the action:

SCGHS ¼
Z

d2x
4π

ffiffiffiffiffiffi
−g

p
e−2φ½Rþ 4∇αφ∇αφþ 4λ2�; ð3Þ

where, φ is the dilaton field, λ2 is cosmological constant,
andR is the 2D Ricci scalar. The above action has an exact
classical BH solution and hence, is a useful toy model for
studying BH thermodynamics. The standard calculations
reveal Hawking radiation with a temperature of λ=2π. It
was shown that the effective action including the back-
reaction of the Hawking radiation gives the evaporating BH
analogy [42].
However, the CGHS action (3) cannot be derived from a

4D gravity action. This has been a key obstacle in general-
izing the CGHS model by including higher-order curvature
corrections and obtaining corrections to Hawking radiation
at the late stages of evolution. This work fills this void by
obtaining the above CGHS action from 4D Horndeski
gravity [52–54]. We explicitly show that the spherical
reduction of the lowest order terms in 4D Horndeski action
identically leads to the above action. We then systemati-
cally obtain the higher curvature corrections to CGHS
action and study the implications. In particular, we study
two models to discuss the qualitative features of Hawking
radiation and compare them with the earlier results [55,56].

4D gravity to CGHS. Let us consider the following
Horndeski action [52–54]:

S ¼ 1

16πG

Z
d4x

ffiffiffiffiffiffiffiffiffiffi
−gð4Þ

q
½G2ðX;ΦÞ þ G4ðΦÞRð4Þ

− G3ðX;ΦÞ□Φ − G5ðΦÞGð4Þ
μν ∇μΦ∇νΦ�; ð4Þ

where Rð4Þ is the 4D Ricci scalar corresponding to the

metric gð4Þμν , Φ is the mass-dimension zero scalar field, Gi’s
are functions of Φ,1 and G2 and G3 are also functions of

X ≡ − 1
2
∇μΦ∇μΦ. In the above action, the last two terms

contain higher-derivatives. First, we set

G2 ¼ ΩðΦÞX − VðΦÞ; G3 ¼ G5 ¼ 0; G4 ¼ Φ:

ð5Þ

To do spherical reduction, we choose the metric ansatz:

ds2 ¼ gABdxAdxB þ ρ2ðfxAgÞðdθ2 þ sin2θdϕ2Þ; ð6Þ

where ðθ;ϕÞ are the spherical polar coordinates, ρ acts as a
dynamical radial coordinate that depends on xA, and A ¼ 0,
1. For the above line element, we have

Rð4Þ ¼ Rþ 2ð1þ∇μρ∇μρ −□ρ2Þ=ρ2; ð7Þ

where the covariant derivative is defined with respect to the
2D metric gAB. Substituting Eq. (7) in action (4), we get

S ¼ 1

4G

Z
d2x

ffiffiffiffiffiffi
−g

p ½ρ2ΦRþ 2Φþ 2Φ∇μρ∇μρ

− 2Φ□ρ2 þΩðΦÞX − VðΦÞ�: ð8Þ

Since the above action has two scalar fields (Φ and ρ), we
must choose a relation between the two scalars that will
lead to CGHS action (3). Substituting

ΩðΦÞ ¼ −6=Φ; VðΦÞ ¼ AΦþ BΦ3; Φ ¼ Λ=ρ;

ð9Þ

in action (8), we have

S ¼ Λ
4G

Z
d2x

ffiffiffiffiffiffi
−g

p �
ρRþ 2 − BΛ2

ρ
þ ρ½∇ log ρ�2 − Aρ

�
;

where Λ, A, and B are dimensionful constants. Redefining
ρ ¼ Λe−2φ in the above action leads to

S ¼ Λ2

4G

Z
d2x

ffiffiffiffiffiffi
−g

p �
e−2φ½Rþ 4ð∇ϕÞ2 − A�

þ
�
2

Λ2
− B

�
e2φ

�
:

Setting

A ¼ −4λ2 and B ¼ 2=Λ2; ð10Þ

in the above action leads to the following:

S ¼ ðΛ2π=GÞ SCGHS: ð11Þ

This is the first key result of this work, regarding which, we
want to stress the following points: First, up to an overall

1The last term in Eq. (4) is different compared to Ref. [54] by a
boundary term.
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constant factor, the above reduced action is identical to the
CGHS action (3). Since Λ is an arbitrary constant (not
related to the cosmological constant), setting Λ2 ¼ G=π,
we get CGHS action, including the factors. To our knowl-
edge, this is the first time such a mapping has been
established. Second, the reader might consider this
approach to be contrived. As shown in Sec. I in the
Supplemental Material [57], obtaining the CGHS action
from a dimensional-reduced Einstein-Hilbert action in
arbitrary dimensions is impossible. The result is also valid
for conformally related 4D spherically symmetric space-
times. The analysis can be extended to different topologies
like Sm × Sn, (m; n∈Zþ), and it can be shown that the
Einstein-Hilbert action cannot lead to CGHS. This implies
that a pure metric theory of gravity in arbitrary dimensions
via dimensional reduction cannot lead to CGHS action. As
shown above, the CGHS action can only be obtained from
the dimensional reduction of scalar-tensor gravity theory
[58–62], which can be interpreted as a time-varying
gravitational “constant” represented by a scalar field φ.
Third, an attentive reader might identify that the Horndeski
action (4) in the limit G3 ¼ G5 ¼ 0 corresponds to Brans-
Dicke theory [58–62]. It is interesting to note that CGHS
action (3) is equivalent to 2D Brans-Dicke theory. To see
this, redefining the dilaton field (φ) as Ψ ¼ e−2φ in the
CGHS action (3), we get

SCGHS ¼
1

4π

Z
d2x

ffiffiffiffiffiffi
−g

p �
ΨRþ 1

Ψ
∇μΨ∇μΨþ 4λ2Ψ

�
:

ð12Þ

The above action maps to 2D Brans-Dicke action exactly
for ΩðΨÞ ¼ −1=Ψ and VðΨÞ ¼ −4λ2Ψ.
Fourth, since CGHS action is obtained from 4D Brans-

Dicke theory, the spherically symmetric solutions of Brans-
Dicke theory are solutions of the CGHS action [63]. Also, as
shown first by Hawking [64] and generalized by Faraoni and
Sotiriou [65], a stationary spherically symmetric solution as
the end state of collapse for a large class of scalar-tensor
theories of gravity isolated is the same as that of general
relativity. Hence, the static line element (6) is that of GR.
Lastly, the above mapping provides a route to introduce
higher-order curvature corrections relevant at the end
stages of BH evaporation. It is well known that higher
curvature terms introduce higher-derivative terms, leading to
Ostrogradski instability [66–68]. However, the Horndeski
action (4) is the most general scalar-tensor gravity action that
leads to second-order equations of motion and hence does
not possess Ostrogradski instability [52–54]. Thus, the
spherical reduction of Horndeski action (4) will contain
higher curvature corrections without leading to any insta-
bility and can provide crucial insights about the late stages of
Hawking radiation. As G3 and G5 [in action (4)] are
unknown, many ways exist to include higher-curvature
corrections to CGHS. In the rest of this work, we consider

two specific forms that indicate possible effects of higher
curvature corrections at the Hawking flux.

Beyond classical CGHS model. To go beyond CGHS, we
need to switch on the coefficients G3 and G5 in the action
(4). Specifically, we set

G3ðX;ΦÞ ¼ XfðΦÞ; ΩðΦÞ ¼ −6=Φþ hðΦÞ=Λ2;

ð13Þ

and G5 is an arbitrary function of Φ. Using the metric
ansatz (6), making the spherical reduction and substituting
the relations, Φ ¼ Λ=ρ, ρ ¼ Λe−2φ, the action (4) reduces
to

S¼Λ2π

G
SCGHS−

Λ2

4G

Z
d2x

ffiffiffiffiffiffi
−g

p �
4hðΦÞ
Λ2

Xφ

−8e2φfðΦÞXφ½□φ−4Xφ�−G5ðΦÞ
�
16∇μ∇νφ∇μφ∇νφ

þ 8

Λ2
e4φXφþ64X2

φþ32Xφ□φ

��
; ð14Þ

where Xφ ≡ − 1
2
∇μφ∇μφ. Section II in Ref. [57] contains

the detailed derivation of the above action.
As can be seen, the corrections to CGHS contain three

unknown coefficients—fðΦÞ; hðΦÞ and G5ðΦÞ. We con-
sider two simple forms of these three functions, which leads
to two classes of CGHS corrected models:

Model 1 G5 ¼ G; hðΦÞ ¼ 2Φ2G; fðΦÞ ¼ −
6G
Φ

Model 2 G5 ¼
G
Φ
; hðΦÞ ¼ 2ΦG; fðΦÞ ¼ −

6G
Φ2

;

ð15Þ

where G is a constant. Varying the above action with respect
to the dilaton field (φ) and the 2D metric leads to

∂
2
�φ¼2∂�ω∂�φ−2ϵiG5½ΦðφÞ�e2ðφ−ωÞð∂�φÞ3∂∓φ

∂þ∂−φ¼
λ2e2ω

2
þ2∂þφ∂−φþϵiG5½ΦðφÞ�e2ðφ−ωÞð∂þφ∂−φÞ2

∂þ∂−ω¼λ2

2
e2ωþ2∂þφ∂−φ½1þϵiλ

2G5½ΦðφÞ�e2φ�
þCiϵiG5½ΦðφÞ�e2ðφ−ωÞð∂þφ∂−φÞ2; ð16Þ

where i ¼ 1, 2 corresponding to the two models,

C1¼10; C2¼7; ϵ1¼2048Gλ2=G; ϵ2¼2560Gλ2=G:

In the above equations, the 2D line element is set to be

ds2 ¼ −e2ωðxþ;x−Þdxþdx− ¼ −e2ω̃ðσþ;σ−Þdσþdσ−; ð17Þ
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where x�; σ� are the null coordinates. Sections III and IV in
Ref. [57] contain the details of the derivation.
For static configurations, the above expressions can be

written in a compact form by rewriting in terms of Xφ (see
Sec. V in Ref. [57]):

∂σXφ

∂σφ
¼ 1þ 2Xφ −

ϵi
2

G5ðΦÞΦ
G

X2
φ; ð∂σφÞ2 ¼ −2e2ωXφ

∂
2
σω ¼ −4e2ω

�
1

2
þ Xφ

�
1þ ϵi

G5ðΦÞΦ
G

�

þ ciϵi
4

�
G5ðΦÞΦ

G

�
X2
φ

�
; ð18Þ

where σ ¼ ðσþ − σ−Þ=2 and λx� → �e�λσ� [40]. The
above equations form a set of coupled differential equations
of φ; Xφ, and ω. Before we proceed with the solution, we
want to mention the following key points: First, equations
of motion of the CGHS and the two models possess shift
symmetry—φ → φþ c0 where c0 is a constant. Note that
the action (14) is not invariant under this symmetry. This is
analogous to the scaling symmetry (of the coordinates) of a
simple harmonic oscillator. This is a symmetry of the EOM
of the harmonic oscillator but not of the Lagrangian.
Second, the shift symmetry corresponds to ρ → e−2c0ρ.
Specifically, the solutions to the above equations for a given
ρðx−; xþÞ will lead to an infinite number of identical
solutions scaled by e2c0.
It is challenging, if not impossible, to obtain exact and

analytical solutions for these coupled nonlinear differential
equations. As we show below, the numerical solutions with
high accuracy can provide crucial insights into the behavior
of the classical solutions. In Fig. 1, we plotted the solutions
of field equations as a function of σ for different values of ϵ
for Models 1 and 2, respectively. Specifically, we have
plotted 2D Ricci scalar (R) and the kinetic term of the
dilaton field (−Xφ).
From Fig. 1, we infer the following salient features for

Model 1: First, the 2D Ricci scalar and Xφ saturate at spatial
infinity for various positive values of ϵ as σ → ∞. Second,
it is interesting to note that the saturated values do not
change even when changing the values of the ϵ parameter.
Third, to compare with the analytical expressions for
CGHS, we have plotted these quantities for CGHS model

(ϵ ¼ 0). Our numerical results match with the analytical
expression obtained in Ref. [69]:

∇μφ∇μφ ¼ −
λ4xþx−

M=λ − λ2xþx−
¼ λ2e2λσ

M=λþ e2λσ

R ¼ 4Mλ2

M − λ3xþx−
¼ 4Mλ2

M þ λe2λσ
: ð19Þ

Thus, our numerical results provide correct results for all
values of λσ and show that the corrections to CGHS do not
lead to any divergences. Lastly, the asymptotic values for
Model 1 can be understood from the fact that for σ → ∞, φ
becomes negative, making the CGHS action dominant over
the correction terms. On the other hand, in σ → −∞,
∇μφ∇μφ saturates toward the zero value, which also means
the corrections to the CGHS action become subdominant.
From Fig. 1, we infer the following salient features for

Model 2: First, the numerical results match the analytical
expressions (19) for ϵ ¼ 0. Second, unlike Model 1, in this
model, the saturated values of R and 1

4
∇μφ∇μφ change

significantly at σ → ∞ depending on the values of ϵ. For
the numerical computation, we have considered negative
values of ϵ to make the field theory stable, which follows
from the action of this model. Further, ϵ > −0.25 to have a
real-valued solution of X as a function of φ.
To understand the reason for the difference in the

behavior of the various quantities in the two models, let
us rewrite the equation of motion of the Horndeski action
(4) in the following form [52–54]:

Gμν ¼ 8πGeffTCorr
μν ;

where TCorr
μν are the corrections to GR that are rewritten as

matter corrections, and Geff is the effective gravitational
coupling. Due to the presence of a scalar field,Geff may not
be constant. Rewriting the Horndeski equations of motion
in the above form leads to [70]

G−1
eff ¼ 2ðG4 − 2XG4;X þ XG5;ΦÞ: ð20Þ

For the above three cases, we have

Brans-Dicke G−1
eff ¼ Φ; ð21Þ

FIG. 1. Numerical solution of the 2D Ricci scalar and Xφ for different values of ϵ for Model 1 and Model 2.
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Corrected Model 1 G−1
eff ¼ ðΦþ XGÞ; ð22Þ

Corrected Model 2 G−1
eff ¼

�
Φþ XG

Φ

�
: ð23Þ

The two models have different dependencies on Φ, leading
to different asymptotic values. Specifically, the corrected
Model 2 has a “duality” under the transformation Φ → XG

Φ .
This leads to similar dependence for large Φ and small Φ
(assuming that X does not vanish).

Impact on Hawking radiation. So far, our analysis of
corrections to the CGHS model is purely classical and
without any extra matter field. For the CGHS model, it is
known that the BH formation is an inevitable outcome,
regardless of the nature of the matter field. For instance,
Callan et al. [40] considered a massless scalar field f

Sm ¼ −
1

4π

Z
d2x

ffiffiffiffiffiffi
−g

p ∇μf∇μf; ð24Þ

and showed that a closed system of field equations can
describe the evolution of dilaton gravity and scalar field.
However, to our knowledge, a general analytical solution to
the CGHS field equations with the scalar field is yet to be
discovered. The numerical and approximate solutions have
been obtained [71–74]. Given this, it may not be easy to
obtain analytical solutions to the CGHS corrected models
(14). However, it is possible to make certain concrete
statements assuming that the black hole forms in these
models in the presence of scalar field (24).
Keeping this in mind, we qualitatively analyze the effect

of higher-derivative terms on the Hawking radiation for the
2D metric (17). The conformal invariance of scalar fields
causes the trace of the classical stress tensor to vanish;
however, the quantum expectation value of the trace does
not vanish. As a result, new source terms of quantum origin
enter the geometry’s equations of motion, changing
the geometry’s evolution. The new source terms lead
to modifications in the evolution of the geometry
[33,34,75–78]. Specifically, for the above scalar field
action (24), it has been shown that

hTðfÞi¼ 1

24π
R; hTðfÞ

��i¼
1

12π
½∂2�ω−ð∂�ωÞ2þ t��; ð25Þ

where t� can be obtained from the boundary conditions.
For the CGHS corrected Model 1, the trace of the stress
tensor is

hTðfÞi ¼ −
1

6π
ð□φ −∇μφ∇μφþ λ2Þ

þ 1

3π
ΓGe2φ½□φ∇μφ∇μφþ 2∇μφ∇νφ∇μ∇νφ�:

ð26Þ
As mentioned earlier, obtaining the exact solutions for the
CGHS model with matter is hard. Since the corrections are
nonlinear, obtaining the solutions is impossible, so the
quantization is impractical. However, we can obtain the
corrections to the CGHS by studying the linearized
equations of motion (16), leading to

t� − tCGHS� ¼ ϵ½2∂�ω̄∂�δω − ∂
2
�δω� ≃ 2ϵ∂�ω̄∂�δω; ð27Þ

where the initial conditions for ω̄ and δω are set at
σþ → −∞. (For details, see Sec. VI in Ref. [57]). Note
that ∂

2δω can be ignored in the linear regime. The
corrections vanish if ∂�δω vanishes. In that case, the
results confirm the earlier results of Jacobson and Unruh
[55,56] that the trans-Planckian signatures do not modify
the spectrum. However, as discussed earlier, such a thing
requires highly fine-tuned parameters G and λ. As men-
tioned, evaluation of hTf

��i exactly requires the exact
solutions of the modified field equations in terms of null
coordinates σ�, which will be discussed in future work.

Discussions. We have provided a systematic procedure to
include a higher-derivative correction to the CGHS model
and study the end stages of black hole evaporation. One of
the advantages of this approach is that the higher-order
corrections do not introduce Ostrogradsky instability
(ghosts). Thus, the generic action (14) can be used to
understand the higher-derivative corrections to the s wave
of the 4D Hawking radiation. Our analysis provides a first
step to investigate the effects of Hawking radiation from
PBH in the mass range 1016–1017 gm. Specifically, the
positron annihilation rate implied by INTEGRAL’s mea-
surements of the Galactic 511 keV line has been used to
place strong constraints on PBH in these mass ranges
[79,80]. However, these results assume that the Hawking
flux for these ranges is the same as that of larger BHs.
However, as discussed above (27), there can be appreciable
corrections to Hawking radiation for these mass ranges.
Thus, our analysis can further constrain PBH as dark
matter.
Our analysis can possibly provide a way to understand

the effect of higher-derivative terms on the page curve
[81–83]. For the BHs in GR, it is known that BH entropy
increases monotonically until half its lifetime and decreases
monotonically until the BH completely evaporates. If the
higher-derivative corrections modify the Hawking flux for
PBHs, there can likely be corrections to Page’s analysis at
the end stages of BH evaporation. This requires detailed
numerical analysis along the lines of [73,74]. This is
currently under investigation.
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A mapping from 4D metric action (Einstein-Hilbert) to
an effective two-dimensional model can be obtained
through spherical reduction or via near horizon approxi-
mation [84–86]. However, the two approaches are quite
distinct. In the case of spherical reduction, the Einstein-
Hilbert action reduces to a dilaton gravity theory consid-
ering the areal radius as a field. This reduction is valid
everywhere on the two-dimensional manifold, and one can
mimic the radial collapse of matter leading to stationary
black hole. However, the near horizon approximation (of a
nondegenerate horizon) describes the two-dimensional
metric in the t-r plane to be Rindler metric near the
horizon. In this case, the areal radius do not play any role
in determining the dynamics of the 2D theory and describes
a stationary black hole solution. It will be interesting to
explore the consequences of corrections on BMS sym-
metries [85,86].

For the quantum corrected 4D reduced Einstein-Hilbert
action, Kazakov and Solodukhin showed that quantum
corrections deform the line element of a Schwarzschild
black hole leading to a nonsingular space-time [87]. It will
be interesting to see whether the action (14) can lead to a
nonsingular space-time. The above analysis can be
extended to other 2D gravity models like Liouvelle gravity,
JT gravity. These are currently under investigation.
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