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Logarithmic celestial conformal field theory
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We argue that the celestial conformal field theory exhibits patterns of a logarithmic conformal field
theory. We uncover a Jordan block structure involving the celestial stress tensor and its logarithmic partner,
a composite operator built from the stress tensor and the Liouville field. Using a limiting process whose
parameter corresponds to the infrared cutoff of gravity, we perform some basic consistency checks,
particularly the calculation of two-point correlators, which reveals the expected logarithmic behavior. We
comment on the vanishing value of the central charge in the celestial conformal field theory and explain
how the logarithmic partner is relevant for its well-behavedness.
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Introduction. Celestial holography aims at reformulating
the S matrix in four-dimensional (4D) flat spacetime in
terms of correlation functions of a 2D conformal field
theory (CFT), coined celestial CFT (CCFT), living on the
celestial sphere. In practice, this is achieved by expressing
the scattering amplitudes in the boost eigenstate basis rather
than in the usual energy eigenstate basis, hence high-
lighting the conformal properties of the amplitudes [1-7].
In this framework, the soft theorems for the amplitudes can
be reformulated as conformally soft theorems [5,8—11],
which in turn are interpreted as Ward identities for the
CCFT correlators. For instance, the subleading soft grav-
iton theorem can be recast as a Ward identity of a 2D
CFT involving the celestial stress tensor [12]. So far,
there is no independent definition of a CCFT other than
translating bulk scattering data into CFT language (see,
however, [13]).

Among the exotic properties of the CCFT, the Virasoro
central charge ¢ has been shown to vanish for a tree-
level scattering after considering colinear and double soft
limits of amplitudes [14,15]. This result was also obtained
through a complementary approach by computing the
Bondi-van der Burg—Metzner—Sachs (BMS) flux algebra
in an asymptotic symmetry analysis [16,17] and can be
explained by the presence of only one scale, Newton’s
constant G, for gravity with a vanishing cosmological
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constant, which is not enough to build a dimensionless
Virasoro central charge.

While in a standard unitary Lorentzian/reflection-
positive Euclidean CFT, the property ¢ = 0 would imply
that the theory under consideration is trivial, the CCFT is
not expected to be of this type and therefore could admit a
nontrivial spectrum despite ¢ = 0. However, even in this
case, one would have to face the issue of the “c =0
catastrophe” [18], which states that a generic CFT is ill-
defined when the central charge vanishes. A class of CFTs
consistent with the property ¢ = 0 are logarithmic CFTs
(log CFTy), see, e.g., [18,19], whose defining property is
the presence of a Jordan block structure under dilatation
yielding a logarithmic two-point correlation function. It is,
therefore, natural to ask whether the CCFT, whose central
charge vanishes, is of this type.

It was early noticed that, in addition to the stress tensor,
the CCFT admits another (2, 0) operator in the conformally
soft limit [5,8,20]. The two operators are symplectic
partners: They are constructed from the symplectic product
of the linearized operator at null infinity with the Goldstone
mode wave function and the logarithmic branch, respec-
tively. The vanishing of the central charge together with
the presence of a (2, 0) partner to the stress tensor is the
smoking gun for a log CFT.

The aim of this paper is to show that, indeed, the CCFT
exhibits a log CFT structure. To do so, we identify the (2, 0)
logarithmic partner of the celestial stress tensor. A key
ingredient in this construction is the Liouville field (also
called superboost field) that was identified in [21,22] and
that appears naturally in the radiative phase space at null
infinity. We explicitly obtain the log CFT structure from a
limiting process of the type discussed in [19] and reviewed
in the next section, where the role of the infinitesimal
parameter is played by the infrared (IR) cutoff for gravity in
flat spacetime.

Published by the American Physical Society
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Log CFT aspects. Log CFTs were introduced three decades
ago by Gurarie [23], see [24,25] for general reviews
and [26] for a review on holographic aspects.

Log CFTs obtain their name from logarithms appearing in
certain correlation functions. However, their defining prop-
erty is a Jordan block involving two (or more) operators with
degenerate scaling dimensions. Algebraically, this means
one has reducible but indecomposable representations (typ-
ically related to so-called “staggered modules’;” see [27]).

We focus on the case when there are exactly two
operators ¢, T with degenerate scaling dimensions (2, 0)
forming a logarithmic pair and assume that the Virasoro
generator L, cannot be diagonalized, i.e., has a Jordan

block
“Q%)‘(§;>O3) W

The quantities |7) and |T) are the states associated with the
operators f, T via the state-operator correspondence. For
our purposes, 7 is the stress tensor, and ¢ is its logarithmic
partner.

The above Jordan block structure appears naturally as a
resolution of the “c = 0 catastrophe” [18]. Since the CCFT
is a CFT with vanishing central charge, this “catastrophe”
applies to us, so we briefly review the arguments summa-
rized by Cardy [19]. In a generic 2D CFT, the operator
product expansion (OPE) of some chiral primary field O,
with itself

O05(2)04(0) = % (1 +¥ZZT(0) + ) (2)

involves the conformal weight . of the primary and the
stress tensor 7." In the limit of vanishing ¢, the second term
in parentheses is ill-defined unless one of the three
conditions is fulfilled:

(1) The normalization a vanishes for ¢ — 0.

(2) The conformal weight & vanishes for ¢ — 0.

(3) The omitted terms in the ellipsis contain another
expression with a pole in ¢ such that both poles
cancel and the limit ¢ — 0 can be taken.

The first two options do not apply in our context. Hence,
we elaborate on the third option. The OPE expression that
includes the additional pole,

2h

oh<z)0h(0):Z% 1+ =2 (T(0) - M(0) + .|, (3)

has a well-defined ¢ — 0 limit, provided M(z) = T(z )
O(c). The operator #(z) o lim._o(M(z) —T(z))/c i

'Similar considerations apply to the other chirality, but we do
not display the analogous formulas with bars on top of various
quantities.

well-defined and constitutes the logarithmic partner of 7.
In conclusion, the third resolution of the ¢ = 0 catastrophe
leads to a log CFT where the stress tensor 7' acquires a
logarithmic partner ¢.

A convenient way to construct such log CFTs is via a
limiting process ¢ — 0. Assume we have a family of
(possibly nonunitary) CFTs with a chiral primary operator
M, that has conformal weights (2 + ¢,0) for some € > 0
(the CFT may contain additional primaries, but we do not
care about them). The central charge of these CFTs is
assumed to scale linearly in ¢, ¢ = —2be with some b # 0.
Before taking any limits, the nonvanishing two-point
functions are given by

(M. ()M (0)) = g = 5 (1= 2eInz +O(e?)).
T@T(0) = -2, @

Anticipating the limit ¢ — 0, we define an operator that
turns into the logarithmic partner of 7 for € — 0,

te(z) = ————7. (5)

Its correlator with the stress tensor is nontrivial and
independent from e,

For the limit of the autocorrelator

1 a
——(1=2e¢lnz+...)—
6224( ¢ €z

(t:(2)1:(0)) =

to exist, we are forced to assume a = be + ae* + - - - This
concurs with the general discussion of the third resolution
of the ¢ = 0 catastrophe. Finally, defining the logarithmic
partner of the stress tensor as ¢t = lim,_, #, obtains the two-
point correlation functions in the limit of vanishing central
charge,

r@T0) =0, )
(TO) = . o)
(1(2)0(0)) = - 2 (10

The parameter y = exp(—a/(2b)) is physically irrelevant
and stems from an ambiguity in the definition of ¢, namely
t = t+yT with some finite y.

Let us now uncover the Jordan block structure (1) from
the limiting construction above. Acting with the Virasoro
generator Ly on M, and T yields
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LolM) = 2+¢€)Mc).  Lo|T) =2[T), (11)

and
Lolte) = 2|te) + [M.) = Lo|t) =2|t) +|T), (12)

which for € — 0, establishes the desired Jordan block (1).

Under infinitesimal conformal transformation with
parameter )(z), log primaries transform slightly differently
from primaries:

5yOPE = YOOE + h(0Y)OFE + (0V)O,.  (13)

Here, (’)]hog(z) is a log primary of weight &; e.g., the log
operator ¢ above (with h = 2), O, (z) is its partner, e.g., T in
the example above. If the operator is only a quasiprimary,
there can be additional anomalous terms in (13).

Once a logarithmic pair is at disposal, one can show that
Ward identities induced by (13) imply

(0820,0)) = 3.

(O @O0) = - SpnGua). (14)

(beC,ueRy) from the invariance of the correlators
under SL(2,C) transformations, which for h = 2, agrees
with (9), (10).

CCFT aspects. The asymptotic structure of 4D asymptoti-
cally flat spacetime has been broadly studied in the
literature (see, e.g., [28—40]). We review some basic
features of the radiative data at null infinity and construct
the CCFT operators for massless scattering, following the
notations and conventions of [41].

At future null infinity (Z7), we employ the retarded
time u and stereographic coordinates x* = (z,z) on the
celestial sphere. The degenerate metric on Z" is taken
to be ds> = 0du’ + 2dzdz. The asymptotic symmetries of
asymptotically flat spacetimes form the (extended) BMS
group [28,29,37,42]. The BMS generators at Z* are
E=[T +4(0Y+0Y)]0, + Yo+ Y9, where 0 =0, and
0=0., T =7T(z,z) is the supertranslation parameter,
Y(z) and )Y(Z) are the superrotation parameters. The
latter generate conformal transformations on the celestial
sphere. Since we are preoccupied with the conformal
properties of the CCFT, we mostly focus on this subsector
of symmetries.

The outgoing gravitational radiation at Z* is encoded in
the Bondi news tensor N__(u,z,Z) (NI, = N::). Under
infinitesimal BMS transformations, the Bondi news tensor
N, transforms as [37]

87y 3N = (VO+Y0+20Y)N,, — Y

+ T+g(ay+552) dN... (15

We assume the falloffs
sz :NZ§C+O(M_1) (16)

on the radiative data near Z| (referring to the limits
u — too of ZT, respectively), which are compatible with
the stability of Minkowski spacetime, the action of BMS
symmetries, and encompass relevant physical features
such as gravitational tails and loop-corrected soft theo-
rems [16,22,39,43-48]. In particular, the presence of the
vacuum news tensor N¥*(z) [21,22] in the expansion (16)
is required because of the infinitesimal Schwarzian deriva-
tive of J(z) in (15). It can be seen as the tracefree part of a
stress tensor associated with a Euclidean Liouville theory
living on the celestial sphere,

1
N =5 (0p)? =, (17)
where ¢(z) denotes the Liouville field. The latter is also
referred to as the superboost scalar field and encodes the
refraction/velocity kick memory effects [22,49-53]. Under

the action of BMS symmetries, we have the anomalous
transformation law

so that
SryyNEe = (Vo+ 20N -y (19)

reproduces the infinitesimal Schwarzian derivative in (15).
This subsector of the radiative phase space is invariant
under supertranslations. It is convenient to introduce the
physical news tensor [22] N, = N_, — N¥ that trans-
forms homogeneously under BMS symmetries, due to (15)
and (19). It vanishes at the corners of Z, sz|11 =0,asa
consequence of (16).

The CCFT graviton operators can be obtained by
performing the integral transforms [41,54-56]

_ +o0 du ~ _
Ow.42)(2,2) ='<X/ a7 Ne(1.2,2)

w (u+ i) !
' _ _ [t du - _
Ofsn (20 =13 [ sz, (0)

o (u—i€)

on the physical news operator, where ¢ - 0 is a UV
regulator, A = i + h is the conformal dimension, J = h —
h = 2 is the graviton helicity, and x5 = 4z (+i)*T'[A - 1].
The integral transforms (20) are the combinations of
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Fourier and Mellin transforms, which allow relating boun-
dary operators in position space with CCFT operators.
Here, we have discussed the spin-2 case, but the corre-
spondence (20) can be written for any massless field in the
bulk by simply replacing N .. with the appropriate radiative
data at Z" [41,54,55]. The bulk amplitudes can be rewritten
as correlators of CCFT operators inserted on the celestial
sphere [1-7].

Of particular concern for us is the subleading soft news,
which can be obtained by taking the conformally soft limit

(1) N +o00 ~ _
N (z,2)= duuN_,(u,z,2)

1 . ) ]
— _ai{%A [O(A,+2) (z,2)+ (’)(IA,_Z) (Z,Z)] . (@21

The integral in the first expression can be divergent when
taking the falloffs (16) into account. This forces us to
introduce an infrared (IR) cutoff for the bulk theory to
regulate these expressions. This observation will be impor-
tant for us in the next section to get the CCFT in the IR limit.

The celestial stress tensor [12] is obtained by taking the
shadow transform of (the hermitian conjugate of) (21)

6i d?
306 o O ()

In the CCFT, the subleading soft graviton theorem is recast
as a 2D CFT Ward identity [4,12,14,57,58]

(T()X) = Z{ %

= LT

T(z) =

", )2] @, (23)

(z—7z;

where X' = [, O, (i, Z;). Various refinements of the
expression (22) of the stress tensor have been discussed,
e.g., in [15,17,59-61] to take into account loop corrections
to the subleading soft graviton theorem or subtleties arising
when taking the double soft limit.

For our discussion, we utilize the OPEs

T()T(0) ~ 0TZ(0) + 2ng0> , (24)
T(2)p(0) ~ a(”z(o) T Ziz (25)

As discussed in the introduction, the OPE (24) makes explicit
that the central charge in the CCFT vanishes [14,15,17]. The
OPE (25) is a direct consequence of (18) and the fact that the
soft charge generates the transformation on the soft variables
(see, e.g., [60]).

CCFT as log CFT. The CCFT admits a (2, 0) operator in
the conformally soft limit, referred to as the Goldstone
operator, and symplectically paired with the celestial

stress tensor (22) constructed out of the subleading soft
news (21) [5,8,20]. Furthermore, it was shown in [60,62,63]
that the symplectic partner of the subleading soft news is
the Liouville stress tensor (17). Therefore, in the framework
of Sec. III, the (2, 0) Goldstone operator is precisely
identified with the Liouville stress tensor. Although the
latter constitutes a natural candidate for the logarithmic
partner of the stress tensor, its transformation law (19) does
not match with (13). Instead, we shall use the decom-
position (17) of this operator in terms of the Liouville field
and build another (2, 0) operator out of it.

More precisely, the logarithmic pair we consider consists
of the celestial stress tensor 7(z) and the composite
operator

T(2)e(z): (26)

where colons denote normal ordering. The field ¢(z) does
not enter in the definition (22) of T(z) and should be
considered as an independent datum belonging to the
Liouville subsector of the radiative phase space. Under
conformal transformation, the anomalous transformation
law (18) implies

Syt(z) = (Y0 + 20Y)t(z) + 0YT(z), (27)

which matches the expected transformation for a logarith-
mic partner (13) with & = 2. The SL(2, C) Ward identities,
therefore, automatically imply two-point correlation func-
tions of the form (14).

We now derive this log CFT structure from a limiting
procedure like the one discussed in Sec. II. This allows
deducing some properties of the Liouville field and
computing the two-point functions explicitly. As men-
tioned below (21), the integral over u involved in the
definition of the celestial stress tensor is divergent, which

necessitates an IR cutoff A ~ \/Ee% as regulator. It is,
therefore, natural to choose ¢ as a parameter for the limiting
process, and the CCFT will be defined in the IR limit
€ — 0. For instance, the result of the vanishing central
charge might receive corrections O(e) at finite cutoff,

be

(T@TO0) =-7- (28)

Determining the precise value of b, which encodes the
potential leading IR-finite correction to the CCFT central
charge, is an intriguing question for future investigations.

The correlation function of the Goldstone mode for
supertranslations is

(C@DC0.0) =1 Pl (29)

where ¢ corresponds to the cusp anomalous dimension
introduced to regularize IR divergences in scattering
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amplitudes [64]. The Liouville field ¢(z) being a Goldstone
mode for conformal transformations [21,22,65,66], it is
natural to assume

(9(2)0(0)) = —gln z, (30)

matching with the expected two-point function of a
Liouville field. As a consequence of (17) and (30),
performing Wick contractions, one can show

1 —6¢

pad (31)

(N (INE(0)) = 5

In the uplifted AdS;/CFT, approach to flat space hologra-
phy [1.4,20], the stress tensor of the holographic 2D CFT
[67] is identified with the Liouville stress tensor (17) [68,69].
As anticipated in [4,69], the central charge associated with
this stress tensor diverges in the IR limit (which corre-
sponds to sending the Euclidean AdS; radius to infinity)
consistently with (31). This confirms the divergence in the
two-point correlation function (30). Furthermore, picking
(p(z)) = —1 ensures that the associated vertex operator
V.(z) = e with conformal weights (e, 0) has vani-
shing vacuum expectation value. The ensuing vertex
operator’s autocorrelator

1

(Ve(@)Ve0)) =~ (32)

is compatible with the Ward identities, and confirms the
global factor in (30).

In the notations of Sec. II, we define the composite
operator

M.(z) = :T(z)Ve(2): (33)

as a conformal primary of weights (2 + €,0). It has the
desired property to collide with the stress tensor in the limit,
lim,_y M.(z) = T(z). Moreover, (25), (28), and (30) imply

€ — 62
(M(M0) =S+ O@). (34
Defining
() = 22T g0 + 00, (35)

owing to (M.(z)T(0)) =0 and (28), we get

(T@)10)) = % = (T (0)) = 5. (36)

N

matching with (9). Finally, the autocorrelator derived from
(28), (34), and (35)

1 be—€* 1 be
(te(2)1.(0)) = e e O(e)  (37)
in the limit € — 0 yields
. 2b
lim(z.(2)1:(0)) = —ZTIH(MZ)’ (38)

hence recovering (10) with y = .

Discussion. In this paper, we have highlighted a pattern of
log CFT in the CCFT and have provided a scenario in
which this log CFT structure emerges in the IR limit. This
analysis sheds some light on the nature of the CCFT, which
is a candidate for a putative holographic dual in 4D
asymptotically flat spacetime. In particular, this scenario
provides a clear explanation for the reason why the ¢ =0
catastrophe is avoided in the CCFT [18,19]. We expect that
other Jordan block structures might be identified for other
fields in the conformally soft sector, which could be useful
in the identification of the spectrum of the theory [5,56,70].

While the 2D CFT Ward identity (23) is known to survive
beyond the semiclassical regime [17,59-61], a careful treat-
ment of the loop corrections of the bulk amplitudes may shift
the CCFT central charge. It would be interesting to inves-
tigate whether the log CFT structure is affected by loop
corrections; see, e.g., [71] for a related discussion in the
context of celestial gluon amplitudes.

A key ingredient in the log CFT pattern discussed here is
the Liouville field ¢(z) [21,22] whose anomalous trans-
formation (18) allows one to obtain the Jordan block
structure. It would be gratifying to understand precisely
how this field relates with the subleading Goldstone mode
discussed, e.g., in [54,56] and to which extent it can be used
as a dressing field for scattering amplitudes.

Finally, the emergence of a log CFT structure in the
present context of 4D flat space holography is reminiscent of
what happens in 3D flat space holography, where also a
Jordan block structure was encountered [72]. However, in the
3D context, the Jordan block structure was never exploited
since the celestial program seems less fruitful there—after
all, there are no massless gravitons in 3D. Instead, 3D flat
space holographic descriptions focused on the Carrollian
approach to flat holography; see, e.g., [73—-83]. Since in 4D it
is possible to translate between celestial and Carrollian
approaches to flat space holography [41,55,84,85], it could
be rewarding to translate our discovery of a Jordan block
structure from CCFT into Carrollian language.

Acknowledgments. D. G. thanks David Ridout for useful
discussion and correspondence. R. R. thanks Laura Donnay
for useful discussions and collaboration on related subjects.
This work was supported by the Austrian Science Fund
(FWEF), projects P 30822, P 32581, and P 33789.

L021902-5



FIORUCCI, GRUMILLER, and RUZZICONI

PHYS. REV. D 109, L021902 (2024)

[1] J. de Boer and S. N. Solodukhin, A holographic reduction of
Minkowski space-time, Nucl. Phys. B665, 545 (2003).

[2] T. He, P. Mitra, and A. Strominger, 2D Kac-Moody
symmetry of 4D Yang-Mills theory, J. High Energy Phys.
10 (2016) 137.

[3] S. Pasterski, S.-H. Shao, and A. Strominger, Flat space
amplitudes and conformal symmetry of the celestial sphere,
Phys. Rev. D 96, 065026 (2017).

[4] C. Cheung, A. de la Fuente, and R. Sundrum, 4D scattering
amplitudes and asymptotic symmetries from 2D CFT,
J. High Energy Phys. 01 (2017) 112.

[5] S. Pasterski and S.-H. Shao, Conformal basis for flat space
amplitudes, Phys. Rev. D 96, 065022 (2017).

[6] A.Strominger, Lectures on the Infrared Structure of Gravity
and Gauge Theory (Princeton University Press, Princeton,
NJ, 2018).

[7]1 S. Pasterski, S.-H. Shao, and A. Strominger, Gluon ampli-
tudes as 2d conformal correlators, Phys. Rev. D 96, 085006
(2017).

[8] L. Donnay, A. Puhm, and A. Strominger, Conformally soft
photons and gravitons, J. High Energy Phys. 01 (2019) 184.

[9] T. Adamo, L. Mason, and A. Sharma, Celestial amplitudes
and conformal soft theorems, Classical Quantum Gravity
36, 205018 (2019).

[10] A. Puhm, Conformally soft theorem in gravity, J. High
Energy Phys. 09 (2020) 130.

[11] A. Guevara, Notes on conformal soft theorems and recur-
sion relations in gravity, arXiv:1906.07810.

[12] D. Kapec, P. Mitra, A.-M. Raclariu, and A. Strominger, 2D
stress tensor for 4D gravity, Phys. Rev. Lett. 119, 121601
(2017).

[13] K. Costello, N. M. Paquette, and A. Sharma, Top-down
holography in an asymptotically flat spacetime, Phys. Rev.
Lett. 130, 061602 (2023).

[14] A. Fotopoulos, S. Stieberger, T.R. Taylor, and B. Zhu,
Extended BMS algebra of celestial CFT, J. High Energy
Phys. 03 (2020) 130.

[15] S. Banerjee and S. Pasterski, Revisiting the shadow stress
tensor in celestial CFT, J. High Energy Phys. 04 (2023) 118.

[16] G. Compere, A. Fiorucci, and R. Ruzziconi, The A — BMS,
charge algebra, J. High Energy Phys. 10 (2020) 205.

[17] L. Donnay and R. Ruzziconi, BMS flux algebra in celestial
holography, J. High Energy Phys. 11 (2021) 040.

[18] V. Gurarie, c¢ theorem for disordered systems, Nucl. Phys.
B546, 765 (1999).

[19] J. Cardy, Logarithmic conformal field theories as limits of
ordinary CFTs and some physical applications, J. Phys. A
46, 494001 (2013).

[20] A. Ball, E. Himwich, S. A. Narayanan, S. Pasterski, and A.
Strominger, Uplifting AdS;/CFT, to flat space holography,
J. High Energy Phys. 08 (2019) 168.

[21] G. Compere and J. Long, Vacua of the gravitational field,
J. High Energy Phys. 07 (2016) 137.

[22] G. Compere, A. Fiorucci, and R. Ruzziconi, Superboost
transitions, refraction memory and super-Lorentz charge
algebra, J. High Energy Phys. 11 (2018) 200.

[23] V. Gurarie, Logarithmic operators in conformal field theory,
Nucl. Phys. B410, 535 (1993).

[24] M. Flohr, Bits and pieces in logarithmic conformal field
theory, Int. J. Mod. Phys. A 18, 4497 (2003).

[25] M. R. Gaberdiel, An algebraic approach to logarithmic con-
formal field theory, Int. J. Mod. Phys. A 18, 4593 (2003).

[26] D. Grumiller, W. Riedler, J. Rosseel, and T. Zojer, Holo-
graphic applications of logarithmic conformal field theories,
J. Phys. A 46, 494002 (2013).

[27] T. Creutzig and D. Ridout, Logarithmic conformal field
theory: Beyond an introduction, J. Phys. A 46, 4006 (2013).

[28] H. Bondi, M. G.J. van der Burg, and A. W. K. Metzner,
Gravitational waves in general relativity. VII. Waves from
axisymmetric isolated systems, Proc. R. Soc. A269, 21
(1962).

[29] R. Sachs, Asymptotic symmetries in gravitational theory,
Phys. Rev. 128, 2851 (1962).

[30] E. T. Newman and T. W. J. Unti, Behavior of asymptotically
flat empty spaces, J. Math. Phys. (N.Y.) 3, 891 (1962).

[31] R. Penrose, Asymptotic properties of fields and space-times,
Phys. Rev. Lett. 10, 66 (1963).

[32] R. Penrose, Conformal treatment of infinity, Gen. Relativ.
Gravit. 43, 901 (2011).

[33] R. Geroch, Asymptotic structure of space-time, in Asymp-
totic Structure of Space-Time, edited by F. P. Esposito and
L. Witten (Springer, 1977), p. 1, 10.1007/978-1-4684-2343-
3_1.

[34] A. Ashtekar and M. Streubel, Symplectic geometry of
radiative modes and conserved quantities at null infinity,
Proc. R. Soc. A 376, 585 (1981).

[35] A. Ashtekar, Asymptotic quantization of the gravitational
field, Phys. Rev. Lett. 46, 573 (1981).

[36] R.M. Wald and A. Zoupas, A General definition of
“conserved quantities” in general relativity and other the-
ories of gravity, Phys. Rev. D 61, 084027 (2000).

[37] G. Barnich and C. Troessaert, Aspects of the BMS/CFT
correspondence, J. High Energy Phys. 05 (2010) 062.

[38] G. Barnich and C. Troessaert, BMS charge algebra, J. High
Energy Phys. 12 (2011) 105.

[39] A. Strominger, On BMS invariance of gravitational scatter-
ing, J. High Energy Phys. 07 (2014) 152.

[40] A. Ashtekar, Geometry and physics of null infinity,
arXiv:1409.1800.

[41] L. Donnay, A. Fiorucci, Y. Herfray, and R. Ruzziconi,
Bridging Carrollian and celestial holography, Phys. Rev. D
107, 126027 (2023).

[42] G. Barnich and C. Troessaert, Symmetries of asymptotically
flat 4 dimensional spacetimes at null infinity revisited, Phys.
Rev. Lett. 105, 111103 (2010).

[43] D. Christodoulou and S. Klainerman, The Global nonlinear
stability of the Minkowski space (Princeton University
Press, 1994).

[44] L. Blanchet and T. Damour, Tail transported temporal
correlations in the dynamics of a gravitating system, Phys.
Rev. D 37, 1410 (1988).

[45] L. Blanchet and G. Schaefer, Gravitational wave tails and
binary star systems, Classical Quantum Gravity 10, 2699
(1993).

[46] B. Sahoo and A. Sen, Classical and quantum results on
logarithmic terms in the soft theorem in four dimensions,
J. High Energy Phys. 02 (2019) 086.

[47] L. Blanchet, G. Compere, G. Faye, R. Oliveri, and A. Seraj,
Multipole expansion of gravitational waves: From harmonic
to Bondi coordinates, J. High Energy Phys. 02 (2021) 029.

L021902-6


https://doi.org/10.1016/S0550-3213(03)00494-2
https://doi.org/10.1007/JHEP10(2016)137
https://doi.org/10.1007/JHEP10(2016)137
https://doi.org/10.1103/PhysRevD.96.065026
https://doi.org/10.1007/JHEP01(2017)112
https://doi.org/10.1103/PhysRevD.96.065022
https://doi.org/10.1103/PhysRevD.96.085006
https://doi.org/10.1103/PhysRevD.96.085006
https://doi.org/10.1007/JHEP01(2019)184
https://doi.org/10.1088/1361-6382/ab42ce
https://doi.org/10.1088/1361-6382/ab42ce
https://doi.org/10.1007/JHEP09(2020)130
https://doi.org/10.1007/JHEP09(2020)130
https://arXiv.org/abs/1906.07810
https://doi.org/10.1103/PhysRevLett.119.121601
https://doi.org/10.1103/PhysRevLett.119.121601
https://doi.org/10.1103/PhysRevLett.130.061602
https://doi.org/10.1103/PhysRevLett.130.061602
https://doi.org/10.1007/JHEP03(2020)130
https://doi.org/10.1007/JHEP03(2020)130
https://doi.org/10.1007/JHEP04(2023)118
https://doi.org/10.1007/JHEP10(2020)205
https://doi.org/10.1007/JHEP11(2021)040
https://doi.org/10.1016/S0550-3213(99)00013-9
https://doi.org/10.1016/S0550-3213(99)00013-9
https://doi.org/10.1088/1751-8113/46/49/494001
https://doi.org/10.1088/1751-8113/46/49/494001
https://doi.org/10.1007/JHEP08(2019)168
https://doi.org/10.1007/JHEP07(2016)137
https://doi.org/10.1007/JHEP11(2018)200
https://doi.org/10.1016/0550-3213(93)90528-W
https://doi.org/10.1142/S0217751X03016859
https://doi.org/10.1142/S0217751X03016860
https://doi.org/10.1088/1751-8113/46/49/494002
https://doi.org/10.1088/1751-8113/46/49/494006
https://doi.org/10.1098/rspa.1962.0161
https://doi.org/10.1098/rspa.1962.0161
https://doi.org/10.1103/PhysRev.128.2851
https://doi.org/10.1063/1.1724303
https://doi.org/10.1103/PhysRevLett.10.66
https://doi.org/10.1007/s10714-010-1110-5
https://doi.org/10.1007/s10714-010-1110-5
https://doi.org/10.1007/978-1-4684-2343-3_1
https://doi.org/10.1007/978-1-4684-2343-3_1
https://doi.org/10.1098/rspa.1981.0109
https://doi.org/10.1103/PhysRevLett.46.573
https://doi.org/10.1103/PhysRevD.61.084027
https://doi.org/10.1007/JHEP05(2010)062
https://doi.org/10.1007/JHEP12(2011)105
https://doi.org/10.1007/JHEP12(2011)105
https://doi.org/10.1007/JHEP07(2014)152
https://arXiv.org/abs/1409.1800
https://doi.org/10.1103/PhysRevD.107.126027
https://doi.org/10.1103/PhysRevD.107.126027
https://doi.org/10.1103/PhysRevLett.105.111103
https://doi.org/10.1103/PhysRevLett.105.111103
https://doi.org/10.1103/PhysRevD.37.1410
https://doi.org/10.1103/PhysRevD.37.1410
https://doi.org/10.1088/0264-9381/10/12/026
https://doi.org/10.1088/0264-9381/10/12/026
https://doi.org/10.1007/JHEP02(2019)086
https://doi.org/10.1007/JHEP02(2021)029

LOGARITHMIC CELESTIAL CONFORMAL FIELD THEORY

PHYS. REV. D 109, L021902 (2024)

[48] B. Sahoo and A. Sen, Classical soft graviton theorem
rewritten, J. High Energy Phys. 01 (2022) 077.

[49] J. Podolsky and R. Steinbauer, Geodesics in space-times
with expanding impulsive gravitational waves, Phys. Rev. D
67, 064013 (2003).

[50] J. Podolsky and R. Svarc, Refraction of geodesics by
impulsive spherical gravitational waves in constant-curvature
spacetimes with a cosmological constant, Phys. Rev. D 81,
124035 (2010).

[51] J. Podolsky, C. Sdmann, R. Steinbauer, and R. Svarc, The
global uniqueness and C'-regularity of geodesics in ex-
panding impulsive gravitational waves, Classical Quantum
Gravity 33, 195010 (2016).

[52] P. M. Zhang, C. Duval, G. W. Gibbons, and P. A. Horvathy,
The memory effect for plane gravitational waves, Phys. Lett.
B 772, 743 (2017).

[53] P. M. Zhang, C. Duval, G. W. Gibbons, and P. A. Horvathy,
Velocity memory effect for polarized gravitational waves,
J. Cosmol. Astropart. Phys. 05 (2018) 030.

[54] S. Pasterski, A. Puhm, and E. Trevisani, Revisiting the
conformally soft sector with celestial diamonds, J. High
Energy Phys. 11 (2021) 143.

[55] L. Donnay, A. Fiorucci, Y. Herfray, and R. Ruzziconi,
Carrollian perspective on celestial holography, Phys. Rev.
Lett. 129, 071602 (2022).

[56] L. Freidel, D. Pranzetti, and A.-M. Raclariu, A discrete basis
for celestial holography, arXiv:2212.12469.

[57] D. Kapec, V. Lysov, S. Pasterski, and A. Strominger,
Semiclassical Virasoro symmetry of the quantum gravity
S-matrix, J. High Energy Phys. 08 (2014) 058.

[58] A. Fotopoulos and T. R. Taylor, Primary fields in celestial
CFT, J. High Energy Phys. 10 (2019) 167.

[59] T. He, D. Kapec, A.-M. Raclariu, and A. Strominger, Loop-
corrected Virasoro symmetry of 4D quantum gravity,
J. High Energy Phys. 08 (2017) 050.

[60] L. Donnay, K. Nguyen, and R. Ruzziconi, Loop-corrected
subleading soft theorem and the celestial stress tensor,
J. High Energy Phys. 09 (2022) 063.

[61] S. Pasterski, A comment on loop corrections to the celestial
stress tensor, J. High Energy Phys. 01 (2023) 025.

[62] M. Campiglia and A. Laddha, BMS algebra, double soft
theorems, and all that, arXiv:2106.14717.

[63] M. Campiglia and J. Peraza, Generalized BMS charge
algebra, Phys. Rev. D 101, 104039 (2020).

[64] E. Himwich, S. A. Narayanan, M. Pate, N. Paul, and A.
Strominger, The soft S-matrix in gravity, J. High Energy
Phys. 09 (2020) 129.

[65] K. Nguyen and J. Salzer, The effective action of super-
rotation modes, J. High Energy Phys. 02 (2021) 108.

[66] K. Nguyen and J. Salzer, Celestial IR divergences and the
effective action of supertranslation modes, J. High Energy
Phys. 09 (2021) 144.

[67] V. Balasubramanian and P. Kraus, A stress tensor for anti-de
Sitter gravity, Commun. Math. Phys. 208, 413 (1999).

[68] K. Nguyen, Schwarzian transformations at null infinity,
Proc. Sci. CORFU2021 (2022) 133.

[69] S. Pasterski and H. Verlinde, Chaos in celestial CFT, J. High
Energy Phys. 08 (2022) 106.

[70] J. Cotler, N. Miller, and A. Strominger, An integer
basis for celestial amplitudes, J. High Energy Phys. 08
(2023) 192.

[71] R. Bhardwaj, L. Lippstreu, L. Ren, M. Spradlin, A.
Yelleshpur Srikant, and A. Volovich, Loop-level gluon
OPEs in celestial holography, J. High Energy Phys. 11
(2022) 171.

[72] A.Bagchi, S. Detournay, and D. Grumiller, Flat-space chiral
gravity, Phys. Rev. Lett. 109, 151301 (2012).

[73] G. Barnich, Entropy of three-dimensional asymptoti-
cally flat cosmological solutions, J. High Energy Phys.
10 (2012) 095.

[74] A. Bagchi, S. Detournay, R. Fareghbal, and J. Simén,
Holography of 3D flat cosmological horizons, Phys. Rev.
Lett. 110, 141302 (2013).

[75] A.Bagchi, S. Detournay, D. Grumiller, and J. Simon, Cosmic
evolution from phase transition of three-dimensional flat
space, Phys. Rev. Lett. 111, 181301 (2013).

[76] A. Bagchi, R. Basu, D. Grumiller, and M. Riegler, Entan-
glement entropy in Galilean conformal field theories and flat
holography, Phys. Rev. Lett. 114, 111602 (2015).

[77] A. Bagchi, D. Grumiller, and W. Merbis, Stress tensor
correlators in three-dimensional gravity, Phys. Rev. D 93,
061502 (2016).

[78] A. Campoleoni, H. A. Gonzalez, B. Oblak, and M. Riegler,
BMS modules in three dimensions, Int. J. Mod. Phys. A 31,
1650068 (2016).

[79] A. Bagchi, M. Gary, and Zodinmawia, Bondi-Metzner-
Sachs bootstrap, Phys. Rev. D 96, 025007 (2017).

[80] H. Jiang, W. Song, and Q. Wen, Entanglement entropy in
flat holography, J. High Energy Phys. 07 (2017) 142.

[81] E. Hijano, Semi-classical BMS5 blocks and flat holography,
J. High Energy Phys. 10 (2018) 044.

[82] D. Grumiller, P. Parekh, and M. Riegler, Local quantum
energy conditions in non-Lorentz-invariant quantum field
theories, Phys. Rev. Lett. 123, 121602 (2019).

[83] A. Campoleoni, L. Ciambelli, A. Delfante, C. Marteau,
P.M. Petropoulos, and R. Ruzziconi, Holographic
Lorentz and Carroll frames, J. High Energy Phys. 12
(2022) 007.

[84] A. Bagchi, S. Banerjee, R. Basu, and S. Dutta, Scattering
amplitudes: Celestial and Carrollian, Phys. Rev. Lett. 128,
241601 (2022).

[85] A. Bagchi, P. Dhivakar, and S. Dutta, AdS Witten dia-
grams to Carrollian correlators, J. High Energy Phys. 04
(2023) 135.

L021902-7


https://doi.org/10.1007/JHEP01(2022)077
https://doi.org/10.1103/PhysRevD.67.064013
https://doi.org/10.1103/PhysRevD.67.064013
https://doi.org/10.1103/PhysRevD.81.124035
https://doi.org/10.1103/PhysRevD.81.124035
https://doi.org/10.1088/0264-9381/33/19/195010
https://doi.org/10.1088/0264-9381/33/19/195010
https://doi.org/10.1016/j.physletb.2017.07.050
https://doi.org/10.1016/j.physletb.2017.07.050
https://doi.org/10.1088/1475-7516/2018/05/030
https://doi.org/10.1007/JHEP11(2021)143
https://doi.org/10.1007/JHEP11(2021)143
https://doi.org/10.1103/PhysRevLett.129.071602
https://doi.org/10.1103/PhysRevLett.129.071602
https://arXiv.org/abs/2212.12469
https://doi.org/10.1007/JHEP08(2014)058
https://doi.org/10.1007/JHEP10(2019)167
https://doi.org/10.1007/JHEP08(2017)050
https://doi.org/10.1007/JHEP09(2022)063
https://doi.org/10.1007/JHEP01(2023)025
https://arXiv.org/abs/2106.14717
https://doi.org/10.1103/PhysRevD.101.104039
https://doi.org/10.1007/JHEP09(2020)129
https://doi.org/10.1007/JHEP09(2020)129
https://doi.org/10.1007/JHEP02(2021)108
https://doi.org/10.1007/JHEP09(2021)144
https://doi.org/10.1007/JHEP09(2021)144
https://doi.org/10.1007/s002200050764
https://doi.org/10.22323/1.406.0133
https://doi.org/10.1007/JHEP08(2022)106
https://doi.org/10.1007/JHEP08(2022)106
https://doi.org/10.1007/JHEP08(2023)192
https://doi.org/10.1007/JHEP08(2023)192
https://doi.org/10.1007/JHEP11(2022)171
https://doi.org/10.1007/JHEP11(2022)171
https://doi.org/10.1103/PhysRevLett.109.151301
https://doi.org/10.1007/JHEP10(2012)095
https://doi.org/10.1007/JHEP10(2012)095
https://doi.org/10.1103/PhysRevLett.110.141302
https://doi.org/10.1103/PhysRevLett.110.141302
https://doi.org/10.1103/PhysRevLett.111.181301
https://doi.org/10.1103/PhysRevLett.114.111602
https://doi.org/10.1103/PhysRevD.93.061502
https://doi.org/10.1103/PhysRevD.93.061502
https://doi.org/10.1142/S0217751X16500688
https://doi.org/10.1142/S0217751X16500688
https://doi.org/10.1103/PhysRevD.96.025007
https://doi.org/10.1007/JHEP07(2017)142
https://doi.org/10.1007/JHEP10(2018)044
https://doi.org/10.1103/PhysRevLett.123.121602
https://doi.org/10.1007/JHEP12(2022)007
https://doi.org/10.1007/JHEP12(2022)007
https://doi.org/10.1103/PhysRevLett.128.241601
https://doi.org/10.1103/PhysRevLett.128.241601
https://doi.org/10.1007/JHEP04(2023)135
https://doi.org/10.1007/JHEP04(2023)135

