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Ab initio Monte Carlo simulations of strongly interacting fermionic systems are plagued by the fermion
sign problem, making the nonperturbative study of many interesting regimes of dense quantummatter, or of
theories of odd numbers of fermion flavors, challenging. Moreover, typical fermion algorithms require the
computation (or sampling) of the fermion determinant. We focus instead on the meron cluster algorithm,
which can solve the fermion sign problem in a class of models without involving the determinant. We
develop and benchmark newmeron algorithms to simulate fermions coupled toZ2 andUð1Þ gauge fields in
the presence of appropriate four-fermi interactions. Such algorithms can be used to uncover potential exotic
properties of matter, particularly relevant for quantum simulator experiments. We demonstrate the
emergence of the Gauss’ law at low temperatures for a Uð1Þ model in ð1þ 1ÞD.
DOI: 10.1103/PhysRevD.109.L031506

Introduction. Microscopic models involving fermions that
strongly interact with each other, either directly or mediated
via gauge fields, are essential ingredients of many theories
in condensed matter and particle physics [1–3]. From the
Hubbard model describing the physics of correlated fer-
mions, to the quantum Hall effect and high-temperature
superconductivity, fermions subjected to various inter-
actions have been studied both perturbatively and non-
perturbatively [4,5]. Fermions constitute the matter
component of all microscopic theories of particle physics
(as leptons in electromagnetic and weak interactions, as
quarks in strong interactions) and interact with gauge fields
(the photon, the W�; Z, and the gluons, respectively) [6].
Gauge fields are also becoming increasingly important to
condensed matter systems, from frustrated magnetism to
theories of deconfined quantum criticality [7].
While quantum Monte Carlo (QMC) methods are robust

for nonperturbative studies of the aforementioned systems,
they are also vulnerable to the sign problem [8]. QMC
methods work by performing importance sampling of
fermion and gauge field configurations that make up the
partition function. Since fermions anticommute, their sign
problem can be straightforwardly understood when the
configurations considered are worldlines: whenever fer-
mions exchange positions an odd number of times, the

configuration weight acquires another negative sign factor,
leading to huge cancellations in the summation, accom-
panied by an exponential increase of noise [9].
A large family of QMC methods deal with the fermion

sign problem using determinants: they introduce auxiliary
bosonic fields and integrate out the fermions, or expand
the partition function, Z, as powers of the Hamiltonian
(or parts of the Hamiltonian) and get fermion determi-
nants for the resulting terms [10,11]. Because these
methods result in weights that are the sums of many
worldline configurations, they can be used more generi-
cally to simulate the largest classes of sign-problem-
free Hamiltonians, with auxiliary field QMC as the
most widely applicable method [12–20]. Determinantal
methods in general scale with either the spatial lattice
volume, or the spacetime lattice volume, which in
terms of imaginary time β and spatial lattice dimension
N goes either as Oðβ3N3Þ or OðβN3Þ, depending on the
method [21–26]. While this polynomial scaling is much
better than the exponential scaling from a straightforward
exact diagonalization, it is much worse than the linear
scaling achievable for spin systems, where worldline-
based methods can simulate systems orders of magnitude
larger than typical simulable fermionic systems [27–32].
An alternative approach—well utilized in the lattice

quantum chromodynamics community—is the hybrid
Monte Carlo technique [33–35], which computes the
fermion determinant stochastically, and theoretically
scales linearly rather than cubicly with the spatial volume.
For systems of massless fermions and thus zero modes
in Z, however, the method can run into complexities and
the scaling significantly worsens, closer to the cubic
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scaling of before [36]. More recently, it has been applied
to problems in condensed matter with some promising
optimizations [37–39].
It is however possible to develop worldline-based algo-

rithms for fermionic Hamiltonians [40–43]. Meron cluster
methods [44], so named due to the presence ofmerons (half-
instantons) in the first model for which they were developed
to simulate [the 2D Oð3Þ sigma model with θ ¼ π], can be
used to solve sign problems in four-fermion Hamiltonians
for certain parameter regimes, as well as for free fermions
with a chemical potential [45]. Because these methods
sample worldlines, computing the weights scales linearly
with the volume of the system, and negative terms in the
partition function are taken care of by avoiding merons—
this is what distinguishes them from bosonic simulations.
The relative simplicity of these methods, with each weight
corresponding to a worldline configuration and the lack
of stabilization issues that can arise in determinantal
methods [11], as well as the favorable scaling of the weight
computations, makes them an attractive choice for simu-
lation when applicable. Correspondingly, exciting oppor-
tunities open up when new interesting physical models are
found which can be simulated using this method [46–48].
Recently, there has been intense experimental develop-

ment to study the physics of confinement and quantum spin
liquids [49–55] using tools of quantum simulation and
computation. The microscopic models used to capture the
physics involve fermions interacting with (Abelian) gauge
fields. In this Letter, we develop meron cluster algorithms
for a class of experimentally relevant models [56,57],
enabling a robust elucidation of their phase diagrams. We
also introduce new classes of Z2 and Uð1Þ multiflavored
gauge-fermion theories, which might be realized in cold-
atom setups and also be further studied using Monte Carlo
techniques. Notably, theUð1Þ family of these models seems
to be one of the few families that falls outside the class of
models known to be simulable by auxiliary-field methods,
as are [23,58,59]. Moreover, the worldline nature of the
method makes it easily employed to study the correspond-
ing phases in these theories in higher spatial dimensions,
and the resulting physically relevant configurations are
promising inputs for machine learning algorithms.

Models.We start with the half-filled t-V model—a spinless
fermionic Hamiltonian involving only the most local
interactions,

H¼
X

hxyi

�
−
t
2
ðc†xcyþc†ycxÞþV

�
nx−

1

2

��
ny−

1

2

��
: ð1Þ

Here hxyi are the nearest neighbor site pairs, c†; c are the
creation and annihilation operators, respectively, and the
repulsive interaction V is given in terms of the number
operator n ¼ c†c. It is simulable by meron clusters for
V ≥ 2t [45,48]. In this Letter, we extend the meron cluster

method to physically interesting Hamiltonians involving
gauge fields, which are lower-dimensional versions of
quantum electrodynamics [60,61]. The Z2- and Uð1Þ-
gauge symmetric families are given by

HðgÞ
Nf

¼ −
X

hxyi

YNf

f¼1

�
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The label g∈ fUð1Þ;Z2g is the gauge symmetry, with

HZ2
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�
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The hopping of spinless fermions between the nearest
neighbors hxyi are now governed by the presence of gauge
fields, represented by spin-1=2 operators, skxy, on the bond.
Figure 1 illustrates the model degrees of freedom. Then

HðgÞ;des
hxyi;f is a designer term [62] that makes the models

simulable by the meron algorithm,

HZ2;des
hxyi;f ¼ −2t
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These terms serve a similar role as the V ¼ 2t term in
the meron cluster algorithm applied to the t-V model [45],
and similarly an additional particle-hole symmetric
V ≥ 0 term can be added to the models here in a sign-
problem-free way. In the Z2 gauge theory, the gauge field
s1 ¼ σ1=2 couples to fermions, and the local Z2 sym-
metry is manifest via the commutation ½Qx;HZ2 � ¼ 0,

where Qx ¼ð−1Þ
P

f
nx;f Q

f;α̂ s
3
x;xþα̂;fs

3
x−α̂;x;f, α̂ are the unit

vectors in a d-dimensional square lattice. For the Uð1Þ

FIG. 1. Example fermion occupations and bond variables for
the theories on a square spatial lattice with Nf ¼ 1.
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theory, the unitary operator VUð1Þ, which commutes with
HUð1Þ is given by VUð1Þ ¼

Q
x e

iθxGx, with Gx¼
P

f ½nx;f −P
α̂ ðs3x;xþα̂;f−s3x−α̂;x;fÞþðð−1Þx−1Þ=2�. In the terminol-

ogy of gauge fields, our microscopic models are quantum
link models [63], which realize the continuous gauge
invariance using finite-dimensional quantum degrees
of freedom. The identification with usual gauge field
operators is Uxy;f ¼ sþxy;f;U

†
xy;f ¼ s−xy;f;E¼ s3xy;f. We note

that a straightforward application of the meron idea
necessitates the introduction of an equivalent flavor index
for gauge links as fermion flavors. Naively, the total
Gauss law can be expressed through a product (Z2) or
sum [Uð1Þ] of the Gauss law of individual flavors degrees

of freedom, and the resulting theories have Z
⊗Nf

2 and
Uð1Þ⊗Nf gauge symmetry. However, flavored gauge
interactions can also be turned on in the Uð1Þ model
(as explained in the Supplemental Material [64]),

HUð1Þ
Nf¼2 → HUð1Þ

Nf¼2 þ J
X

hxyi
s3xy;1s

3
xy;2; ð5Þ

or through a Hubbard-U interaction for both Z2 and
Uð1Þ-symmetric models [48]. These additions directly
cause ordering for either the gauge field or the fermions,
and the coupling between them leads to the interesting
question of how the other particles are affected by this
ordering. In similar contexts, interesting simultaneous
phase transitions of both the fermions and gauge fields
have been found [47,61,65–69] or conjectured [70,71].

Algorithm. The algorithm is best understood through the
worldline configurations for the models defined in Eqs. (2)
to (4) in the occupation number basis for the fermions and
the electric flux (spin-z) basis for the gauge links. The
partition function in ð1þ 1ÞD is

Z ¼ Trðe−βHÞ;
¼

X

fs;ng
hs1; n1je−ϵHe js2Nt

; n2Nt
ihs2Nt

; n2Nt
j

× e−ϵHo…e−ϵHe js2; n2ihs2; n2je−ϵHo js1; n1i; ð6Þ

whereH ¼ He þHo, andHe (Ho) consists of Hamiltonian
terms that correspond to even (odd) links. This Trotterized
approximation, is a sum of terms over discrete time slices
1;…; 2Nt, each with locally defined electric flux and
fermion occupation numbers. All terms within He and Ho
commute with each other (there are straightforward
generalizations for higher dimensions) [72]. Each of the
terms in Eq. (6) is a worldline configuration, and the
rules for allowable worldline configurations apply consis-
tently to all models within each of the symmetry families.
Figures 2(a)–2(c) give examples of such configurations for
the t-V model as simulated by meron clusters.

In the Z2 case, for each time slice a fermion has the
option of hopping to an unoccupied nearest neighbor site of
the same flavor. The hop flips the flux on the bond between
the sites of the same flavor index—this is the result of the
s1xy operator. Figures 2(d)–2(f) gives example configura-
tions for the Nf ¼ 1 version of this model. Due to the trace
condition, odd winding numbers are ruled out because
these would cause mismatch between the spins in the initial
and the final state.
The possible worldline configurations for the Uð1Þ case

are even more restrictive than the Z2 case. The sþxy and s−xy
operators allow the hopping for a given flavor of fermion
only in one direction or the other for each bond, depending
on the orientation of the same flavored flux on the bond.
Figures 2(g)–2(i) illustrates an example configuration and
restrictions for the single flavor version of the Uð1Þ model.
In ð1þ 1ÞD, it is clear that all allowed configurations must
have zero winding number.
The worldline configurations are a tool to obtain meron

cluster configurations by introducing appropriate breakups,

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

FIG. 2. Worldlines for the t-V model are in (a)–(c), the Z2

theory in (d)–(f), and the Uð1Þ theory in (g)–(i). Image (a) shows
the imaginary time direction and the ð1þ 1ÞD trotterization,
which is the same for all images. Filled circles are sites occupied
by fermions, and empty circles are holes. Figures in the second
two rows also have link variables because they correspond to
gauge theories: the upward triangles correspond to spinþ1=2 and
the downward triangles correspond to spin −1=2. While the
fermionic worldlines are the same in each column, some
configurations that are allowed for the t-V model have zero
weight for the Z2 and Uð1Þ theories. These are crossed out, and
zero-weight plaquettes are shaded red.
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which decompose the terms in Eq. (6) into further con-
stituents. In considering the allowed worldline configura-
tions given in Fig. 2 for the Uð1Þ theory, for example, each
of the active plaquettes in each time slice (shaded in gray)
must be one of the plaquettes given in Table I. The
plaquettes in each row share the same weight, computed
using hsb; nbje−ϵHb js0b; n0bi, from Eq. (6), where b is a
nearest neighbor bond, b ¼ fx; yg. The corresponding
breakup cell for each row gives allowable breakups: if
all fermion occupations/spins are flipped along any one of
the lines, the resulting plaquette also exists in this table.
From the table, we see two such breakups are defined, A
and D. Although these breakups resemble those from the
original meron algorithm, in our case the breakups involve
the link variables as well—either as additional lines for the
A breakups, or as binding lines extending outward from
the horizontal D breakup lines. This is a key difference for
the gauge extension of the algorithm. By computing the
matrix elements that correspond to the plaquettes in each
grouping, we find that for the Uð1Þ theory, the correspond-
ing breakup weights wA and wD must obey the following:

wA ¼ 1;

wD ¼ exp ðϵtÞ sinh ϵt;
wA þ wD ¼ exp ðϵtÞ cosh ϵt; ð7Þ

to satisfy detailed balance. Moreover, the choice of the
breakups is such that the total sign of a configuration
factorizes into a product of the signs of each cluster:
Sign ½C� ¼ QNc

i Sign½Ci�, where the configuration C has
been decomposed into Nc clusters. We can thus simulate
this system by exploring a configuration space where each
configuration is defined according to the combination of
worldlines and breakups. By assigning breakups to all
active plaquettes, clusters are formed, and then updates
involve flipping all fluxes and fermions within a cluster,
which generates a new worldline configuration. The
algorithm begins with putting the system in a reference

configuration, defined by the fermionic worldlines only,
where the weight is known to be positive, and it is always
possible to reach this configuration by appropriately flip-
ping a subset of clusters in a given configuration. For both
Uð1Þ and Z2 theories, the reference configuration has a
staggered fermionic occupation (charge density wave, or
CDW), where fermions and fluxes are stationary through-
out imaginary time. Fluxes can be in any spatial configu-
ration (because they do not contribute a sign), and the
breakups are all A. Fluxes and breakups may be initially
attached to the plaquettes in any way allowed by Table I.
A QMC sweep is then as follows:
(1) Go through the list of the active plaquettes and

update each breakup, one at a time.
(a) If the breakup can be changed for a plaquette,

change it with probability dependent on the
breakup weights.

(b) If the breakup is changed, consider the new
configuration that would result from this change.
If it contains a cluster where flipping the fermion
occupation causes the fermions to permute in a
way that produces a negative sign, then it is a
meron. In that case, restore the breakup back to
its initial state. Rules for identifying merons
generalize [45,73] and are in the Supplemental
Material [64].

(2) Identify the new clusters formed by the breakups in
the new configuration. For each cluster, flip all
fermions and fluxes with probability 1=2.

This describes sampling of the zero-meron sector only, but
sectors with other numbers of merons may become relevant
depending on the observable [45]. We note that the cluster
rules implement the Hamiltonian dynamics, but the con-
straints due to Gauss’ law are not included. Like any cluster
algorithm, once the detailed balance conditions have been
satisfied, the meron algorithm is expected to be efficient in
any space-time dimension [46,73]. We provide a demon-
stration of the efficiency in ð2þ 1ÞD in the Supplemental
Material [64], with an extensive investigation left for
future work.

Numerical results. To illustrate the efficacy of the algo-
rithm, we discuss results obtained by simulating the

ð1þ 1ÞD HUð1Þ
Nf¼1 model in Eq. (2), which is related to

the massless quantum-link Schwinger model [57,74] and
the PXP model [75,76], where quantum scars were first
demonstrated experimentally [50]. We simulate the model
for different temperatures β ¼ 1=T, without imposing
Gauss’ law. A filter may then be applied to study the
physics in the desired Gauss law sector. The one-
dimensional nature of the problem forbids the presence
of merons, providing a technical simplification. The first
nontrivial result is the emergence of two Gauss’ law sectors
at low temperatures, as shown in Fig. 3. For the Z2 theory
in ð1þ 1ÞD, this result was also observed in [69].

TABLE I. Plaquettes and breakups for the Uð1Þ-symmetric
Hamiltonian. The middle cluster lines in the A breakups and
binding lines in the D breakups distinguishes them from the
original meron cluster breakups.

Plaquettes Breakups
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Generating different Gauss’ law sectors has the benefit
that the physics in each sector can be easily studied by
applying a filter. At low temperatures, this is anOð1Þ effort,
but becomes exponentially difficult at higher temperatures,
since exponentially many sectors will be populated. Hence,
we note that the efficiency of this meron algorithm for true
gauge theories (where Gauss’ law is imposed) is more suited
to the study of quantum phase transitions rather than finite-
temperature ones. For theories where multiple nontrivial
Gauss’ law sectors emerge at low temperature, it is possible
to study the physics in all sectors without any extra effort.
Similar to the well-studied Schwinger model [77–83], our

model has the following discrete global symmetries: Z2

chiral symmetry, charge conjugation, C, and parity, P, [57],
whose breaking depends on the strength of the four Fermi
coupling. The order parameter sensitive to the P or the C
symmetry is the total electric flux, E ¼ 1

Lt

P
x;t s

3
x;xþ1, while

the one for Z2 chiral symmetry is the chiral condensate,
ψ̄ψ ¼ P

xð−1Þxnx. In Fig. 3 we show the probability
distribution for ψ̄ψ, which samples the two vacua very
well, indicating that at T ¼ 0 the symmetry is spontane-
ously broken. We use these operators to check the algorithm
against exact diagonalization results, as well as explore
other features of the phase at low temperatures. We leave
these discussions to the Supplemental Material [64]. Here
we concentrate on the meron algorithm’s performance
measured via the autocorrelation function:

COðτÞ ¼
hðOðiÞ − ŌÞðOðiþ τÞ − ŌÞi

hðOðiÞ − ŌÞ2i ; ð8Þ

where OðiÞ is the measured value at the ith step of the
appropriate operator (whose average is Ō), and is the

running index summed over the MC data, while the
autocorrelations are measured τ steps apart. Figure 3 shows
the COðτÞ for three different operators: E, ψ̄ψ , and CDW.
We note that the bosonic E relaxes the slowest, while the
fermionic operators relax faster. Even for the slowest
relaxing mode, the autocorrelation decreases by more than
an order of magnitude within 10 MC steps for the largest
lattice at the lowest temperature, demonstrating the effi-
ciency of the algorithm. Finally, in Fig. 4 we also show the
behavior of the normalized susceptibilities corresponding to
E and the CDW operator as a function of temperature for
smaller lattices up to L ¼ 22 in the Gx ¼ 0 sector. We are
able to capture the finite temperature crossover.

Conclusions. We have generalized the construction of the
meron algorithm to cases where staggered fermions are
coupled to quantum link gauge fields. This construction of
the Monte Carlo algorithm is agnostic to the space-time
dimension, and paves the way for ab initio studies of large
scale gauge-fermionic system with odd or even numbers of
fermionic flavors, and includes models not simulable using
Determinantal quantum Monte Carlo methods. While we
are able to simulate low temperatures at fixed values of
gauge coupling by using two breakups, A and D, it is
possible to add different microscopic terms by increasing
the allowed ways of bonding the fermions and gauge links.
We have also indicated how to include multiple flavors, and
multiflavor interactions. Our investigations open up ave-
nues to study quantum link gauge theories coupled to
fermions in higher dimensions, which are almost certain to
exhibit quantum phase transitions [84]. Since the physics of
Abelian gauge fields represented by half-integer spins are
sometimes related to quantum field theories at θ ¼ π [60],
where θ is the topological angle, our numerical method also
promises to increase our knowledge of quantum field
theories with nontrivial topologies. Possible future exten-
sions include gauge fields with larger spin representation
and non-Abelian gauge fields as well. Our methods can be

FIG. 3. Clockwise from top left: (i) and (ii) number of
configurations versus Gauss law sector index

P
x ½Gx þ 2� · 4x

(not all indices correspond to actual sectors) for 50000 equili-
brated configurations. Two sectors emerge at large β: Gx ¼ 0 and
Gx ¼ ð−1Þx. (iii) The probability distribution of ψ̄ψ , with peaks
from the two emergent Gauss’ law sectors, indicating that the
algorithm efficiently samples all sectors. (iv) The autocorrelation
functions for different operators.

FIG. 4. Finite temperature data for Uð1Þ theory in 1þ 1D. The
dotted lines show the χEE, which is the susceptibility correspond-
ing to E. This value rapidly converges to 0.125. On the other
hand, the dashed lines trace the χCDW which display more finite
size effects. Thermal behavior of both observables indicate that
the transition from low to high temperature is a smooth crossover.
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extended to gauge fields with larger spin representation,
and hopefully to non-Abelian gauge fields as well, to tackle
realistic interacting systems of increasing complexity in
particle and condensed matter physics.
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