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We present a simulation strategy for the real-time dynamics of quantum fields, inspired by reinforcement
learning. It builds on the complex Langevin approach, which it amends with system-specific prior
information, a necessary prerequisite to overcome this exceptionally severe sign problem. The optimization
process underlying our machine-learning approach is made possible by deploying inherently stable solvers
of the complex Langevin stochastic process and a novel optimality criterion derived from insight into so-
called boundary terms. This conceptual and technical progress allows us to both significantly extend the
range of real-time simulations in 1þ 1d scalar field theory beyond the state of the art and to avoid
discretization artifacts that plagued previous real-time field theory simulations. Limitations of and
promising future directions are discussed.
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Introduction. What unites many of the pressing open
questions in modern physics, irrespective of whether they
relate to eV- (condensed matter), MeV- (nuclear), or GeV-
(particle physics) energy scales, is the need to access the
dynamics of strongly correlated quantum many-body
systems in Minkowski time. Concretely, as, e.g., outlined
in the recent Snowmass community review [1,2], an
ab initio understanding of transport properties of nuclear
matter at high temperature and density, as well as the
scattering of showers of high-energy partons still remain
out of reach of state-of-the-art analytic and numerical
Monte Carlo methods. First principles insight into real-
time transport of nonrelativistic fermions [3] and their
interaction with gauge fields is a key puzzle piece in
understanding high-temperature superconductivity (e.g., in
the Hubbard model [4]). Fission and fusion dynamics [5],
too, remain currently out of reach of fully ab initio field-
theoretic approaches, requiring model input.
Vital ab initio insight into the static (thermodynamic)

properties of strongly correlated many-body systems has
been achieved in the past through Monte Carlo simulations
of Feynman’s path integral [6]. These numerical techniques
rely on analytic continuation to an unphysical Euclidean
time. In turn, the extraction of relevant real-time dynamics
becomes an ill-posed inverse problem [7], which severely
affects the accurate determination of central quantities of

interest: from transport coefficients [8,9] to in-medium
decay rates [10,11] to vacuum parton distribution functions
[12,13]. Developing a direct simulation approach in
Minkowski time is thus called for.
Direct simulations of real-time dynamics suffer from the

so-called sign problem [14,15]. Feynman’s path integral is
formulated as a sum over field configurations weighted
by a complex phase. A minute signal emerges from the
sum of a vast number of almost canceling phases, over-
whelming otherwise efficient Markov-chain sampling
based approaches. Some sign problems have been proven
[16] to belong to the class of nondeterministic-polynomial-
hard computational problems, which entails that no generic
solution method in polynomial time exists on a classical
computer. Various approaches have been proposed to tackle
the sign problem, such as reweighting (RW), extrapolation
[17–20], density of states (DSs) [21–23], tensor networks
(TNs) [24,25], Lefschetz thimbles (LTs) [26–29], and
complex Langevin (CL) [30,31]. They all propose a
“system-agnostic” recipe to the estimation of observables
in the presence of a sign problem. Without a system-
specific component, each of these methods are destined to
eventually fail, be it that their computational cost scales
unfavorably when applied to systems in realistic volumes in
3þ 1 dimensions (RW, TNs, DSs, LTs) or they suffer from
convergence to an incorrect solution (CL).
Quantum computing offers a different angle of attack to

the sign problem [32], as in principle it can compute the
unitary time evolution of a spin system. The mapping of a
realistic field theory to spin systems remains an open
challenge, especially if gauge degrees of freedom are
involved [2]. The necessity to derive a Hamiltonian for
implementation on a quantum computer, to date, requires
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truncation of the continuous state space and in the case of
photons and gluons fixing to a particular gauge. It is
acknowledged in the quantum computing community (see,
e.g., [33,34]) that, with near-future noisy intermediate scale
devices, many physical systems of interest remain too
complex to be modeled with quantum circuits.
Therefore, progress in the short term requires innovation

among “system-specific” real-time simulation techniques
on classical computers.

Real-time complex Langevin. Here we build upon the
complex Langevin approach, which is one of the
complexification strategies to the sign problem, with
similarities, but important differences to contour defor-
mations (LTs) (see discussion in [35,36]). In conventional
stochastic quantization [37,38] one proves that the expect-
ation values of a Euclidean quantum field theory
hOiðτÞ ¼ R

DϕEOðϕEÞ exp½−SEðϕEÞ� can be reproduced
by simulating a stochastic process in an additional
Langevin time τL direction, using the Langevin equation
∂τLϕðτL; τÞ ¼ −δSE=δϕE þ ηðτL; τÞ with Gaussian noise
hηðτL; τÞηðτ0L; τ0Þi ¼ 2δðτL − τ0LÞδðτ − τ0Þ.
Quantum field theory with a mixed initial density matrix

in Minkowski time constitutes an initial value problem and
is formulated on the Schwinger-Keldysh contour CSK with a
forward and backward branch, housing the fields ϕ1 and
ϕ2, respectively,

hOiðt;xÞ ¼
Z

d½ϕðiÞ
1 ;ϕðiÞ

2 �ρðϕðiÞ
1 ;ϕðiÞ

2 Þ
Z
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¼ρβ
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DϕEe−SE
Z
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ϕðfÞ
E

DϕOeiSCSK ¼
Z
SSKt

DϕOeiSCSKt : ð2Þ

In a thermal system at T ¼ 1=β, we have ρβ ∼ exp½−βH�
and sampling over initial conditions can be written as a path
integral on a compact imaginary time domain of length β,
connecting the real-time branches as closed contour CSKt.
We parametrize CSKt in the complex time plane with the real
contour parameter γ: tðγÞ. Cauchy’s theorem allows us to
deform the integration contour and we choose the con-
vention sketched in Fig. 1, where the downward portion of
CSKt is divided into two pieces at t ¼ tmax and t ¼ t0. On
CSKt, Eq. (2) is highly oscillatory and requires regulariza-
tion, which is implemented conventionally as a regulator
term in SCSK or as a tilt of the contour into the complex plane
(see, e.g., [39]).
The naive CL method proposes to complexify the field

degree of freedom (d.o.f.) φ ¼ ϕR þ iϕI and to carry out
the following coupled stochastic process [38] for ϕR and ϕI
in Langevin time τL:

dφðτL; xÞ
dτL

¼ i
δS½φ�

δφðτL; xÞ
þ ηðτL; xÞ; ð3Þ

estimating observables hOi from the ensemble average
over analytically continued observables hOi½φ�. While
significant progress has been made in application of CL
in various model systems [40,41] and even to the theory of
strong interactions at finite Baryon-chemical potential
[42–46], the simulation of real-time dynamics so far has
been hampered by various hurdles: divergencies (run-
aways) and convergence to incorrect solutions as the
real-time extent of the contour is increased [47–49].
The runaway problem leads to a breakdown of the

numerical solver for the Langevin equation when the
process explores regions of the complexified manifold
far from the origin. It has been shown in Ref. [39], that
it can also be understood as a consequence of the stiffness
of the nonlinear CL dynamics. This practical problem is
solved by either using an adaptive step size control [50] or
through the use of inherently stable implicit discretization
schemes, such as the Euler-Maruyama method, for Eq. (3)
[39]. Inherent regularization provided by the implicit
scheme also makes it possible to directly simulate with
CL on the real-time axis of the CSKt contour, without tilt.
Important insight into the convergence properties of CL

have been gained in [51,52] through analysis of the relation
between the real probability distribution P½ϕR;ϕI� sampled
by Eq. (3) and the complex Feynman weights exp½iS� in
Eq. (2). Connection is made via the real Fokker-Planck
operator L and its complex generalization L. For CL to
correctly reproduce expectation values, the sampled dis-
tribution P½ϕR;ϕI� must fall off sufficiently fast in ϕI, to
enable integration by parts. At the same time, the spectrum
of L must have negative real parts. Based on this insight,
criteria for correct convergence have been developed:
boundary terms [53,54] and two improvements to the
complex Langevin method have been proposed: gauge
cooling [55], where gauge freedom is exploited to keep the
d.o.f. close to the original real-valued manifold, and
dynamic stabilization [56], which introduces an additional
drift term into Eq. (3). The drawback of the latter is that the
new drift term is nonholomorphic and thus at odds with the

FIG. 1. Geometry of discretized (dþ 1)-dimensional scalar
field theory on the Schwinger-Keldysh contour. Here we use
Nt ¼ 32, Nτ ¼ 4, and Nx ¼ 8 and atm ¼ 1=10; asm ¼ 2=10.
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proof of convergence of the CL and it might introduce a
bias in the results.
It is long known [38] that the real Langevin method can

be modified by a kernel K, without changing its stationary
distribution. This freedom has been exploited to improve
autocorrelation in Euclidean theories [57]. In the complex
Langevin method, one may introduce a complex kernel
K ¼ K½φ; τL� [58–60]. K must be a holomorphic function
and be factorizable as K ¼ HTH, but can otherwise be an
arbitrary (matrix) function of the fields. It can encode
transformations [61] such as in coordinates, contour defor-
mations, or redefinition of variables. The general kerneled
CL evolution equation for discretized spatial coordinates
φðτL; xjÞ ¼ φj

τL reads

dφj

dτL
¼

�
iKjkðφÞ

∂SðφÞ
∂φk

τL

þ ∂KjkðφÞ
∂φk

τL

�
þHjkðφÞηk: ð4Þ

In the past, a few system-specific transformations have
been found that softened (see, e.g., [62]) or even avoided
(see, e.g., [59–61]) the sign problem in model systems (see
also reformulation strategies, e.g., [63–65]). In real-time
gauge theory, kernels have recently been explored in
[66,67]. For realistic systems, success has been limited
and no systematic recipe is known to extend results from
simpler systems. This study instead uses machine-learning
(ML) techniques to systematically learn optimal kernels,
based on system-specific prior information.

Machine-learningassisted kerneledLangevin.Our machine-
learning strategy for kerneled Langevin is inspired by
reinforcement learning (RL) [68]. RL underlies recent
advances in diverse fields: beating computer games or
steering autonomous vehicles. It is based on an agent,
endowed with a set of limited actions, placed in a
predefined environment. Success of the agent is encoded
in a cost/policy functional defined from environment
variables and the internal state of the agent. A mathematical
representation of the actions of the agent allows the use of
differential programming techniques [69] to evaluate the
gradients of the cost functional with respect to those
actions. Challenges are the robust detection of failure
modes of the agent and the trade-off between generality
of the actions of the agent and learning efficiency.
Specifying to real-time simulations, we define our agent

as the controller of the kernel K, which allows it to explore
the abstract space of stationary distributions of the stochas-
tic process Eq. (4). A crucial ingredient is our use of
system-specific prior information to define the cost func-
tional p½K�, used to assess the success of CL convergence.
As was shown, e.g., in [36] the failure of convergence of
CL on the Schwinger-Keldysh (SK) contour occurs glob-
ally, i.e., it affects correlators on all branches. In a thermal
setting, time translation invariance requires equal-time
correlation functions to be constant on the whole complex

time contour. Conventional simulations in the Euclidean
domain in addition give access to their values, as well as to
the Euclidean unequal-time correlators. Deviations from
this prior knowledge are easily assessed within the CL
simulations. To test for successful convergence, we deploy
p½K� ¼ fPijðRehðφiÞ2i − hϕ2iHMCÞðCReÞ−1ij ðRehðφjÞ2i −
hϕ2iHMCÞ þ ðImhðφiÞ2iÞðCImÞ−1ij ðImhðφjÞ2iÞg, which con-
sists of two likelihood terms involving the covariance
matrices CRe=Im of the CL equal-time correlators
Re=Imhφ2i. The sum over i, j refers to all space-time
coordinates and expectation values denote the average over
τL. It thus assesses the constancy and agreement with
a priori known values. p½K�makes reference to expectation
values involving the fields φ and thus implicitly depends on
K. To obtain robust gradients with respect to the entries of
K, we must take derivatives over the whole stochastic
dynamics. While adjoint [70] and shadowing methods [71]
are promising to compute gradients, we find from CL
Lyapunov exponents [72] that the dynamics actually
becomes chaotic, degrading the performance of conven-
tional differential programming techniques.
Instead we use a low-cost optimization functional l½K�,

which provides gradients ∇K l½K� that significantly reduce
the values of the actual cost functional p½K�. We find that

l½K� ¼
Z

ddxdγIm½φðτL; γ;xÞ�2; ð5Þ

proposed in [73], offers the best performance in minimizing
p½K�, compared to earlier choices in [36]. The formulation
of l½K�, which leads to improved performance in locating
optimal kernels, is in alignment with the insight gained by
studying the improved correctness criterion in [74], as they
require quick decay of the distribution of fields in imagi-
nary directions. In general, using a low-cost functional will
drive K toward the optimum of p½K� only at intermediate
iteration steps. Hence our optimal K is taken at the smallest
overall p½K� achieved. Interestingly, minimizing our spe-
cific cost functional l½K� we found that it always decreases
the functional p½K�.
We restrict ourselves to the simplest type of a field- and

τL-independent kernel. Note that, even though the opti-
mization functional may contain nonholomorphic terms,
the kernel does not and thus Eq. (4) is compatible with the
proof for correct convergence. The potentially costly
Jacobian δK=δφ also does not need to be computed.

Numerical results. Let us apply our machine-learning
assisted complex Langevin approach to thermal scalar field
theory in 1þ 1 dimensions with m ¼ 1 and a quartic self-
coupling ðλ=4!Þϕ4 with λ ¼ 1 at βm ¼ 4=10, a benchmark
also used in [75]. The field is discretized on the SK contour
sketched in Fig. 1 with Nt ¼ 32 points along the real-time
branches each and Nτ ¼ 4 steps along the imaginary time
direction. The spatial dimension is resolved with Nx ¼ 8
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points. As lattice spacing we use asm ¼ 2=10 and a finer
atm ¼ 1=10, to avoid discretization artifacts from the
corners of the SK contour. The discretized action is
identical to the one of Ref. [75]. (The code is available
at [76].)
Using adaptive step size with maximum Langevin step

dτL ¼ 10−3, we simulate at a real-time extent of tmax ¼ 3.2,
which lies deep in the region where naive CL (K ¼ I) fails
to converge correctly, as shown by the gray triangles in
Fig. 2, denoting the real and imaginary part of the unequal
time, momentum zero correlator CðtÞ ¼ hφðt; p ¼
0Þφð0; p ¼ 0Þi. The failure manifests in the deviation of
Cð0Þ at K ¼ I from the value of the equal-time correlation
function FðγÞ ¼ hφðγ; p ¼ 0Þφðγ; p ¼ 0Þi at γ ¼ 0. Its
values are known from conventional hybrid Monte Carlo
(HMC) simulations and indicated by the black dashed line
[in 1þ 1d, Fð0Þ only carries a minute lattice spacing
dependence].
We parametrize a fully dense, constant, complex kernel

via H ¼ Aþ iB with real matrices A and B, each of which
have ½ð2Nt þ NτÞNx�2 entries. Learning of the optimal
kernel starts from the trivial choice H ¼ 1, i.e.,
K ¼ HTH ¼ 1. The resulting stiff dynamics is solved with
an implicit Euler-Maruyama integrator for which we use the
implementation in the DifferentialEquations.jl
library [77] of the Julia language. After a Langevin time of
τoptL ¼ 5 we compute the gradient of the discrete Eq. (5)
using the automatic differentiation capability of Julia. Based
on the Adam algorithm [78] with learning rate rl ¼ 10−3 the
entries of A and B are iteratively updated reducing the initial
p½K ¼ 1� ≈ 1200 to p½Kopt� ≈ 7.2. Observables for Kopt are
obtained from three streams with τobsL ¼ 5000.
The central result of our study, the unequal-time corre-

lation functionCðtÞ from optimal learned kernels in 1þ 1d,
is shown as blue crosses Re½C� and green stars Im½C� in
Fig. 2. We reach a real-time extent at tmax ¼ 3.2 which is

twice that previously achieved in the literature using
contour deformations [75]. Note that our simulation results
for Re½C�ð0Þ and Im½C�ð0Þ both agree with Fð0Þ from HMC
simulations, given by given by the dashed black lines.
We emphasize that the advantageous scaling properties,

which our approach inherits from the CL, enable us to
deploy a finer grid here. Implicit methods do not pose a
problem, as highly optimized implementations of solvers
are readily available. Since we restrict ourselves to field-
independent kernels so far, we avoid the need for Jacobians,
whose computational cost is a central limiting factor for
contour deformation methods.
We showed in [36] that the equal-time correlator FðγÞ is

more difficult to reproduce in the CL method than the
unequal-time correlator CðtÞ and thus plot the former
against the contour parameter γ in Fig. 3. Note that both
Re½F�ðγÞ and Im½F�ðγÞ, while showing minute oscillations,
agree with the a priori known values (gray dashed lines).
The optimal kernel CL results are in stark contrast to the
naive CL (K ¼ I), for which FðγÞ (gray triangles, rhom-
buses) clearly deviates from the HMC simulation. This
crosscheck provides convincing support for the correctness
of convergence.
Further support for correct convergence is provided from

the absence of boundary terms, such as B1 (see [53,54]) for

FIG. 3. Re½F�ðγÞ and Im½F�ðγÞ in 1þ 1d scalar field theory for
the naive CL (gray triangle, rhombuses) and for optimal learned
kernels (blue crosses, green stars).

FIG. 2. Re½C� and Im½C� in 1þ 1d field theory from the naive
(gray triangle, stars) and optimal kernel CL (blue crosses, green
stars) with Nt ¼ 32. Result from contour deformation [75] as
black squares with Nt ¼ 8. The value of the correlator at t ¼ 0
from hybrid Monte Carlo simulations is given as gray solid line.

FIG. 4. Magnitude of the dominant boundary term B1, based on
the hϕ2i observable. Note the best fit power-law dependence on
ðdτmax

L Þ0.66 consistent with correct convergence.
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the hϕ2i observable. As shown in Fig. 4, B1 exhibits a
power-law dependence on dτL, consistent with vanishing
boundary terms in the continuum limit.
In the top row of Fig. 5 we plot the values of the optimal

learned kernel underlying Figs. 2 and 3. Color coding
resolves values jKoptj ≤ 0.4, sufficient for all but the
diagonal entries of Re½Kdiag

opt � ≈ 1.025. Each pixel corre-
sponds to a component of Kopt that connects two space-
time points, ordered such that, in each spatial slice xi
denoted by a gray arrow, the parameter γ traverses the full
contour CSKt. Re½Kopt� is dominated by the diagonal alone,
while Im½Kopt� shows a distinct banded structure in space
with diminishing amplitude farther away from the diagonal,
which represents the spatially nonlocal nature of the
transformation implemented by Kopt. In the two insets,
we highlight the behavior of the kernel in a single spatial
slice, where the corresponding sections of the SK contour
connected by the kernel entries are indicated by the gray
arrows. Similar to results in 0þ 1d, we find a characteristic
finite-difference-like behavior. Entries of opposite sign on
the sub- and supradiagonal accompany those on the
diagonal, indicating a Fourier filter.
Our ML approach is able to identify a much simpler

structure than what a naive extension of the free theory

kernel suggests (cf. [36]), a testament to the efficacy of the
learning strategy, which holds potential for analytic insight
into convergence restoring transformations.
While success of the ML approach is encouraging, it too

will fail at larger real-time extents. Establishing an exact
range of validity is work in progress. One reason is that we
only optimize based on the low-cost functional l½K� and not
directly on p½K�. The development of robust gradient
estimators for chaotic stochastic systems (see, e.g.,
NILSAS for the Lorenz system [72]) is called for.
Another reason is the thimble structure of the theory
(see also [79]). One d.o.f. models tell us that parameters
exist in which a field-dependent kernel is needed to capture
the physics of multiple contributing thimbles. In that case
the kernel can be systematically expanded via a rational
approximation involving φ, limiting computational cost.
Transfer learning between kernels of different expressivity
will be key to keep cost in check.
In summary, we have presented a machine-learning

approach to direct real-time simulations on the lattice, in
which system-specific prior information is incorporated into
the CL via iterative ML of an optimal field-independent
kernel. Using a novel low-cost functional for the compu-
tation of gradients for learning, we achieve efficient con-
vergence in 1þ 1d field theory to at least twice the real-time
extent previously accessible. Because of the efficiency of the
approach, we can access fine grids to avoid discretization
artifacts affecting previous studies. Work is ongoing to
extend the results to realistic ð3þ 1Þ dimensions and we
explore the inclusion of field-dependent kernels.

The code for this paper is publicly available from the
Zenodo repository [76].
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