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We describe a novel search strategy for axions (or hadronically coupled axionlike particles) in the mass
range ofma ≲ 350 MeV. The search relies on kaon decay at rest, which produces a monoenergetic signal in
a large volume detector (e.g., a tank of liquid scintillator) from axion decays a → γγ or a → eþe−. The
decay modesKþ → πþa and a → γγ are induced by the axion’s coupling to gluons, which is generic to any
model which addresses the strong CP problem. We recast a recent search fromMicroBooNE for eþe− pairs
and study prospects at JSNS2 and other near-term facilities. We find that JSNS2 will have world-leading
sensitivity to hadronically coupled axions in the mass range of 40 MeV ≲ma ≲ 350 MeV.
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Introduction. The neutron’s electron dipole moment
(EDM), dn ≲ 2 × 10−26 e cm [1,2], is 10 orders of magni-
tude smaller than its naive estimate of 5 × 10−16 e cm. This
is unexpected since charge parity (CP) is violated within
the Standard Model (SM), and therefore no fundamental
symmetry forbids a neutron EDM. This is the strong CP
problem, and its microscopic origin can be traced to the
minuscule value of the QCD θ̄ parameter, θ̄ ≲ 10−10, which
controls the unique CP-violating QCD coupling in the SM.
Axions are a popular solution that provide a dynamical
mechanism for the relaxation of θ̄ [3–6]; if the axion’s
potential is generated exclusively by QCD, it naturally
aligns the axion’s ground state with θ̄ ¼ 0.
Axions generically suffer from the so-called quality

problem [7–10] wherein high energy contributions to the
axion potential can (and often do) displace the minimum
away from θ̄ ¼ 0. These problem does not arise if the QCD
potential is “strenghtened”, for instance by introducing a
mirror QCD sector. These nonminimal axion models
produce a potential that is robust against the high energy
corrections discussed above and often predict heavier
axions as compared to minimal axion models [11–31].

Recent investigations have reignited interest in these so-
called heavy axion models with ma ≳ 1 MeV. More gener-
ally, there is a broad interest in axionlike particles (ALPs)
[32,33], which may serve as IR messengers of UV comple-
tions such as a string landscape [34,35].Awide rangeof search
strategies have been proposed ranging from beam dumps, to
flavor facilities, and collider experiments [32,36–60].
In this work, we point out that kaon decay at rest

(KDAR) offers a powerful probe of axions (or hadronically
coupled ALPs) in the mass range of ma ¼ 40–350 MeV.
Unlike previous studies of KDAR [61,62] the axions we
consider are naturally coupled to quarks and/or gluons
such that the hadronic decays of kaons serve as a powerful
axion factory. The signal is a visible decay of either a → γγ
or a → eþe−. The dominant SM kaon decay modes are
Kþ → μþνμ, as well as Kþ → π0eþνe,

1 and both channels
produce a neutrino flux that can be measured [63,64]. In
addition to predictions of hadronic cascade simulations,
this provides an experiment with an in situ measurement of
their KDAR population. The axion rate is then calculable,
and a counting experiment can be performed.
For concreteness, we consider an axion coupled to

Standard Model (SM) gauge bosons via

La ¼
1

2
ð∂aÞ2 −m2
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1Negatively chargedK− decays are subdominant toK− capture
on nuclei. This cannot occur for Kþ because it does not form
bound states with nuclei.
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at a high scale, where a is the axion, and αs ¼ g2s=4π, α2 ¼
g2=4π and αY ¼ g02=4π. The coupling cGG can be absorbed
into f, and we define the axion decay constant as fa ¼
f=2cGG. As two useful benchmarks, we focus on the
so-called “gluon dominance” (cGG ≠ 0, cWW ¼ cBB ¼ 0)
and “codominance” (cGG ¼ cWW ¼ cBB ≠ 0) scenarios
following [65–67] (using the relative normalization of
cBB in [66,67]). We do not consider, e.g., axion couplings
to quarks, though their inclusion is straightforward. In what
follows, we discuss the theory of Kþ → πþa, and project
sensitivities for JSNS2 and a MicroBooNE γγ search.

Kaon decay at rest. In models with a hadronically coupled
axion, Kþ → πþa serves as a powerful axion production
channel. Since axions are long-lived, they decay in flight to
visible final states. The resulting signal is a monoenergetic
peak at an energy of

Ea ¼
m2

K þm2
a −m2

π

2mK
: ð2Þ

This indicates that the heavier axion carries more energy
and its minimal value is given by setting ma ¼ 0 as Ea >
227 MeV. The branching ratio for Kþ → πþa can be
reliably predicted in chiral perturbation theory [68], with
the result [neglecting terms ofOðm2

a=m2
KÞ andOðm2

π=m2
KÞ],

BRðKþ → πþaÞ ¼ τK−

τKS

f2π
8f2a

× BRðKS → πþπ−Þ: ð3Þ

Equation (3) receives corrections from finite axion and pion
mass effects in both thematrix element and phase space, both
of which are taken into account in our numerical estimates
(see Ref. [68] for the complete expression). In the codomi-
nance case, the axion coupling to the W-boson induces an
extra contribution [46]. However, this contribution is neg-
ligible for cWW ¼ cGG, and we do not consider it further in
what follows.
Axions produced from KDAR can decay inside nearby

detectors, either to γγ or eþe−. The number of axions
produced at a KDAR source is given by

Na ¼
BRðKþ → πþaÞ
BRðKþ → μþνμÞ

Nνμ ; ð4Þ

where Nνμ is the number of muon neutrinos from KDAR
that are produced in the beam stop. In the limit of a long
decay length, λa ≫ L where L is the distance from the
KDAR source to the detector, the number of axions that
decay in the detector is given by2

Na→vis ¼ Na ×
1

4πL2

V
λaðmaÞ

; ð5Þ

where V is the volume of the detector, λa ¼ βaγaτa is the
decay length of the axion in the lab frame, and we have
assumed all final states of the axion decay are visible. Our
energy range of interest is given by

227 MeV < Eee; Eγγ < 354 MeV; ð6Þ

where the lower bound (upper bound) is given by setting
ma ¼ 0ðma ¼ mKþ −mπþÞ in Eq. (2).
Assuming a → γγ dominates over a → ee, which is

generically true for theories without direct axion-electron
couplings, the lifetime of the axion is given by3

τ−1a ¼ α2m3
a

256π3f2a
jceffγγ j2; ð7Þ

where α is the electromagnetic fine structure constant. The
effective coupling to the photon is given by [32,69]

ceffγγ ≈ cγγ −
�
5

3
þ m2

π

m2
π −m2

a

md −mu

mu þmd

�
; ð8Þ

where cγγ ¼ 0 in the gluon dominance case and cγγ ¼ 2

in the codominance case, and our constraints are express-
ible in terms of 1=f4a. Equation (8) assumes a two-flavor
approximation, which is reasonably accurate for the
masses we consider, ma ≲ 350 MeV. For these masses,
we never approach regions of resonant mixing with η and
η0; more complete three flavor expressions can be found in
Appendix B of [69]. The constraints can be easily rescaled
for other model-dependent choices (e.g., with the axion
couplings to the up and down quarks). It is also straightfor-
ward to project sensitivities for models where a → eþe− is
the dominant decay channel.
For ma close to mπ cancellations can occur such that

ceffγγ vanishes.4 For our choice of the quark mass ratio,
mu=md ¼ 0.46, this happens only in the gluon dominance
case. We note however that if we instead use mu=md ¼
0.56 motivated from the meson mass spectrum, the
cancellation happens around ma ≃ 55 MeV in the codo-
minance case. If the cancellation happens, the decay length
of the axion is set by a → eþe−. Such a coupling is always
generated by radiative effects. For our numerical estimates,

2In our numerical computation, we do not rely on this
approximation. Instead, we include the finite axion decay length
properly to obtain the upper limit of the sensitivity correctly.

3In models with a mirror sector, the axion may have invisible
decay modes with Oð1Þ branching ratios.

4This is due to a cancellation among the axion direct coupling
to the photon and the axion-pion mass and kinetic mixing
contributions. Somewhat related to this, Eq. (8) relies on the
small mixing angle expansion and hence, is applicable only when
jm2

π=ðm2
π −m2

aÞ × fπ=fj ≪ 1, strictly speaking. Since this con-
dition is violated only for the axion mass very close to mπ , we
ignore this subtlety.
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we include the a → eþe− decay channel, taking gaee ¼
0.37 × 10−3cGG [see Eq. (62) of [70] ], although the effect
of this coupling is almost invisible in our plots.
Substantially stronger coupling to electrons is possible if
it arises at tree level in the UVor is induced by top quarks
[70]; in these cases, our constraints would strengthen. In
principle, for ma ≥ 2mμ, the muon decay channel can also
be included, but this only affects the ceiling of our
constraint by anOð1Þ factor since Γða → γγÞ is comparable
to Γða → μþμ−Þ. If a detector can measure muon tracks,
then a → μþμ− would present an additional signal channel
with much lower backgrounds. However, since the impact
of muon couplings on our results is relatively modest for
the codominance and gluon dominance scenarios, and this
region can be probed by other experiments [59,60], we do
not discuss it further.

Microboone search for heavy scalars. Using the above
formulas,we can recast a recent search byMicroBooNE[71].
Their search channelwasK → πhD followed byhD → eþe−
with hD a dark Higgs boson [62]. If we consider the
a → eþe− search, then mapping their result to a heavy axion
is an immediate constraint on gaee. Using the induced
gaee from gluon couplings mentioned above, we then obtain
a limit on fa. We find that the constraints on fa obtained in
this gluon-dominance scenario are very weak, excluding
fa ≲ 1 TeV, which is already ruled out by other experi-
ments, and so we do not include this in our summary plot
(see Ref. [61] for ALPs coupled exclusively to electroweak
bosons).
For the a → γγ channel, it is not possible to interpret the

MicroBooNE result as a constraint. The search in [71]
made use of a boosted decision tree (BDT) in classifying
their events and should reject γγ topologies.5 As a crude
estimate of the sensitivity, we may assume that a dedicated
analysis for γγ final states is performed with comparable
BDT performance. Then the sensitivity to fa (from the
same dataset) would be given by equating ΓðK → πhDÞ×
ΓðhD → eeÞ, evaluated with the upper bound on the mixing
angle in [71], to our ΓðK → πaÞ × Γða → γγÞ × e−L=λa
with L ≃ 100 m the distance between MicroBooNE and
the NuMI absorber (i.e., the KDAR source). This treatment
is valid since the decay length of the dark Higgs boson is
much longer than L for the mixing angles in [71], and
because the MicroBooNE detector is much smaller than L.
In Fig. 1 (gluon dominance) and Fig. 2 (codominance),

we plot the sensitivity of MicroBooNE estimated in this
way by the orange lines. MicroBooNE may be able to
explore certain small regions of parameter space not
covered by existing experiments if a dedicated search for
γγ final states is performed; this is qualitatively similar

to the situation with a dark Higgs boson [62,71]. As alluded
to above, searches for dimuon final states may also be
of interest for ma ≥ 2mμ since MicroBooNE can easily
reconstruct μþμ− pairs.

FIG. 1. (Gluon dominance) Sensitivities of MicroBooNE and
JSNS2 compared with existing limits and other projected sensi-
tivities when all couplings are induced by a gluon coupling cGG at
a high scale. The MicroBooNE sensitivity is cut at 210 MeV
because that is the range that appears in [71]. Existing limits
include constraints from SN1987A [72,73] and cosmology [74]
adapted from [65], Kaon decays (E949 [75] and NA62 [76]), and
beam dump searches (CHARM [77] and NuCal [78]), with data
adapted from [66]. We also show projected sensitivity of DUNE
[65]. Other projected sensitivities not shown here include
DarkQuest [69,79,80], FASER [81], KOTO [67,82], and SHiP
[83]. We have rederived constraints from E949 and NA62, and
our results agree with [67] (but disagree with [73] and therefore,
the curves in [65]).

FIG. 2. (Codominance) The same figure as Fig. 1 but with
cWW ¼ cBB ¼ cGG. The sensitivity for ma ≪ mπ is worse than
the gluon dominance case since jceffγγ j ≪ 1 for this specific choice
of the parameters.

5In principle, there should be some probability of a γγ pair
contaminating the BDT-tagged eþe− sample, but this would
require collaboration input.

SEARCHING FOR AXIONS WITH KAON DECAY AT REST PHYS. REV. D 109, L031702 (2024)

L031702-3



Searches at JSNS2. Next, we consider JSNS2 [84–86],
which is designed to test the excess of events seen at
LSND [87]. A crucial difference between JSNS2 and
LSND is the proton beam energy, 3 GeV vs 0.8 GeV,
such that JSNS2 serves as both a πDAR and KDAR facility,
whereas LSND had much fewer KDAR events (if any) [88].
We, therefore, find that JSNS2 offers much more compel-
ling sensitivity to heavy axions and do not consider LSND
further in what follows.
To estimate the sensitivity at JSNS2, we take the

number of KDAR neutrinos per proton on target
(Nνμ ¼ 0.0034=POT) from [84]. Although the kaon pro-
duction rate is uncertain (Nνμ can be twice as large [89]),
as we mentioned in the Introduction, in the actual experi-
ment, the KDAR neutrino flux can be measured in situ.
Using estimates from Fig. 3 of [90], we find that the search
will be nearly background free Nbkg ≤ 1 in three years of
operation, except for Ea ≤ 238 MeV (corresponding to
ma < 104 MeV) where muon neutrinos produced from
kaon decay-at-rest comes into play and Nbkg ≈ 2.5 over
three years. Reference [90] assumes an additional lead
shielding of the detector, which has not been put in place
at JSNS2. Cosmic backgrounds are therefore underestimated
in that work. However, the axion signal we consider benefits
from the high energy signal region,E > 227 MeV [Eq. (2)],
where cosmic events are suppressed. Further reductions in
the cosmic muon rate can be achieved using coincident
tagging with daughterMichel electrons [91]. Since studies of
cosmic background mitigation are ongoing, we plot projec-
tions using a 5-event contour (corresponding to approxi-
mately 95%C.L. exclusion if JSNS2 observes only one event)
assuming 100% efficiency of the detector.6 Backgrounds will
be smooth above 227 MeV, and a sideband analysis can be
used to estimate their size in situ such that a searchwill always
be statistics rather than systematics limited. As we discuss
below, if backgrounds are high at JSNS2, a search could be
performed using their second detector [86,92].
To compute the expected number of axion events,

we take L ¼ 24 m as the distance between the KDAR
source and the JSNS2 detector, and the detector volume V ¼
ð17 tonnesÞ=ð0.852 g=mlÞ ¼ 20.35 m3 [85,93].We assume
1023 POT, corresponding to roughly three years of live time.
This results in∼3 × 1020 stoppedKþ in total, which is much
larger than the 1012–1013 Kþ decay events at NA62 [76].
In Fig. 1 (gluon dominance) and Fig. 2 (codominance),

we plot the sensitivity of JSNS2 by the blue lines, together
with the existing constraints and future sensitivities. The
figures demonstrate that JSNS2 has excellent sensitivity to
heavy axions. Note that the event number scales as f−4a .

Therefore, even if we instead require, e.g., 50 events, the
sensitivity only weakens by 101=4 ≃ 1.8, which does not
alter our main conclusion.
In our analysis, we have focused on the JSNS2 near

detector. However, the JSNS2 Collaboration recently
installed another detector at a far location [86,92], 48 m
away from the source. This second detector is expected to
start taking data soon and contains 32 tonnes of liquid
scintillator as a fiducial volume; the larger volume partially
compensating for the longer baseline. Togetherwith possibly
smaller backgrounds due to its location, the far detector may
be better suited for axion searches once it starts its operation.

Conclusions. KDAR provides a clean smoking gun sig-
nature of hadronically coupled axions. A Kþ production
target, coupled with a large volume detector placed
∼10–100 m away, allows for a powerful probe of visibly
decaying particles lighter than the kaon (e.g., dark scalars
or heavy neutral leptons [62,94]). In the context of KDAR,
axions are particularly compelling due to their well-
motivated hadronic couplings, which are necessary in
any model that addresses the strong CP problem.
We have focused on two benchmark scenarios (gluon

dominance and codominance) for ease of comparison with
the literature. It is interesting to understand how constraints
vary with model-dependent coupling textures. The visible
decays we consider here are governed both by BRðK → πaÞ
and the axion decay length and scale as 1=f4a. By way
of contrast, the constraints from NA62 depend only on
BRðK → πaÞ and scale as1=f2a. Stronger hadronic couplings
will therefore favor NA62 over JSNS2. Conversely, weaker
hadronic couplings and/or a larger ceffγγ will favor JSNS2 over
NA62. Beam dump searches scale the same way as JSNS2.
We find that JSNS2 will have world-leading sensitivity to

heavy axions. One might imagine a competitive experi-
mental landscape of modern high-intensity low-energy
proton beams. Notably, we find that JSNS2 is likely to
provide unsurpassed sensitivity, since other facilities suffer
from low Kþ yields (e.g., at a PIP-II beam dump [95],
LANSCE [96], or the SNS [97]) or do not have competitive
intensity (e.g., the SBN beam dump concept [98]).
Experiments with detectors far downstream also suffer
from large 1=L2 geometric suppressions c.f. Eq. (5).
Modified experimental designs, e.g., a PIP-II beam dump
with a proton beam energy Tp ≳ 2 GeV, could allow for
competitive KDAR rates. A large volume detector placed
near the DUNE hadron absorber or coupled with a high-
intensity 8 GeV beam for a muon collider demonstrator
would both offer promising future sensitivity. Nevertheless,
with JSNS2 already taking data [86], there is an immediate
opportunity to shed light on heavy axion models in
currently unprobed regions of parameter space.
We strongly encourage the JSNS2 Collaboration to

incorporate axion searches into their central physics pro-
gram. The signal we have identified, will generically lie far

6The background rate is expected to be lower for a higher
energy bin, and hence, the statistical meaning of the 5-event
contour varies depending on the axion mass (which determines
the signal energy). However, as long as the background event rate
is smaller than unity, this effect is minor.
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above the signal windows of interest for neutrino physics.
Kaon decay at rest produces a monoenergetic νμ with
Eν ¼ 236 MeV; however, the resultant muon signature is
very different from the signal we have identified herein. If
an axion is produced and decays visibly, the signal is two
collimated photons with a total energy between 227 MeV
and 354 MeV. Since this lies outside the range of any
planned physics goals at JSNS2, this signal could be easily
missed; it should not be, and a dedicated search should be
performed. For instance, our background estimate relies
on additional lead shielding which is absent in reality as
we have mentioned. Therefore, if JSNS2 Collaboration
observes a larger background than the estimate in [90], we
believe that our study provides a strong motivation to, e.g.,
install additional shielding to suppress background and to
explore the potential signals coming from the axions.

Note added. Recently, we were made aware of other
experiments in the J-PARC facility that could search for

axions from KDAR [99]. These include KOTO and
ND280. It would be interesting to better understand the
capability of these experiments to do searches using the
JSNS2 beam stop.
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