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We search for the baryon and lepton number violating charm decays,D → pl, whereD is either aD0 or
a D̄0 and l is a muon or an electron, using a data sample of 921 fb−1 collected by the Belle detector at the
KEKB asymmetric energy eþe− collider. In the absence of significant signals, we set upper limits on the
branching fractions in the range ð5–8Þ × 10−7 at a 90% confidence level, depending on the decay mode.
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Baryon number violation (BNV) is one of the crucial
ingredients to create the matter-antimatter asymmetry as
observed in the Universe [1]. The known particles and
antiparticles and the interactions among them are described
by the Standard Model (SM). Several grand unified theo-
ries [2–6], supersymmetry and other SM extensions [7,8]
propose BNV processes of nucleons. In these models,
baryon (B) and lepton (L) numbers are explicitly violated
but the difference between these numbers is conserved i.e.,
ΔðB − LÞ ¼ 0. Several attempts [9–12] have been made to
search for the decays of the lightest baryon, namely the
proton, but no evidence for its decay has yet been found.
Searches for decays of heavy mesons to final states with

nonzero B values can provide an alternative probe for BNV
decays. Various non-SM models of proton decays can be
extended to predict possible decay mechanisms for D
decays. For example, analogous to proton decays [13],
the decays ofD0 → p̄lþ can be explained using leptoquark
couplings. Figure 1 shows possible Feynman diagrams for
D0 → p̄lþ decays, where the mediators are non-SM gauge
bosons. Decays of the D meson to final states containing a
proton probe BNV within the first two generations. The
branching fractions forD0 → p̄eþ are predicted to be of the
order of 10−39 [14].
The D → pl decays simultaneously violate B and L but

conserve (B − L). Further, leptoquarks have been proposed
to explain recent anomalies reported by different experi-
ments [15–20] and the D → pl search will provide
valuable input to the search for leptoquarks.
Experimentally, various BNV processes in D, B-meson,

and Λ decays were searched for by the CLEO [21],
BABAR [22], and CLAS [23] Collaborations, respectively,
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but no evidence for a signal was found. The BESIII
Collaboration has searched for D → pe decay modes
and set 90% confidence-level upper limits on the branching
fractions of BðD0 → p̄eþÞ < 1.2 × 10−6 and BðD0 →
pe−Þ < 2.2 × 10−6 [24], and these are currently the most
stringent limits. The large data sample collected by the
Belle experiment provides improved sensitivity for BNV
decays of charm mesons. We set limits for the D0 and D̄0

decays separately for the first time. In this paper, we report
a search for the D meson decay modes D0 → pl−,
D̄0 → pl−, D0 → p̄lþ, and D̄0 → p̄lþ, where l is e or μ,
using the data collected with the Belle detector at the
KEKB asymmetric-energy eþe− collider [25,26] located at
the High Energy Accelerator Research Organization in
Japan. The data used in this analysis were collected at eþe−
center-of-mass (c.m.) energies at and 60 MeV below the
ϒ(4S) resonance, and at the ϒ(5S) resonance with inte-
grated luminosities of 711 fb−1, 89 fb−1, and 121 fb−1,
respectively. The total integrated luminosity is 921 fb−1.
Throughout this paper, charge conjugate modes are implic-
itly included, unless otherwise noted.
The Belle detector is a large solid-angle magnetic

spectrometer that consists of a silicon vertex detector
(SVD), a 50-layer central drift chamber (CDC), an array
of aerogel threshold Cherenkov counters (ACC), a barrel-
like arrangement of time-of-flight (TOF) scintillation
counters, and a CsI(Tl) crystal based electromagnetic
calorimeter (ECL); all are located inside a superconducting
solenoid coil that provides a 1.5 T magnetic field. An iron
flux-return yoke placed outside the coil is instrumented
with resistive plate chambers to detect K0

L mesons and
muons (KLM). A more detailed description of the detector
can be found in Ref. [27].
Monte Carlo (MC) simulation samples are used to

optimize the selection criteria, estimate the signal recon-
struction efficiencies, and identify and model the distribu-
tions of various sources of background. The signal MC
sample for each decay mode is generated using EvtGen [28]
where eþe− → qq̄ generated with PYTHIA [29] and
PHOTOS [30] takes into account final state radiations.
The produced particles are propagated with GEANT3 [31]
to simulate a detector response. The well-established

D0 → K−πþ decay mode is used for normalization to
measure the branching fractions of signal modes.
Reconstructed trajectories of charged particles (tracks)

are required to originate from the interaction point (IP) and
have a point of closest approach to the latter within 3.0 cm
along the eþ beam axis and 1.0 cm in the transverse plane.
These requirements remove tracks not originating from the
IP. Additionally, the tracks are required to have at least two
hits in the SVD. The final-state charged hadrons (pions,
kaons, and protons) are identified based on the number of
Cherenkov photons in the ACC, and TOF and dE=dx
measurements. All of this information is combined to form
pion, kaon, and proton likelihoods, Lπ , LK , and Lp,
respectively. The selection is made on the basis of like-
lihood ratios, Li=j ¼ Li=ðLi þ LjÞ, where i and j are π, K
or p. Protons are identified by requiring Lp=π > 0.6 and
Lp=K > 0.6 with an identification efficiency of 90% while
the probability of misidentifying a kaon or a pion as a
proton is 3%. Kaons and pions are selected by requiring
LK=π > 0.6 and Lπ=K > 0.6, respectively. The identifica-
tion efficiencies for kaons and pions are 95% and 94%,
respectively. The probability of misidentifying a pion
(kaon) as a kaon (pion) is 4% (5%).
The electromagnetic shower shape, EECL=p ratio, where

EECL is the energy deposition in the ECL and p is the
track momentum, and the position matching between track
and ECL cluster are utilized for electron identification,
in addition to the information used for charged hadron
identification excluding that from the TOF. All this infor-
mation is combined to form an electron likelihood ratio, Le
and the electrons are identified requiring Le > 0.9. To
recover the energy loss due to bremsstrahlung, we search
for photons in a cone of 50 mrad around the initial direction
of the electron momentum; if found, their momenta are
added to that of the electron. Muons are identified by using
the track penetration depth, hit distribution pattern in the
KLM, and matching quality. This information is combined
to form a muon likelihood Lμ. Muons are identified by
requiring a likelihood ratio of Lμ=ðLμ þ Lπ þ LKÞ > 0.9.
The electron (muon) identification efficiency for these
criteria is 93% (94%) with a probability of misidentifying
a pion as an electron (a muon) below 0.5% (4%). The kaon-
to-electron misidentification rate is negligible, while the
probability of identifying a kaon as a muon is similar to that
of identifying a pion as a muon. All the quoted identi-
fication efficiencies and misidentification probabilities are
averaged over the momenta of final-state particles.
Tracks with momentum greater than 0.6 GeV=c are used

to reconstruct D0 candidates in the K−πþ, pe−, p̄eþ, pμ−,
and p̄μþ final states. The invariant mass of a D0 candidate
is required to be in the range 1.8 < MD0 < 1.9 GeV=c2.
We reconstruct a D�þ candidate by combining the D0

candidate with a slow pion (πþs ). We require all the signal
D0 s to come from D�þ, where D0 and D̄0 flavors are

FIG. 1. Feynman diagrams of the decays D0 → p̄lþ with non-
SM gauge bosons (a) X and (b) Y.
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determined by the πs charge in D�þ → D0πþs . The mass
difference, ΔM ¼ MD�þ −MD0 , where MD�þ (MD0) is the
invariant mass of the D�þ (D0) candidate, is required to be
less than 0.158 GeV=c2. In order to improve the ΔM
resolution, the πþs is constrained to originate from the IP.
The momentum of the D�þ candidate in the c.m. frame is
required to be greater than 2.5 GeV=c to reduce BB̄ and
combinatorial backgrounds. Avertex fit is performed on the
selected D�þ candidates. After applying all the selection
criteria, a small fraction (0.4%) of the selected events have
more than one D�þ candidate. In an event with multiple
D�þ candidates, we select the one that has the lowest χ2

value associated with the D�þ vertex fit. The efficiency of
such candidate selection ranges from 85% to 94% depend-
ing on the decay mode and is 83% for the normaliza-
tion mode.
We study the background using simulated samples

corresponding to an integrated luminosity of about 4.5
times that of the Belle data sample. In the D̄0 → pe− and
D0 → p̄eþ modes, background from semileptonic D →
Keνe decay is found to peak in the ΔM signal region, while
for the D0 → pe− and D̄0 → p̄eþ decay modes, no such
peaking structure is observed. Peaking background in the
ΔM distribution of the D̄0 → pμ− and D0 → p̄μþ modes
arises from D → Kρ, K�π, KK, and Kμνμ decays. In
D0 → pμ−, a tiny peaking structure is observed from the
D → KK decay mode. The peaking structure in the
aforementioned modes is observed owing to the misiden-
tification of final-state particles. There is no peaking
structure in MD0 for any of the signal modes.
For the D0 → K−πþ normalization mode, small back-

ground contributions originate from the correct D0 candi-
date’s combination with a random πs as well as from partially
reconstructed D0 decays. The signal purity for D0 → K−πþ
is 95% in a region around theMD0 andΔM signal peaks that
contain 78% of the D0 candidates. We reconstruct over
1.7 million events with an efficiency of 13.5%.
Signal yields are extracted with extended maximum-

likelihood fits to the unbinnedMD0 andΔM distributions of
each decay mode. Separate probability density functions
(PDFs) are used for signal, peaking and combinatorial
backgrounds. For signal events, the PDF for the ΔM
distribution is parametrized by using the sum of four
Gaussians, while the MD0 PDF is modeled by the sum
of two Gaussians and one asymmetric Gaussian with
separate parameters for each decay mode. The core
Gaussian parameters for the D0 → K−πþ decay mode
are allowed to vary in the fit, while for the D0 → pl
decay modes, they are fixed to the values obtained from
simulated signal events calibrated with data; the calibration
is determined by comparing the shape parameters between
data and simulation for the D0 → K−πþ decay. All the
remaining shape parameters of signal PDF are fixed to
those obtained in the fit to simulated signal events.

The peaking background PDF in ΔM is modeled by the
sum of two asymmetric Gaussians for the D̄0 → pe− and
D0 → p̄eþ modes. The sum of the D → Kμνμ, D → Kρ
and D → K�π components is modeled by the sum of two
asymmetric Gaussians for the D̄0 → pμ− and D0 → p̄μþ
modes. The D → KK component is parametrized by the
sum of two Gaussians for the D0 → pμ− decay mode. The
background components in MD0 are modeled by a first-
order polynomial for all the decay modes. For the nor-
malization mode, the background from random πs inΔM is
parametrized by a threshold function, defined as

fðΔMÞ ¼ �
ΔM −mπ

�
ae−bðΔM−mπÞ; ð1Þ

where mπ is the known charged pion mass [32] and a, b
are the shape parameters. The background from partially
reconstructed D decays is parametrized by a Gaussian in
ΔM. The aforementioned two backgrounds are parame-
trized by a Gaussian function and a second-order poly-
nomial, respectively, in MD0 .
For the combinatorial background for each decay mode,

the PDF for ΔM is parametrized by the threshold function.
The combinatorial background PDF for MD0 is modeled
by a first- and second-order polynomial for the signal and
normalization decay mode, respectively. The parameters of
the combinatorial background PDF for signal modes are
fixed except for D0 → pe−, D̄0 → p̄eþ, D0 → pμ−, and
D̄0 → p̄μþ decay modes in which cases they are floated.
The parameters of the combinatorial background PDF for
the normalization mode, D0 → K−πþ, are floated. The fit
projections for the MD0 and ΔM distributions are shown in
Figs. 2–4 for the D0 → K−πþ, D → pe, and D → pμ
decay modes, respectively. The obtained signal yields are
listed in Table I.
The branching fractions (B) for D0 → pl decay modes

are measured using

BðD → plÞ ¼ Npl

NKπ

ϵKπ
ϵpl

B
�
D0 → K−πþ

�
; ð2Þ

FIG. 2. Fit projections for the MD0 (left) and ΔM (right)
distributions for the D0 → K−πþ normalization mode. The red
dotted curves show the fit function for the signal, the green
dashed curves show the fit function for the total background, and
the blue solid curves show the sum of the fit functions.
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where Npl (NKπ) and ϵpl (ϵKπ) are the number of D0

mesons and the efficiency for the signal (normalization)
mode, respectively. The obtained signal yields,
reconstruction efficiencies, upper limits on the signal yield
and branching fractions for D0 → pl decay modes are
summarized in Table I.
The statistical significance (S) of the signal yield

is evaluated using the likelihood ratio, S ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi−2 lnðL0=LmaxÞ
p

, where Lmax (L0) is the likelihood of
the nominal fit (null hypothesis). The signal significances
obtained for the D0 → pl decay modes are summarized in
Table I, after taking into account the systematic uncertain-
ties. In the absence of a significant signal, an upper limit is
calculated for each signal yield at 90% confidence level
using a frequentist technique [33]. We generate toy experi-
ments using the shape and background yield from the fitted
PDF and vary the input signal yield. For each input value,
we calculate the fraction of the ensemble that gives a fitted
signal yield less than or equal to what is obtained in the
data. The upper limit on the signal yield is given at
90% confidence level. The upper limit on the branching
fraction is calculated using Eq. (2) with Npl replaced

by NUL
pl . Systematic uncertainties are included in the upper

limit calculations by smearing the signal yield with the
systematic uncertainty. The resulting upper limits on the
signal yields and branching fractions are listed in Table I.
Table II summarizes the systematic uncertainties in

the measured branching fractions from various sources.

(a)

(b)

(c)

(d)

FIG. 3. Fit projections for the MD0 (left) and ΔM (right)
distributions for the (a) D0 → pe−, (b) D̄0 → pe−,
(c) D0 → p̄eþ, and (d) D̄0 → p̄eþ decay modes. The red dotted
curves show the fit function for the signal, the green dashed
curves show the fit function for the combinatorial background,
the cyan dashed-dotted curves show the fit function for the
peaking background, and the blue solid curves show the sum of
the fit functions.

(b)

(c)

(d)

(a)

FIG. 4. Fit projection for the MD0 (left) and ΔM (right)
distributions for the (a) D0 → pμ−, (b) D̄0 → pμ−,
(c) D0 → p̄μþ, and (d) D̄0 → p̄μþ decay modes. The red dotted
curves show the fit function for the signal, the green dashed
curves show the fit function for the combinatorial background,
the cyan dashed-dotted curves show the fit function for the
peaking background, and the blue solid curves show the sum of
the fit functions.

TABLE I. Reconstruction efficiency (ϵ), signal yield (NS),
signal significance (S), upper limit on the signal yield (NUL

pl ),
and branching fraction (B) at 90% confidence level for each
decay mode.

Decay mode ϵ (%) NS S (σ) NUL
pl B × 10−7

D0 → pe− 10.2 −6.4� 8.5 17.5 < 5.5
D̄0 → pe− 10.2 −18.4� 23.0 22.0 < 6.9
D0 → p̄eþ 09.7 − 4.7� 23.0 22.0 < 7.2
D̄0 → p̄eþ 09.6 7.1� 9.0 0.6 23.0 < 7.6
D0 → pμ− 10.7 11.0� 23.0 0.9 17.1 < 5.1
D̄0 → pμ− 10.7 −10.8� 27.0 21.8 < 6.5
D0 → p̄μþ 10.5 − 4.5� 14.0 21.1 < 6.3
D̄0 → p̄μþ 10.4 16.7� 8.8 1.6 21.4 < 6.5
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The uncertainty on the track-finding efficiency is obtained
using a control sample D�þ → D0πþs , D0 → πþπ−K0

S,
K0

S → πþπ− and is found to be 0.35% per track. For the
particle identification efficiencies, calibration factors are
obtained using D�þ →D0πþs ðD0 → K−πþÞ, γγ → ll, and
Λ → pπ− control samples for pion, leptons, and protons,
respectively, to account for the differences between data
and simulation. The resulting systematic uncertainties on
the proton, pion, electron, and muon identification effi-
ciencies lie within the range (0.3–0.4)%, (0.2–1.0)%, 1.6%,
and (1.6–2.0)%, respectively, depending on the decay
mode. The largest source of systematic uncertainty is the
modeling of the MD0 and ΔM PDFs. The uncertainties on
the PDF shapes are obtained by varying each of the fixed
parameters by �1σ and the ratio of the differences in
obtained and nominal signal yield to the latter is added in
quadrature to calculate the total systematic uncertainty
from PDF modeling. The fit procedures are validated in
simulated MC samples. Small observed biases of (1–2)%
are taken as systematic uncertainties. The uncertainties due
to pion and kaon identification are 1.1% and 0.8%,
respectively, for the normalization mode D0 → K−πþ.
The uncertainty on BðD0 → K−πþÞ is 0.03%. These
uncertainties are taken into account to determine the upper
limit on the branching fraction. The uncertainty on the πs
efficiency cancels between the signal and normalization
mode. All systematic uncertainties are added in quadrature
to obtain the total systematic uncertainty.
In summary, we have searched for the baryon and lepton

number violating decaysD0 → pe−, D̄0→pe−,D0→ p̄eþ,
D̄0 → p̄eþ, D0 → pμ−, D̄0 → pμ−, D0 → p̄μþ, and D̄0 →
p̄μþ by analyzing 921 fb−1 data collected at and 60 MeV
below the ϒ(4S) resonance, and at the ϒ(5S) resonance
by the Belle detector at KEKB. In the absence of any
significant signal, we set an upper limit at 90% confidence
level for each signal decay mode. The corresponding
limits on the branching fractions are determined to be

ð5–8Þ × 10−7. The obtained upper limits are the most
stringent to date. The limits on the D → pμ modes are the
first such results.
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