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Stability and causality criteria in linear mode analysis: Stability means causality
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Causality and stability are fundamental requirements for the differential equations describing predictable
relativistic many-body systems. In this work, we investigate the stability and causality criteria in linear
mode analysis. We discuss the updated stability criterion in 3 + 1-dimensional systems and introduce the
improved sufficient criterion for causality. Our findings clearly demonstrate that stability implies causality
in linear mode analysis. Furthermore, based on the theorems present in this work, we conclude that if
updated stability criterion and improved causality criterion are fulfilled in one inertial frame of reference

(IFR), they hold for all IFR.
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Introduction. In modern physics, the space-time evolution
of predictable relativistic many-body systems is typically
described using differential equations. These differential
equations must adhere to the principle of causality as
required by the theory of relativity [1]. Causality means
that signals or information cannot propagate faster than
the speed of light. While the physical interpretation of
causality is well understood, the establishment of well-
defined criteria for causality in various relativistic systems
is still rarely discussed. In the context of quantum field
theory, it translates into the requirement that the commu-
tators of local operators vanish outside the light cone [2].
For many macroscopic relativistic many-body systems, it
is still challenging to derive the general sufficient and
necessary criteria for causality, based on our current
understanding (also see Refs. [3-5] and the references
therein, for recent developments for the causality criteria
in relativistic hydrodynamics).

Another essential prerequisite is stability, characterized
by minor perturbations in a state gradually diminishing over
time. Typically, one can find solutions to the differential
equations near equilibrium or eigenstates. Stability ensures
that perturbations near equilibrium or eigenstates return to
their respective states. Noteworthy examples for stability
include circular orbits in the classical central force problem
[6], particular solutions in general relativity [7], equilibrium
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states in thermodynamics [8], and quantum states in
quantum mechanics [9,10], among others.

Analyzing stability and causality helps determine the
physical viability of a theory and provides additional
constraints on its parameters. One famous example is
relativistic hydrodynamics. The conventional relativistic
hydrodynamics up to the first order in the gradient expan-
sion is found to be acausal and unstable [11]. It has,
therefore, been extended to second-order formalisms such
as the Miiller-Israel-Stewart (MIS) theory [12], Baier-
Romatschke-Son-Starinets-Stephanov [13], and Denicol-
Niemi-Molnar-Rischke theory [14]. In addition, a stable
and causal generalized first-order formalism, known as the
Bemfica-Disconzi-Noronha-Kovtun theory has been estab-
lished [15,16]. Comprehensive discussions of the causality
and stability conditions for these theories can be found in
Refs. [3,17] and the references therein. Moreover, recent
interest has emerged in the stability and causality of
effective field theory for hydrodynamics [18].

Physically, causality and stability are intertwined.
Causality also implies that all physical observables must
reside within the light cone. Assume that there exists a
stable mode in one inertial frame of reference (IFR), in
which perturbation decays when ¢ — #, > 0 with 7, being
initial time. If the perturbation propagates out of the light
cone, we will observe that ¢ — 7, < 0 in another IFR due to
a Lorentz transformation. This means that the perturbation
grows with time in the second IFR. Therefore, it is
concluded that acausality leads to an unstable mode
[19]. The above argument reveals the connection between
acausality and unstable modes; the relationship between
causality and stability is worth being discussed deeply.
Although the causality and stability conditions overlap in
some theories [20], the criteria for causality and stability
appear significantly different and seemingly independent.
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A natural question arises as to how we can establish a
connection between the stability and causality criteria.

Because of the complexity involved, analyzing the
causality and stability of complete differential equations
can be challenging. One common approach is to employ
linear mode analysis. Despite the significant progress made
in recent works [3,19] regarding stability-causality rela-
tions, it remains unclear how to deduce these remarkable
findings directly from the basic stability and causality
criteria in linear mode analysis.

Let us start the story from a general overview of linear
mode analysis. Following that, we discuss the updated
stability criteria and introduce improved causality criteria.
Finally, we uncover the connection between stability and
causality in linear mode analysis based on our findings.

Linear mode analysis and conventional causality and
stability criteria. Linear mode analysis is a widely used
method for investigating the stability and causality of
differential equations. Here, we take the relativistic hydro-
dynamics as an illustrative example to introduce the basic
idea for linear mode analysis. The main differential
equations for relativistic hydrodynamics are the energy-
momentum and current conservation equations, expanded
in the gradient expansion. In the linear mode analysis, one
considers the perturbations of independent macroscopic
variables within the system, e.g., energy density de, number
density dp, etc., near the equilibrium. Generally, the hydro-
dynamic conservation equations for n independent pertur-
bations, ¢(t,X) = (Se,p, ...)T, on top of the irrotational
equilibrium state can be formulated as linear partial differ-
ential equations [11],

0,0(1,X) + M(=id)p(t,X) = 0, (1)

where matrix M(—i0) is a polynomial of the space deriva-

tive 0;, M(=id) = S M(*"70; 0;,...0; with N >0
i1siseeni

)

matrix. For simplicity, plane-wave-type perturbations are

often adopted in the linear mode analysis,

being a finite integer and M being a constant n X n

@ = poei ik @o = const. (2)

Subsequently, the nonzero solutions to the differential
equations (1) exist if and only if

0 = Pw. k) = detjw + iM(k)]. (3)

-

The eigenvalues of —iM(k) yield the dispersion relations,

-

denoted as w; = w;(k), i=1,2,...,n. Naturally, the

dispersion relations should be constrained by physical
requirements:
(i) Stability: All perturbations |¢(0,X)| cannot grow
exponentially with time. It gives the conventional
stability criterion

Imw <0, for keR3. (4)

(i) Causality: The influence of ¢(0,X) propagates no
faster than the speed of light. A widely accepted
asymptotic causality criterion is [21]

|k|>+o00

R - -
lim {' ;f"' < 1. |o/klis bounded}, keR®.
(5)

Here, we define the vector norm |V| = (320, V,;Vi)'/? for
any complex vector V = (Vy,V,,...,V;) and adopt nota-

-

tion w = w;(k), i = 1,2, ..., n for brevity moving forward.
The causality and stability criteria mentioned above are
intuitive, but they are not flawless.

(i) A practical challenge arises: the conventional cau-
sality and stability criteria (4) and (5) depend on IFR.
Commonly, the causality and stability conditions are
first derived from the criteria (4) and (5) in the rest
frame. Then, the verification of these criteria in other
IFR follows. However, this process of examining
conditions across different frames is frequently
burdensome.

(i) A concern arises: the conventional causality cri-
terion (5) proves to be inadequate in guaranteeing
causality [22].

(iii)) A question arises: does stability imply causality?
Furthermore, what constitutes the relationship be-
tween the stability and the causality criteria?

The aim of this work is to provide improved causality
criteria, simplify the steps for Lorentz transformation,
bridge the gap between stability and causality criteria,
and reveal the profound stability-causality relations. We
propose an improved sufficient criterion for causality. This,
combined with new insights into the covariance of the
stability and causality criteria, allows for the immediate
derivation of significant stability-causality relations in linear
mode analysis. Before further discussion, we emphasize that
in the current study we concentrate on the systems with
well-defined inertial frames. When the system is far from
equilibrium or incorporates certain quantum effects [23], the
local rest frames may become ill defined and the following
criteria may be inapplicable.

Updated stability criterion for a 3+ 1-dimensional
relativistic system. The updated stability criterion for a
3 4 I-dimensional relativistic system is
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Imw < |Imk|, for ke C3. (6)

The inequality (6) is introduced within a 1 4 1-dimensional
system by imposing the causality on the retarded two-point
function in stable systems, as proposed in Ref. [5], and is
subsequently proved as the necessary condition for stability
across all IFR [24].

The inequality (6) can be proven by employing a
contradiction approach. Assume that Im@ > [Imk| holds

true for a specific l_é in one IFR, denoted as K, even while
maintaining system stability. We perform a special Lorentz
transformation from frame K to another IFR K’, charac-
terized by a velocity v = (Im 12) /(Imw) relative to K. In
frame K’, as (o', k)T = A(?) - (0, k)T with A(7) being the
Lorentz transformation matrix, we observe that Im /? =0
and Imw’ = y~'Imw > 0 with y being Lorentz factor. This
implies the existence of an unstable mode, which violates
the stability requirement (4), within the frame K’. This
indicates that the assumption Im@ > |Im l:| made in any
IFR, can render the system unstable.

Furthermore, the subsequent theorem significantly
streamlines the intricate calculations associated with trans-
formations between distinct IFR in linear mode analysis.

Theorem 1. The stability criterion (6) holds true across
all TFR if it is satisfied in a single IFR.

Proof. It can also be proven by employing a contra-
diction approach. Assume that Im@’ < |[Imk’| holds in a
IFR K'. Let us suppose that this inequality is violated in
another IFR K", i.e., there exists k" € C3 within frame K”
for which Im@” > |Im l?”|. By the Lorentz transformation,
(0", KT = A7) - (&, k)T where 7 represents the veloc-
ity of frame K” relative to K’, we find

Ime/? = ImK? = [Ime”|> = Imk’? >0, (7)

and Ime’ = y(Im@” — 7-Imk”) > 0. Thus, we arrive at

Imaw' > |Im k'|, which contradicts the original assumption.
It means that frame K” does not exist. Therefore, the
inequality (6) holds across all IFR. [

Theorem 1 can also be intuitively comprehended through
a geometric lens. Specifically, the vector Im(w, k) does not
lay inside the future light cone, as discussed in Ref. [24].

Improved sufficient criterion for causality. Drawing inspi-
ration from the stability criterion (6), we provide a new
sufficient criterion for causality based on the theorem below,

Theorem 2. Suppose that the initial data ¢(0,X) for
differential equations (1) is smooth with respect to X, and
the volume of the support of ¢(0,X) is both finite and
nonvanishing. If two constants R > 0 and b € R exist such
that

Imw < [Imk| + b, for k| > R, (8)

then the influence of the initial data propagates with
subluminal speed.

Before proving the aforementioned theorem, we intend
to present a simplified equivalent version of criterion (8),
denoted as follows: If condition (8) is fulfilled, then there
exists an additional real constant b’ > b such that

Imo < [Imk| + b/, for ke C3. 9)

Let us deduce the inequality (9) from inequality (8). We

notice that the @ = a)(lz) must be finite for any finite |I;|
This is because the dispersion relation from Eq. (3),

represented by P(w, k) = " + Sl a, (k)™ = 0 with
a,, (k) being a polynomial of k, will not yield an infinite e
for finite . Consequently, there exists a sufficiently large
positive constant b’ such that 5’ > b and Imw < |Im 13| +0

for |k| < R. Here we have implicitly assumed that the
perturbed equations can be written as the form (1), which
has already ruled out some acausal equations, e.g., the
Benjamin-Bona-Mahony equation [22]. Now, let us direct
our attention toward proving the causality criterion (8) with
the help of its simplified equivalent version (9).

Proof. Suppose that the initial data ¢(0, X), possessing
finite volume, are enclosed within the closed ball centered
at X = 0 and having a radius of L > 0. By employing the
general solution of (1), we can express ¢(z, X) with 7 > 0 as
follows:

= d’k ikx ,~M&) > (0 T
(p(t, x) = . We e 40((), k), (10)

where (1, k) = [ dxe~*¥p(t, %) represents the Fourier
transformation of ¢(¢, X). In this case, the causality means
the perturbation ¢(¢,X) cannot persist beyond the region
|X| > L + ct with any finite 7 > 0, where ¢ = 1 is the speed
of light [1]. Hence, our task is to demonstrate that ¢(z,X) =
0 within the region |X| > L + ¢ with any finite > 0, given
that the dispersion relations adhere to the inequality (8).
The key lies in employing the following two inequalities:

||e—M(k)rH < %(1 + |]'<'|N(n—1)>e[/1(?)+e]t’ (11)
€

- T ) L|Im#|
90001 S e (12)

where /1(1;) = max,-{Ima)i(/z)}, €€(0,1), and a,, a, are
independent of 7, ¢, and k. Here, the norm [| - || is the spectral
norm of matrix [25]. The inequality (12) can be obtained by
performing integration by parts N(n—1)+4 times in

P(t.k) = fd3xe‘”;'7“(p(t, ¥) [26]. Proof of inequality (11)
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utilizes the Cauchy integral formula for matrices [27], and
the details can be found in the Supplemental Material [28].

Assisted by these two inequalities, we estimate the
integral (10) for |X| > L + #, employing a method akin
to the proof outlined in Theorem 3.1 of Ref. [26]. Upon the
fulfillment of the inequality (8) or its simplified equivalent
version (9), we have A(k) < |Imk| + b'. Given that the
integrand in (10) is an entire analytic function, we change

the path k — k + ir¥ and apply Cauchy’s theorem,

lo(2,%)| =

/ & kei(iéwz)-ze—M(i{’er)z(?)(O, k+ ir¥)
R3
o e—r|f€\(\fc\—t—L)+(b’+e)t -0, (13)

as r —» +oo, where we have used (11), (12), and
the inequality |e=M®3(0, k)| < [|e™M®|| - 5(0, k)| [25].
Hence, for any given finite # > 0, we deduce ¢(t, X) = 0 for
|X| > L + 7 in accordance with (13), thereby affirming that
the perturbation signal propagates at a speed no greater than
that of light. [

Analogous to the stability criterion, the subsequent
theorem facilitates the extension of the causality criterion
(8) or (9) from one IFR to all IFR.

Theorem 3. The causality criterion (8) or (9) holds true
across all IFR if it is fulfilled in a single IFR.

Proof. We prove it by employing a contradiction
approach again. Let us focus on the inequality (9).
Suppose, by contradiction, that (9) holds in a IFR K,
but is violated in another IFR K’, where K’ moves with a
velocity ¥ relative to K. Thus for any positive real constant

b’ > 0, there exists a k' € C3 such that Im’ > |Imk| + b’
in frame K'. Taking Lorentz transformation, we obtain
Imo > |[Imk| + yb'(1 — ||), which contradicts (9) within
frame K. Therefore, the frame K’ does not exist. This
completes the proof. m

In practice, one can verify the causality condition by
taking R — oo in inequality (8). In large |k| limit, the
typical dispersion relations exhibit behavior such as @ «
To k4 O(K]°) or @« co(k- k)2 + O(|k|°), where ¢,
and 7 are real constants satisfying |c|, || € [0, 1]. In this
scenario, the sufficient criterion (8) holds, ensuring that the
system maintains causality.

The new improved sufficient causality criterion (8) or (9)
is more stringent and preferable compared to the conven-
tional insufficient inequality (5). We show that the conven-
tional criterion (5) is automatically fulfilled when the
dispersion relations obey the inequality (8) in the
Supplemental Material [28]. However, the inequality (8)
cannot be derived from (5). For example, consider the
dispersion relation @ = k(1 + i)/2, which indeed satisfies
the inequality (5), but does not obey the condition (8).
This specific case has been demonstrated to be acausal
according to Theorem 2.7 in Ref. [26].

Im |

>
Im w

0 b

FIG. 1. Illustration for stability and causality criteria.

The updated stability criterion (6) and improved cau-
sality criterion (8) or (9) offer a straightforward way to
reveal the profound relations between stability and causal-
ity in linear mode analysis. Consequently, we derive two
corresponding conclusions.

Stability in all IFR means causality. To illustrate the
relationship between the stability and causality, we depict
the regions that satisfy the stability criterion (6) and
causality criterion (9) in Fig. 1. Evidently, the causality
criterion (9) is inherently satisfied when the stability
criterion (6) holds true in all IFR. However, the reverse
does not necessarily hold, e.g., as presented by the blue
region in Fig. 1. An example is the tachyon field equation
[29], whose dispersion relations fall inside the blue region
(also see Supplemental Material [28]). Therefore, stability
across all IFR implies causality, while causality does not
necessarily entail stability. To prevent any misinterpretation,
it is crucial to highlight that if the system has stability solely
in a specific IFR while being unstable in others, the presence
of stability alone does not guarantee causality. The same
conclusion has also been substantiated in Refs. [3,19]
through different approaches (also see a preliminary dis-
cussion in Ref. [20] written by Pu and co-workers).

This finding is compatible with another significant
observation in Ref. [4] referred to as “thermodynamic
stability implies causality.” The conditions for thermody-
namic stability delineated as (i)—(iii) in Ref. [4] maintain
Lorentz invariance. Clearly, if the thermodynamic stability
holds true in a particular IFR, it holds in any IFR.

Stability and causality in one IFR implies stability and
causality across all IFR. The subsequent theorem con-
cerning stability-causality assessment across various
frames assists in mitigating the challenge in linear mode
analysis, where one is required to examine stability and
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causality criteria in multiple frames. Similar conclusions
have also been reported in Refs. [3,19], relying on the
premise of strong hyperbolicity or causality in all IFR.

Theorem 4. If the system described by differential
equation (1) exhibits stability and causality in one IFR,
then it is stable and causal in all IFR.

Proof. 1f differential equation (1) is stable and causal in a
particular IFR, then it follows that Im @ < |Imk| within this
frame (see Theorem 2 in Ref. [24] for the 1 4+ 1-dimensional
case and the Supplemental Material [28] for the 3 + 1-
dimensional case). Consequently, combining Theorems 1-3
presented in this work completes the proof. [

Theorem 4 provides a practical way for evaluating
stability and causality across all IFR. Initially, one selects
a suitable IFR, e.g., the rest frame in hydrodynamics. One
can derive the stability condition by analyzing conventional
stability criterion (4) with the Routh-Hurwitz criterion [16],
which is often more straightforward than directly assessing
the stability criterion (6). Subsequently, the causality con-
dition can be verified using the causality criterion (8) as

|%| — o0. To illustrate this point, we provide an example
concerning the stability and causality of MIS theory with
bulk viscous pressure only, presented in the Supplemental
Material [28]. Interestingly, the calculations become
straightforward in isotropic systems by applying the theo-
rem discussed in the coming paragraph.

Application: Asymptotic criterion for an isotropic system.
Given that numerous discussions revolve around causality
and stability within isotropic systems, such as the case of
conventional relativistic hydrodynamics in the rest frame, it
is fitting for us to examine the stability and causality
conditions tailored for isotropic systems, serving as a
practical application. In an isotropic system, a simple
asymptotic criterion, as presented in the following theorem,
becomes a necessary condition for stability and a sufficient
condition for causality across all TFR.

Theorem 5. Considering k = kfi where k € C, i € C? and
i - i = 1. If the nonzero dispersion relations obtained from
Eq. (3) are fi independent and satisfy inequality (6), then
there exist only three asymptotic behaviors at k — oo,

0):C1k+d1 _~_O(|k|a)’ (14)
® = Czk—Zm—l + dzk—Zm—2 + O(|k|a—2m—2)’ (15)

w = c3k72" + O(|k|*=2m), (16)

where a <0, m=0,1,2,..., and ¢;, d; are constants
obeying ¢; €[—1,1], Imc, =0, Imc; <0, Imd;, <O0.

The proof of the above theorem follows the asymptotic
analysis in Ref. [30] and in the Supplemental Material [28].
We emphasize that the three dispersion relations (14)—(16)
mentioned above are necessary conditions for stability. If the
asymptotic behaviors of an isotropic system do not adhere to
these conditions, it might be causal but must be unstable.
Interestingly, the three dispersion relations (14)-(16) satisfy
the conventional causality criterion (5). This observation
helps explain why the conventional causality criterion (5)
has been considered a necessary condition for a covariantly
stable and causal isotropic system for a long time.

Summary. In this work we have investigated the updated
stability criterion and improved causality criterion for the
3 + 1-dimensional relativistic system across all IFR.
Notably, our findings indicate that the previously widely
used causality criterion (5) needs to be substituted with the
improved asymptotic criterion (8) or (9). Based on
Theorems 1-3, we reveal the underlying connection
between stability and causality in linear mode analysis.
Stability in all IFR implies causality, while causality alone
does not necessarily require stability. Furthermore, if a
system is stable and causal in one IFR, stability and
causality holds in all IFR. The findings alleviate the
challenge of linear mode analysis, which involves verify-
ing the stability and causality conditions across various
frames. As an application, we also study the linear stability
and causality of the 3 + 1-dimensional isotropic systems
and derive the new criterion (14)—(16) that are necessary
for stability and sufficient for causality in all IFR. Finally,
it is important to emphasize that our theorems are model-
independent and can be applied to other relativistic
systems beyond relativistic hydrodynamics.

Note added.—Recently, we were informed of Ref. [31]
which works on a similar topic and appeared on arXiv on
the same day.
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