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We settle a longstanding question about the hypermultiplet moduli spaces of the heterotic strings on
asymptotically locally Euclidean singularities. These heterotic backgrounds are specified by the singularity
type, an instanton number, and a (nontrivial) flat connection at infinity. Building on their interpretation as
six-dimensional theories, we determine a class of three-dimensional N ¼ 4 quiver gauge theories whose
quantum corrected Coulomb branch coincides with the exact heterotic hypermultiplet moduli space.
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Introduction and motivation. What is the hypermultiplet
moduli space of the heterotic string on an asymptotically
locally Euclidean (ALE) singularity? This question was
posed long ago by Witten, Sen and many others [1], and
an answer was proposed for singularities of the form C2=Zk
both in absence andpresence of small instantons [2–4].Upon
a further toroidal compactification, this moduli space should
be quaternionic Kähler [5] (i.e. it has holonony contained in
USpð2Þ ×USpð2nÞ where n is its quaternionic dimension
[6]) and receivesα0 andworld sheet instanton corrections [7].
However, in the limit of decoupled gravity it becomes
hyperkähler (with USpð2nÞ holonomy, and a unique
Ricci-flat metric) and most corrections disappear. The
corrections that remain are such that the resulting space is
a smooth manifold, in all calculable examples. For instance,
for C2=Z2 and in absence of small instantons this moduli
space is the celebrated Atiyah-Hitchin manifold MAH, of
unit quaternionic dimension [8]. Importantly, thismanifold is
also the Coulomb branch (CB) of three-dimensional (3D)
N ¼ 4 pure SUð2Þ gauge theory, which may be further
identified with the moduli space of two BPS ’t Hooft-
Polyakov monopoles of SUð2Þ. It is then natural to con-
jecture that the heteroticmoduli space on aC2=ZkALEspace
should be the CB of pure SUðkÞ, which is the same as the
moduli space [9] of k BPS monopoles of SUð2Þ [10–13].
This observation lends itself to a further natural generaliza-
tion, which led [3] to propose that the hypermultipet moduli
space of the heterotic string on anALEspace locallymodeled

by a C2=ΓG singularity (with ΓG ⊂ SUð2Þ finite) should be
the same as theCB of 3DN ¼ 4 pureG gauge theory, where
G is the McKay dual group [14] to ΓG [15]. This conjecture
has been verified using a variety of techniques [16–18]. For
instance, in the simplest case of G ¼ SUðkÞ, ΓSUðkÞ ¼ Zk

and the dimension of the heteroticmoduli space is counted by
the number of resolution parameters of the C2=Zk orbifold,
i.e. k − 1. This is indeed the same as the (quaternionic)
dimension of the Coulomb branch of pure SUðkÞ.
The above setup requires no instantons of the heterotic

gauge group (i.e. no heterotic NS5-branes), that is we take
F ¼ 0 identically and thus the instanton number TrF2 is
also vanishing. The equation of motion for the dilaton in the
heterotic string reads schematically Δϕ ¼ TrF2 − TrR2,
with R the Riemann tensor (regarded as a two-form valued
in the Lie algebra of the orthogonal group, i.e. the curvature
of the spin connection ω). With F ¼ 0 and R large we are
driven to weak string coupling, and we will not see
fluctuations around F ¼ 0 which may distinguish the
two heterotic strings. The analysis of [3] then proceeds
by performing a calculation in the heterotic sigma model
CFT (valid at weak string coupling) to establish the correct
moduli space (the Atiyah-Hitchin manifold in the k ¼ 2
case of ΓG ¼ Zk, i.e. G ¼ SUð2Þ).
What happens if we add say M small (i.e. zero-size, or

pointlike) instantons of the heterotic string gauge group?
On top of the instanton number M, these should be speci-
fied by the value of a (possibly nontrivial) flat connection
F ¼ 0 at the spatial infinity S3=ΓG surrounding the orbi-
fold point of the ALE space (since π1ðS3=ΓGÞ ≠ ∅).
This flat connection is a representation (i.e. an injective
homomorphism, or embedding) of the orbifold group in
the gauge group, λ∶ ΓG → Spinð32Þ=Z2 or μ∶ ΓG → E8

(one per E8 factor), for the two possible heterotic strings.
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These instantons have to be interpreted appropriately in
string theory. In the case of the Spinð32Þ=Z2 string, they
are dual to type I D5-branes [19], whereas in the case of the
E8 × E8 string they are given by M5-branes in the dual
Hořava-WittenM-theory background on an interval [20,21].
(More precisely, we will have say N “full” instantons given
by the M5’s plus Nμ “fractional” instantons produced by
the fractionalization of each of the two M9-walls against
the orbifold [4,22], so that M ¼ N þ Nμ). In the heterotic
string, they will act as sources in the Bianchi identity for the
strength of the B-field, dH ¼ TrF ∧ F − TrR ∧ R, with
M ¼ R dH=ð4πÞ2 in appropriate units [23].
What is the role of these instantons in the 3D theory?

How do they modify its CB so as to capture the new
heterotic moduli introduced by them? In the G ¼ SUðkÞ
case it was soon realized [16,18,24] that their addition in
the E8 × E8 heterotic string corresponds to adding M
flavors (i.e. fundamental hypermultiplets) to the 3D pure
G gauge theory, when the flat connection at infinity is
trivial, i.e. when the full E8 × E8 group is preserved.
Moreover [4] gave an interpretation of the 2 BPS monop-
oles of SUð2Þ in the heterotic setup (when k ¼ 2): they
correspond to 2 half-NS5-branes stuck on an O8−-plane
obtained by reducing each of the two E8 M9-walls of the
Hořava-Witten setup to Type IIA. (This can be generalized
to k NS5s.) The question as to what is the 3D theory
corresponding to the hypermultiplet moduli space in
presence of a nontrivial flat connection at infinity was
however left open in [4].
The main question we address in this work is how to

capture the quantum corrected hypermultiplet moduli
space in presence of a possibly nontrivial flat connection
at infinity in the heterotic string. Our main result is that we
can still construct 3D theories that capture this space via
their CB.

3D quivers from 6D. Consider the E8 × E8 heterotic string
compactified on a real four-dimensional ALE space,
namely a K3 surface with a singularity locally modeled
by C2=ΓG. The resulting 6D theories, dubbed T MðμL; μRÞ,
have recently been completely determined [25–27], build-
ing on [28–32], and have the structure of a fusion [33,34]
of two 6D orbi-instanton superconformal field theories
ΩNðμÞ [35]. Schematically:

T MðμL; μRÞ ¼ ΩNL
ðμLÞ −G −ΩNR

ðμRÞ: ð1Þ

The Higgs branch of this 6D theory is the quantum
corrected hypermultiplet moduli space of the heterotic
string MHet

G;M;μL;μR
. Since a fusion is the 6D generalization

of a gauging operation, the result is a simple hyperkähler
quotient [36]

MHet
G;M;μL;μR

¼ ðMΩNL
ðμLÞ ×MΩNR

ðμRÞÞ===G ð2Þ

of the Higgs branches of the known 6D theories ΩNL
ðμLÞ

and ΩNR
ðμRÞ. Here, as above, M¼NLþNμL þNRþNμR .

This is the starting point for our paper: the 3D theories of
interest can be determined starting from these 6D models.
We will outline the construction in full detail only in type
A, i.e. for G ¼ SUðkÞ; the other types are computationally
more challenging but not conceptually harder [37]. In
each case, the Higgs branch of interest is captured by a
3D N ¼ 4 quiver gauge theory, colloquially known as
“magnetic quiver” [38], which flows in the infrared (IR) to
a 3D N ¼ 4 superconformal field theory (SCFT). The
hypermultiplet moduli space of the heterotic string is
captured by the CB of the moduli space of this SCFT.
In the case where we already know the answer, i.e. the case
of M small instantons for G ¼ SUðkÞ with trivial flat
connection (i.e. the E8 × E8 case), this quiver ought to be
the one for SUðkÞ with M flavors, i.e.

ð3Þ

This quiver is related to the magnetic quiver construction
of [38] upon replacing SUðkÞ with UðkÞ and M with a
bouquet ofMUð1Þ gauge nodes. (The opposite operation is
the so-called hyperkähler implosion [39,40], [41] preserv-
ing the hyperkähler structure of the moduli space and the
action of (a maximal torus of) the flavor symmetry group.)
The SU group arises in 3D from a reduction of the 6D SU
gauge group (since the Uð1Þ centers of unitary groups are
massive in 6D, and hence decouple from the low-energy
dynamics); the (opposite of the) implosion is related to a
gauging of a SM discrete symmetry which exchanges theM
identical M5s=NS5s in 6D (see [42] for more details). The
result is:

ð4Þ

with an overall Uð1Þ decoupled from the IR dynamics.
In (3) and (4) (and henceforth) we have adopted standard
quiver notation, where a non-negative integer k denotes a
3D N ¼ 4 UðkÞ vector multiplet, an edge connecting two
such non-negative integers k1 and k2 denotes a bifunda-
mental hypermultiplet [43], and p − k denotes p hyper-
multiplets transforming in the fundamental of the UðkÞ
gauge group.
Notice that, for this theory to be “good” in the sense of

[44], i.e. to flow to a standard non-Gaussian (interacting)
fixed point in the IR, we must have M ≥ 2k (or, more
generally, Nf ≥ 2Nc) [45]. In other words, a configuration
with M < 2k does not have a mirror dual [46]. For this
reason, one cannot simply take the M ¼ 0 limit and get
back to Witten’s original configuration with no heterotic
instantons.
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More generally, we will construct 3D quivers whose CB
captures the hypermultiplet moduli space of the E8 × E8

heterotic string on C2=Zk for any k and choice of flat
connection at infinity. The latter (trivial and nontrivial
alike) are classified by group homomorphisms, i.e. embed-
dings, μL;R∶ Zk → E8 (one per gauge group factor). Each
such embedding is specified by a so-called Kac label [47],
i.e. an integer partition of k in terms of the Coxeter labels
1;…; 6; 40; 30; 20 of the affine E8 Dynkin diagram:

k ¼
�X6

i¼1

ini

�
þ 4n40 þ 3n30 þ 2n20 ; ð5Þ

which will be denoted in general μL;R ¼ ½1n1 ;…; 6n6 ; 4n40 ;
3n30 ; 2n20 � (and we will also say that the ni; ni0 are the
multiplicities of the parts of the Kac label). Each embed-
ding preserves a subalgebra of E8 determined via a simple
algorithm: one simply “deletes” all nodes with nonzero
multiplicity ni; ni0 in this partition, and reads off the Dynkin
of the leftover algebra, which may be a sum of non-Abelian

algebras plus a bunch of uð1Þ’s. As an example, the trivial
flat connection (embedding), which exists for any k, is
given by the label k ¼ ½1k�, and preserves the full E8. In this
case, as stated above, the moduli space is given by the CB
of (4). As an example of nontrivial flat connection, consider
the case k even, which admits a partition k ¼ ½2m� and
corresponds to a nontrivial flat connection breaking the
heterotic gauge group to E7 × SUð2Þ.
Can we see a more direct engineering of these 3D quivers

from the heterotic string?The answer is a resounding yes, and
comes from looking at the compactification of the heterotic
string on aK3as a so-called 6D (1,0) little string theory (LST)
[48]. In the E8 × E8 case in presence ofM small instantons,
with nontrivial flat connection at infinity, such LSTs are
precisely the theories T MðμL; μRÞ in equation (1). The latter
can be given a quiver description via “geometric engineer-
ing” in terms of F-theory [28], which we reproduce below
in (15) for the case μL ¼ μR ¼ ½1k�. Taking the T3 compac-
tification of this quiver produces a 3D theory which we will
call “electric quiver,” and which reads

ð6Þ

with an overall Uð1Þ decoupled from the IR dynamics [11].
The above quiver is mirror dual to the one in (3) [11,46]:
it clearly shows that we must have M − 2kþ 1 ≥ 1, i.e.
M ≥ 2k [which is the same as the s-rule constraint valid
in (4)], ensuring the existence of a mirror in the first place.
The rest of the paper showcases general 3D quivers

(derived in the companion paper [49]), whose CB captures
the hypermultiplet moduli space of interest in the heterotic
string. As outlined above, when the latter is compactified
on a K3, and moreover gravity is decoupled, its dynamics is
captured by a 6D little string theory of type T MðμL; μRÞ,
which in turn is obtained by “gluing” together two 6D
SCFTs known as orbi-instantons as in Eq. (1). We will
consider LSTs specified by M small instantons, where

M ¼ ML þMR ¼ ðNL þ NμLÞ þ ðNR þ NμRÞ: ð7Þ

N ≡ NL þ NR is the total number of full heterotic NS5’s
and NμL;R is the number of fractional instantons in the left
and right “half” (orbi-instanton) of the LST. This piece of
data can be defined in terms of μL;R, generalizing appro-
priately the case NμL;R ¼ k of a trivial flat connection.

The “minimal” case (i.e. no full instantons) has N ¼ 0;
however, as is clear from the above formula, this does not
imply that M ¼ 0. This is because each M9-wall in the
Hořava-Witten setup fractionates once we introduce the
orbifold C2=Zk [22]. The number of fractions NμL;R

(corresponding to new NS5-branes in the dual Type I’
setup) depends on the specific choice of embedding μL;R.
For instance, in (4)–(6) we made the choice μL;R ¼ ½1k�
implying M ¼ 2k if N ¼ 0. In this case, we say the
magnetic quiver is exactly balanced (since Nf ¼ 2Nc) [44].
It may happen that for other choices of μL;R the quiver is
overbalanced (i.e. Nf > 2Nc). Importantly, we will show
that the quiver is never underbalanced (i.e. bad, in the sense
of [44]) for any choice of μL;R.

Coulomb branch and heterotic moduli spaces. The upshot
of our companion paper [49] is the construction of new
3D N ¼ 4 QFTs flowing in the IR to SCFTs, whose CB
captures the hypermultiplet moduli space of the heterotic
string on the orbifold with a choice of flat connection at
infinity. Such QFTs are encoded in the following quiver
diagrams:

ð8Þ
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where in the formula above the sums in the parentheses are
performed node-by-node and the ranks rL;Ri ; rL;Ri0 of the U
gauge groups along the tails (some of which may be zero)
are determined by the specific Kac label chosen to
determine the embeddings μL and μR. The explicit algo-
rithm was obtained in [50] and is summarized below.

Moreover Eð1Þ
8 stands for the quiver of affine E8 Dynkin

shape, with the ranks of the U groups appearing therein

being equal to the Coxeter labels, and Eð1Þ
8

∨ is the Dynkin
mirrored around the vertical axis, i.e. with the bifurcated
tail on the left:

ð9Þ

ð10Þ

It is easy to convince oneself that the above quiver is
generically overbalanced, sometimes balanced, but never
underbalanced, and hence it always flows to a well-defined
3D N ¼ 4 SCFT in the IR. We also have

dimHMHet
G;M;μL;μR

¼ 30M þ k − 1þ
 X6

i¼1

rLi

!
þ rL

40 þ rL
30 þ rL

20 þ
 X6

i¼1

rRi

!
þ rR

40 þ rR
30 þ rR

20 ; ð11Þ

with

rj ¼ ð1 − δj6Þ
X6−j
i¼1

iniþj þ 2n20 þ 3n30 þ 4n40 ð12Þ

for j ¼ 1;…; 6, and

r20 ¼ n30 þ n40 ; ð13aÞ

r30 ¼ n20 þ n30 þ 2n40 ; ð13bÞ

r40 ¼ n20 þ 2n30 þ 2n40 : ð13cÞ

The dimension in (11) is obtained by summing the
dimensions dimH CB3D of the CBs of the quivers in the
parentheses in (8) and subtracting dimR SUðkÞ ¼ k2 − 1
because of the hyperkähler quotient by SUðkÞ performed to
glue the magnetic quivers of left and right orbi-instanton
according to (2). It reduces to what we have already com-
puted below (6) in the case μL ¼ μR ¼ ½1k�, for which ri ¼
ri0 ¼ 0 for all i (left and right), according to the following
observation. In that case, (8) is nothing but the “infinite-
coupling” magnetic quiver obtained from (4) performing a
total of M small E8 instanton transitions, which turn the

bouquet of M 1’s into a sum of M Eð1Þ
8 tails, or more

precisely to ML Eð1Þ
8

∨ tails to the left, and MR Eð1Þ
8 to the

right of node k there. The dimension of its CB jumps by
29M, going fromM þ k − 1 to 30M þ k − 1. More general
checks can be found in [49].

As a simple consistency check of the above we can
reproduce the case with no full small instantons (closer to
the original setup by Witten and Sen); it simply amounts to
taking N ¼ 0 in (7) so that we are left only with the
“inevitable” fractional instantons coming from the frac-
tionalization of each of the M9’s (left and right) against
the orbifold. It is easy to determine explicitly NμL;R from
F-theory via a case-by-base analysis [25–27]. In the case of
singularities of type A, however, an explicit algorithm
determining NμL;R from μL;R was found in [51]. Once one
constructs the Type I’ setup dual to the heterotic string on
the orbifold one can easily read off, for each choice of
ðμL; μRÞ, the so-called largest linking number lL;R on
the left and right of the setup, i.e. the largest among the
numbers ðlL;R1 ;…; lL;R8 ; lL;R9 Þ, which are defined as the
number of D6’s ending from the right on the ith D8,
minus the number of D6’s ending on the left, plus the
number of NS5’s to the immediate left of it (where for
concreteness we have assumed the O8 sits on the left of
each half, when considered individually). More precisely,
we have the relation

NμL;R ¼ lL;R ¼
X6
i¼1

ni þ p ð14Þ

with p ¼ min ðbðn30 þ n40 Þ=2c; bðn20 þ n30 þ 2n40 Þ=3cÞ. To
determine the Type I’ configuration dual to the heterotic
string, or equivalently to find the electric quiver in the
F-theory notation, one can apply the algorithm of [52]. For
instance, for μL ¼ μR ¼ ½1k� it produces

½E8�1
∅

2
suð1Þ

2
suð2Þ

� � � 2
suðk−1Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

NμL
¼k

2
suðkÞ

½Nf¼1�
2

suðkÞ
� � � 2

suðkÞ
2

suðkÞ

½Nf¼1�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
NLþNRþ1¼Nþ1

2
suðk−1Þ

� � � 2
suð2Þ

2
suð1Þ

1
∅|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

NμR
¼k

½E8�: ð15Þ
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(All more general choices have been analyzed in detail
in [25–27,32].) The T3 compactification of the above
electric quiver is nothing but (6), which is mirror to (4).
The dimension of the HB of the above quiver equals
M þ k − 1, as expected. To obtain 30M þ k − 1 we first
move to infinite coupling in each of the two orbi-instanton
constituents, compute the dimension of their HB, and
subtract the (real) dimension of the diagonal SUðkÞ flavor
group from the two which we are gauging, producing one
exra suðkÞ algebra [53].

Conclusions. In this paper we have identified the hyper-
multiplet moduli space of the E8 × E8 heterotic string on an
A-type ALE space with the exact quantum corrected CB of
a 3D quiver gauge theory [the magnetic quiver (8)] flowing
in the IR to an SCFT. The magnetic quiver is the mirror of
the T3 compactification of a 6D quiver gauge theory (plus
tensor multiplets) that gives the dynamics of a 6D (1,0) LST
with a Higgs branch that coincides with the heterotic
moduli space (in the limit of decoupled gravity). To obtain
this magnetic quiver, one also has to perform M small E8

instanton transitions in 6D.
The dimension of the moduli space in question can be

computed both in absence and in presence of N full small
instantons, where one is also required to specify a flat
connection at infinity for the heterotic gauge group. The
various choices of flat connection give rise to different
magnetic quivers, with different CBs. One is moreover led
to conjecture (due the same string theory arguments used
by [4]) that this CB (which is a hyperkähler space) is
smooth, as was the case in absence of small instantons
[2,3]. It remains to be understood what is the underlying
geometry of the CB. In the companion paper [49], based on
observations about 6D (1,0) SCFTs made in [51,54,55], we
have proposed that this CB is given by the holomorphic
symplectic quotient construction of [56] applied to two

strata of the so-called affine Grassmannian of E8. It would
be extremely interesting to prove this conjecture. The
minimum symmetry on this CB in the IR can also be
easily computed, which may help with the proof.
As a final remark, the hyperkähler/quaternionic Kähler

correspondence [57,58] suggests that one can also deter-
mine the gravitational quantum moduli space of the
heterotic string on these backgrounds building from our
results.
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