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We develop a general algorithm that enables the consistent embedding of any four-dimensional static and
spherically symmetric geometry into any five-dimensional single-brane braneworldmodel, characterized by an
injective and nonsingular warp factor. Furthermore, we supplement the algorithm by introducing a method that
allows one to, in principle, reconstruct 5D field theories that support the aforementioned geometries. This
approach is based on a conformal transformation of the metric with the conformal factor being identified with
thewarp factor of the bulk geometry. The reconstructed theories depend solely on the induced brane geometry,
since the warp factor is model-independently represented by a scalar field in the Lagrangian density. As a first
application of our reconstruction method, we present for the first time a complete theory that supports the five-
dimensional brane-localizedextensionof theSchwarzschildblack hole, for anywarp factor. The samemethod is
subsequently utilized to illustrate the process of coherently embedding a de Sitter brane in braneworld models.

DOI: 10.1103/PhysRevD.109.L041501

Introduction. The Randall-Sundrum model [1,2], initially
proposed as a solution to the hierarchy problem of particle
physics, made its appearance in the late 1990s, and has
thereafter revolutionized the way we think about extra
dimensions. It has also served as a cornerstone for the
development of subsequent models with novel physical
characteristics [3–14]. In the context of braneworld models,
our four-dimensional (4D) Universe, or 3-brane as it is
often called, is embedded in a five-dimensional (5D) bulk
spacetime. Depending on the functional expression of the
model’s warp factor, the 3-brane is characterized as thin
(e.g., RS model) or thick. For introductory resources on
braneworld models, the reader is directed to Refs. [15–20].
In 1999, Chamblin, Hawking, and Reall (CHR) [21]

pursued an intuitive approach in deriving the 5D geometry
describing an analytic black hole (BH) localized on the
3-brane of a RS-II model (see also [22]). Their method
involved replacing the flat four-dimensional part of the
RS-II line element with that of the Schwarzschild space-
time. From the perspective of a brane observer, the induced
geometry is that of the usual Schwarzschild black hole.
However, from a five-dimensional point of view, the CHR
approach failed in providing a truly localized 5D object
leading instead to an unstable black string solution [24],
where the singularity has an infinite extent along the extra

dimension. For a nonexhaustive list of works attempting to
provide a resolution to the black hole localization problem,
as well as works dedicated to the study of numerical or
other exotic solutions, the reader is referred to [25–83] and
references therein.
As it was only recently pointed out by Nakas and Kanti

(NK) [84,85], the construction of a truly brane-localized 5D
black hole in the RS-II model, requires a radically different
approach to that of CHR. In this paper, we extend the NK
method by providing a general embedding algorithm
(GEA) that allows the consistent embedding of any static
and spherically symmetric 4D geometry, in any single-
brane 5D braneworld model with an injective and non-
singular warp factor. Additionally, we complement the
GEA with a method that enables one to derive the field
theory necessary to support the complete 5D braneworld
geometry. The herein proposed field-theory reconstruction
technique provides a unified description for all braneworld
models that exhibit the same brane-induced geometry.
Upon utilizing the aforementioned methods, we present,

for the first time, a field theory that is able to support the five-
dimensional braneworld extension of the Schwarzschild
geometry for any warp factor, and provide the consistent
embedding of a de Sitter brane in any 5D braneworld model.
Finally, we delve into the multitude of possible future
applications of our method.

Conventions and notation: We adopt the ð−;þ;þ;þ;þÞ
signature for the metric and use natural units. Capital Latin
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letters will be employed to represent indices within the 5D
bulk spacetime, while lowercase Greek letters will be used to
denote indices related to the 4D brane. Note also that
ð∂ϕÞ2 ≡ gMN

∂Mϕ∂Nϕ. Throughout the manuscript, abiding
by the established terminology in the community, we refer to
theWeyl rescaling of the metric as conformal transformation.

General embedding algorithm. The herein proposed GEA
can be formulated in a number of straightforward steps,
which are thoroughly presented below:

(i) Step 0: Our starting point is the line element,

ds2¼e2AðyÞð−dt2þdr2þr2dΩ2
2Þþdy2; ð1Þ

which describes a flat 3-brane in a warped 5D
spacetime, with y∈R being the extra dimension
and the brane located at y ¼ 0. The warping effect
is encoded in the warp factor e2AðyÞ, while dΩ2

2 ¼
dϑ2 þ sin2 ϑdφ2 is the line element of the unit
2-sphere. To simplify the formalism and without loss
of generality, we assume a Z2-symmetric bulk so that
the values of the warp factor for y ≤ 0 are uniquely
mapped to those in the region y ≥ 0. The extension to
Z2-asymmetric models (e.g., [86]) is trivial.

(ii) Step 1: The first step is to recast the 5D spacetime in
a conformally flat form. To this end, assuming an
injective (one-to-one) and nonsingular warp factor,
we apply the invertible coordinate transformation
dy2 ¼ e2AðyÞdz2 and we are led to

zðyÞ≡
Z

y

0

dwe−AðwÞ: ð2Þ

The above definition, maps y ¼ 0 to z ¼ 0 and thus
ensures that the value of the warp factor on the brane
does not change after the introduction of the new
bulk coordinate z. The line element (1) is now
brought to the conformally flat form

ds2 ¼ e2AðyðzÞÞð−dt2 þ dr2 þ r2dΩ2
2 þ dz2Þ; ð3Þ

where the warp factor multiples a flat 5D spacetime.
(iii) Step 2: Next, we express the flat component of the

line element (3) in five-dimensional spherical coor-
dinates by performing the transformation,

fr; zg → fρ sin χ; ρ cos χg; χ ∈ ½0; π�; ð4Þ
with the inverse being

fρ; χg → f
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ z2

p
; tan−1ðr=zÞg: ð5Þ

Notice that the new radial coordinate ρ is always
positive definite. For more details about the geo-
metrical setup of the 5D spacetime in ft; ρ; χ; ϑ;φg
coordinates, see Ref. [85].

(iv) Step 3: Upon promoting the tt and ρρ components of
the conformally-flat metric to arbitrary functions of
ρ, the five-dimensional line element reads

ds2 ¼ e2Aðyðρ cos χÞÞð−eξðρÞdt2 þ eηðρÞdρ2 þ ρ2dΩ2
3Þ;
ð6Þ

with dΩ2
3¼dχ2þsin2χdϑ2þsin2χ sin2ϑdφ2. The

projection on the brane, is obtained by setting
χ ¼ π=2 in (6), and the induced metric takes the form

ds24 ¼ −eξðrÞdt2 þ eηðrÞdr2 þ r2dΩ2
2: ð7Þ

In the above, we have adopted the usual convention
that the warp factor is normalized to unity on the
brane, thus, Að0Þ ¼ 0. The metric functions ξ and η
retain their functional forms under ρ → r. Hence, any
4D static and spherically symmetric geometry can be
consistently embedded in any 5D braneworld model,
characterized by an injective and nonsingular
warp factor. Note also that in contrast to the CHR
approach [21], the preceding setup ensures that any
brane singularity, if present, remains confined on the
brane. This is a consequence of the manifestation of
spacetime singularities via the divergence of the
curvature invariant quantities at ρ ¼ 0, which, by
definition (5), vanishes only when both r ¼ 0 and
z ¼ y ¼ 0 are satisfied.

(v) Step 4: As a final step, one may express the line
element (6) in the original coordinate system ft; r;
ϑ;φ; yg by following the inverse transformations (5)
to find,

ds2 ¼ e2AðyÞ
�
−eξðr;yÞdt2

þ dr2

r2 þ z2ðyÞ ½e
ηðr;yÞr2 þ z2ðyÞ�

þ r2dΩ2
2 þ

2rzðyÞe−AðyÞ½eηðr;yÞ − 1�
r2 þ z2ðyÞ drdy

�

þ dy2

r2 þ z2ðyÞ ½r
2 þ eηðr;yÞz2ðyÞ�; ð8Þ

where ξðr; yÞ≡ ξð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ z2ðyÞ

p
Þ, ηðr; yÞ≡

ηð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ z2ðyÞ

p
Þ and zðyÞ is given by (2). This

coordinate system is considerably more convenient
for the examination of the junction conditions on
the brane and the computation of the brane matter
content.

Field-theory reconstruction. To provide a complete answer
to the brane-localization problem, it is necessary to not only
determine the appropriate 5D geometry, but also supple-
ment it with the bulk field-theory content. To this end, the
question that we are now called to answer is which field
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theory can support the 5D geometry and how can we
reconstruct it? In what follows, we prove that the form of
the required field theory capable of supporting a brane-
localized geometry in a 5D braneworld scenario, depends
solely on the brane configuration and not on the choice of
the warp factor. The difference in the warping of the extra
dimension is encoded in the profile of a scalar field, but not
in the field theory per se.
Our field-theory reconstruction method stems from the

simple observation that the line element (6) can be written
in the form,

ds2 ¼ gMNdxMdxN ¼ ψ2g̃MNdxMdxN ¼ ψ2ds̃2; ð9Þ
with ψ ≡ eAðyðρ cos χÞÞ and gMN , g̃MN denoting the compo-
nents of the warped and an auxiliary unwarped 5D
geometry, respectively. Upon interpreting the warp factor
of the braneworld model as a conformal factor ψ2, the two
metrics become conformally related to one another. This
allows us to establish a direct mapping/correspondence

between the field theories associated with the two geom-
etries via the well-known properties of the conformal
transformation (see e.g., [87,88]). Consequently, it is
convenient to initially derive the field theory that underlies
the unwarped geometry g̃MN, and then, by utilizing the
conformal transformation (9), we effortlessly obtain the
field theory that supports the warped metric.
Even though our method can be applied to any theory of

gravity, for illustration purposes and with subsequent
applications in mind, let us consider a particular example.
Supposing that the action functional (10) admits the
unwarped metric g̃MN in its spectrum of solutions, it is
straightforward to deduce that the conformal transforma-
tion (9) leads us to the action (11) associated with the
warped metric gMN ,

S ¼ 1

κ5

Z
d5x

ffiffiffiffiffiffi
−g̃

p
½fðϕÞR̃þ hðϕÞG̃ − ωðϕÞðe∂ϕÞ2 − VðϕÞ

− LXðg̃MN; gother fields; gother h:o:c:Þ�; ð10Þ

S ¼ 1

κ5

Z
d5x

ffiffiffiffiffiffi
−g

p �
fðϕÞ
ψ3

�
Rþ 8

□ψ

ψ
−
20

ψ2
ð∂ψÞ2

�
þ hðϕÞ

ψ

�
G −

8

ψ
ð2RMN∇M∇Nψ − R□ψÞ þ 12

ψ2
ð2ð□ψÞ2

− 2∇M∇Nψ∇M∇Nψ − Rð∂ψÞ2Þ − 24

ψ3

�
4ð□ψÞð∂ψÞ2 − 5

ψ
ð∂Lψ∂LψÞ2

��
−
ωðϕÞ
ψ3

ð∂ϕÞ2

−
VðϕÞ
ψ5

−
1

ψ5
LX

�
gMN

ψ2
; other fields; other h:o:c:

��
: ð11Þ

In the above relations, R is the 5D Ricci scalar, G≡
R2 − 4RMNRMN þ RKLMNRKLMN is the Gauss-Bonnet cur-
vature invariant, ϕ is a real scalar field, while fðϕÞ, hðϕÞ,
ωðϕÞ, and VðϕÞ are arbitrary model functions to be
determined via the field equations. In addition, the constant
κ5 is directly related to the fundamental five-dimensional
Planck scale MPlð5Þ, while the general Lagrangian density
LX incorporates a plethora of models including even
additional higher-order curvature (h.o.c.) terms. For ease
of reference, we provide a concise overview of our
complete method in the flowchart of Fig. 1.
Note also here that with the 5D bulk action (11) at hand,

which supports the warped metric gMN , the analysis of
junction conditions on the brane is straightforward. This, in
turn, facilitates the derivation of the effective theory on the
four-dimensional 3-brane (see e.g., [89]). For applications
of this analysis to black hole solutions in the context of the
RS-II model, refer to [84,85].
To illustrate the versatility of our method, the following

two sections are devoted to the field-theory reconstruction
regarding the 5D braneworld extensions for two of the
simplest curved 4D geometries, namely the Schwarzschild
and the de Sitter (dS).

Localized braneworld black holes. In the context of the
RS-II braneworld model [2], the exact geometry describing
a five-dimensional BH that is exponentially localized close
to the brane and induces the Schwarzschild metric on the
brane, has been obtained in [84]. In this section, we provide
for the first time an answer to the long-standing question
regarding the bulk field theory necessary to support a
braneworld BH with the aforementioned features. Most
importantly, by virtue of the herein introduced GEAwe can
tackle the above problem in its full generality without
restricting our analysis to the RS-II model.
In terms of the spherical coordinates of Step 2, the five-

dimensional extension of the Schwarzschild geometry in an
arbitrary braneworld scenario, according to Step 3, is
expressed as

ds2 ¼ e2Aðyðρ cos χÞÞð−eξðρÞdt2 þ e−ξðρÞdρ2 þ ρ2dΩ2
3Þ; ð12Þ

with eξðρÞ ¼ 1–2M=ρ and M being the black hole mass
parameter. Following along the lines of the analysis
performed in [84] for the RS-II model, one can verify that
for any nonsingular warp factor, the curvature invariant
quantities emanating from the line element (12), exhibit a
curvature singularity only at ρ ¼ 0, where both r ¼ 0 and
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z ¼ y ¼ 0. This means that the black hole singularity
resides strictly on the brane, while the geometrical structure
of the black hole horizon is dictated by the equation eξðρÞ ¼
0 ⇒ r2 þ z2ðyÞ ¼ 4M2 ensuing from radial null trajecto-
ries in the 5D spacetime (12).
In order to facilitate the reconstruction of the field theory,

we first consider the unwarped geometry associated with
the line element (12), namely

ds̃2¼ g̃MNdxMdxN ¼−eξðρÞdt2þe−ξðρÞdρ2þρ2dΩ2
3; ð13Þ

for which the corresponding components of the Einstein
tensor assume the particularly simple form

G̃M
N ¼ diag½−3M=ρ3;−3M=ρ3; 0; 0; 0�: ð14Þ

Next, we consider the general scalar-tensor theory (10),
with ϕ ¼ ϕðρÞ and LX ¼ 0. The field equations arising
from this action functional consist of the equation of
motion (EOM) for ϕ and the bulk Einstein equations.
As is typically the case with scalar-tensor theories, the
scalar-field EOM can be derived from the Einstein EOM
under an appropriate manipulation. In our case, we have
three independent equations in total, which can be taken to
be the ðttÞ, ðttÞ − ðρρÞ, and ðttÞ − ðχχÞ Einstein equations.
However, since the field theory contains five unknown
functions (four model functions and the scalar field), it is
natural to anticipate that this system is sufficiently general
to accommodate the unwarped geometry (13) as a solution.
In order to close the system of equations, one has to assume
the functional form for two out of the five free functions. To
this end, by assuming a specific expression for the scalar
function ϕðρÞ and the nonminimal coupling function fðϕÞ,
we are led to the following expressions for the functions of
the model:

ϕðρÞ ¼ M
ρ3

; fðϕÞ ¼ 48αϕ
1
3; hðϕÞ ¼ α

ϕ
2
3

;

ωðϕÞ ¼ −
16α

ϕ
5
3

; VðϕÞ ¼ −48α
�
ϕ

4
3 − 3

ϕ

M
2
3

�
; ð15Þ

where α is a constant with units ðlengthÞ2=3.
Notice that although our assumptions led us to a simple

bulk field theory, the black hole mass parameterM appears
explicitly in the scalar potential VðϕÞ, and as such, it
assumes the role of a coupling constant in our theory.
Consequently, after reintroducing the warp factor as a
conformal transformation into (13), the resulting theory
will describe an isolated eternal braneworld BH of fixed
mass, a feature that is troubling. A truly satisfactory
reconstructed theory would not have the mass parameter
M of the black hole to appear as a coupling constant in the
Lagrangian. In our case though, the field theory (15) is only a
particular example of the general theory (10) withLX ¼ 0. A
different, inspired assumption for two of the free functions
may result to the desired theory. Such an effort however
requires a trial-and-error approach and goes beyond the
scope of this section that aims to serve as an illustration of
the method. It is also important to emphasize at this point,
that the preceding issue plagues the vast majority of field-
theory reconstruction attempts performed in the literature,
where attention is placed on the features of the overall
geometry but not on the model functions of the theory.
Reintroducing now the warp factor as a conformal trans-

formation of the unwarped metric, according to (9), and
utilizing the well-known conformal transformation rules (see
e.g., [87,88]), one can directly map the action (10) (with
LX ¼ 0), to the conformally transformed frame (11) (with
LX ¼ 0) that supports the warped spacetime (12). Note that
the field equations regarding the theory of the warped metric

FIG. 1. Schematic representation of our GEA compared to the CHR approach.
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are guaranteed to be free of Ostrogradsky instabilities and
ghosts. This confident assertion is founded on two known
facts. On the one hand, the unwarped Lagrangian density
L ¼ fðϕÞR̃þ hðϕÞG̃ − ωðϕÞðe∂ϕÞ2 − VðϕÞ constitutes a
special case of the Horndeski theory (see e.g., [90]), while
on the other hand, the conformally-transformed/warped
theory remains also within the Horndeski class
(see Ref. [91]).
Finally, by following Step 4, the line element of the

braneworld extension of the Schwarzschild black hole (12)
can be expressed in the coordinate system ft; r; ϑ;φ; yg
and brought to the form of (8), with eξðr;yÞ ¼ e−ηðr;yÞ ¼
1 − 2Mffiffiffiffiffiffiffiffiffiffiffiffiffi

r2þz2ðyÞ
p . In this form and upon choosing the warp

factor of the model, the analysis regarding the junction
conditions on the brane as well as the energy conditions of
the stress-energy tensor, along with its induced effects
on the brane, can be performed more efficiently. In the
context of the RS-II model, where AðyÞ ¼ −kjyj and
zðyÞ ¼ sgnðyÞðekjyj − 1Þ=k, and despite the absence of
the knowledge of a bulk field theory that supports the
geometry, the aforementioned analysis has been performed
in [84] in a theory-agnostic way by utilizing the Einstein
equations in combination with the known components of
the Einstein tensor. As the analysis therein revealed, the
bulk stress-energy tensor emerging from any theory with
Einstein equations of the form GMN ¼ TMN , satisfies the
energy conditions on the brane, while a local violation
takes place in the bulk, which is necessary for the BH
localization close to the 3-brane. This violation can
potentially be avoided entirely with an appropriate choice
for the warp factor.

de Sitter brane in a 5D bulk. As a second application of our
GEA, we consider the embedding of a dS4 brane in a five-
dimensional bulk. Starting from the induced metric on the
brane that is here identified with the 4D de Sitter geometry,
we introduce, according to Step 3, the following auxiliary
unwarped 5D geometry,

ds̃2 ¼ −
�
1 −

Λeff

3
ρ2
�
dt2 þ dρ2	

1 − Λeff
3
ρ2

þ ρ2dΩ2

3; ð16Þ

where Λeff > 0 is the effective cosmological constant on
the brane. The field theory supporting (16) is readily
obtained and reads,

S ¼ 1

κ5

Z
d5x

ffiffiffiffiffiffi
−g̃

p �
R̃
2
− 2Λeff

�
: ð17Þ

Having specified both the geometry (16) and the theory
(17) in the auxiliary unwarped frame, we can now easily
obtain the warped 5D geometry along with its correspond-
ing field theory. By performing the conformal transforma-
tion (9), the auxiliary action (17) is straightforwardly
mapped to the bulk field theory,

S ¼
Z

d5x
ffiffiffiffiffiffi−gp
κ5

�
1

2ψ3

�
Rþ 8

□ψ

ψ
−
20

ψ2
ð∂ψÞ2

�
−
2Λeff

ψ5

�
:

ð18Þ
The field equations originating from (18), admit as a
solution the warped 5D geometry (6) with metric
functions eξðρÞ ¼ e−ηðρÞ ¼ 1 − Λeffρ

2=3, or equivalently
the geometry (8) with metric functions

eξðr;yÞ ¼ e−ηðr;yÞ ¼ 1 −
Λeff

3
½r2 þ z2ðyÞ�: ð19Þ

Consequently, the line element (8), (19) describes the
consistent embedding of a dS4 brane in an arbitrary
braneworld bulk spacetime characterized by an injective
warp function AðyÞ. For thick braneworld models, field
theories that support embeddings of a de Sitter brane in an
AdS5 bulk are known (see e.g., [20]), however, in these
models, the warp function is not predefined but is rather
determined by the theory’s field equations. To our knowl-
edge, the action functional (18) with ψ ¼ e−kjyj, provides
the first example in the literature of a field theory
supporting the embedding of a dS4 brane in the context
of the RS-II model.
It is also worth noting that any braneworld model of the

form (8), (19) that exhibits an AdS5 asymptotic behavior,
will adhere to the relation

lim
y→�∞

R ¼ lim
ρ→∞

R ¼ 10Λ5

3
; ð20Þ

with Λ5 < 0 being the bulk cosmological constant. Hence,
Eq. (20) will always relate the bulk cosmological constant
Λ5 with the induced cosmological constant Λeff on the
brane. Especially for the RS-II model and in the
ft; ρ; χ; ϑ;φg coordinate system, in which Aðyðρ cos χÞÞ ¼
− lnð1þ kρj cos χjÞ, the Ricci scalar in the bulk is given by

R ¼ 20

�
Λeff

3
− k2

�
: ð21Þ

Therefore, for this case, Λ5 ¼ 2ðΛeff − 3k2Þ, which entails
the constraint Λeff < 3k2.
As a second example, we consider the commonly used

thick-brane model characterized by the warp function
AðyÞ ¼ − ln coshðσyÞ (see Refs. [92–96]), where σ is a
parameter associated with the brane thickness. In the
5D spherical coordinates, the warp function is expressed
as Aðyðρ cos χÞÞ ¼ − 1

2
lnð1þ σ2ρ2 cos2 χÞ, while the bulk

cosmological constant is evaluated to be Λ5 ¼ −ð30σ2 þ
4ΛeffÞ=5. Thus, independently of the value of σ, Λ5 < 0 for
any Λeff > 0.
It is worth mentioning that the application of the CHR

embedding approach in the case of a dS4 brane geometry
and for the RS-II model, leads to a bulk spacetime which is
characterized by the Ricci scalar,

R ¼ 4ðe2kjyjΛeff − 5k2Þ: ð22Þ
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The above curvature invariant quantity diverges in the limit
jyj → ∞ which is to be contrasted with (21) that is free of
any pathology. This example serves as additional evidence
for the effectiveness of our general embedding algorithm in
generating genuinely five-dimensional brane-localized
geometries.

Summary and future directions of research. In this paper,
we introduced a general embedding algorithm that allows
one to consistently extend any four-dimensional static and
spherically symmetric geometry into any five-dimensional
single-brane braneworld model with a nonsingular and
injective warp factor. In contrast to previous embedding
approaches, our GEA, has the important advantage of
ensuring, by construction, the localization of the bulk
gravity close to the brane. As a consequence, the resultant
5D geometries are devoid of undesired features such as
exhibiting a black-string topology or possessing curvature
invariants that diverge asymptotically. We also supple-
mented the GEA by proposing a general method that
greatly assists the reconstruction of the bulk field theory
supporting the 5D braneworld geometries. Consequently, in
effect, we provide a complete procedure for the consistent
embedding of 4D geometries into braneworld models. In
light of the results and insights presented in this work, there
are several promising avenues for future research. In what
follows, we briefly outline some of the main directions that
merit further investigation.
Firstly, due to the fact that our method has been

formulated in the most general way, one is presented with
the opportunity to explore consistent embeddings of other
interesting static and spherically symmetric spacetimes that
go beyond the black hole and de Sitter cases presented here.
For example, one may consider embeddings of 4D worm-
hole configurations, regular black holes [97], models
of stars, cosmological [98–102], or other kinds of solutions

]103 ]. Furthermore, given the connections established
between the brane, the bulk and the auxiliary unwarped
domains, one may follow a different approach to the one
followed in this work. That is, instead of a “brane-first”
approach, one may begin by considering field theories in
the unwarped frame and then obtain the corresponding
brane and bulk geometries in the warped frame. In this way,
novel geometries with potentially interesting characteristics
could emerge. Secondly, the adaptation and extension of

our GEA to accommodate axially symmetric spacetimes is
yet another research direction that one could pursue. This,
although not a trivial task, has great relevance for astro-
physically realistic configurations that exhibit some amount
of rotation.
As we have already seen in the corresponding section,

our braneworld black hole solutions, induce the
Schwarzschild geometry on the brane independently of
the choice of the warp factor. However, perturbative effects
are expected to give rise to nontrivial signatures on the
brane associated with the bulk structure of these objects.
Hence, a detailed stability analysis for these configurations,
remains an open question of critical importance. Given the
freedom in choosing the warp factor, a first step in this
direction could be the systematic classification of brane-
world models with respect to the stability of their BH
solutions. Additionally, this freedom presents yet another
intriguing possibility, by potentially allowing configura-
tions that are unstable in four dimensions to become stable
once embedded in the appropriate braneworld scenario.
Lastly, braneworld models with AdS5 asymptotics and a

nonflat brane-induced geometry could also be considered
in the context of holography [101,102,104–109] once they
undergo the appropriate uplift. In this regard, they can be
used to describe various field-theory phenomena, including
chiral symmetry breaking [110,111], confinement/decon-
finement [112], and other quantum processes [113].
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