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We show that very-long-baseline-interferometry (VLBI) observations of supermassive black holes will
allow us to test the fundamental principles of general relativity (GR). GR is based on the universality of
gravity and Einstein’s equivalence principle (EEP). However, EEP is not a basic principle of physics but an
empirical fact. Nonminimal coupling (NMC) of electromagnetic fields violates EEP, and their effects
manifest in the strong-gravity regime. Hence, VLBI observations of black holes provide an opportunity to
test NMC in the strong-gravity regime. To the leading order in the spin parameter, we explicitly show that
the NMC of the electromagnetic field introduces observable modifications to the black hole image. In
addition, we find that the size of the photon rings varies by ∼3rH, which corresponds to ∼30 μas for
Sagittarius A� and ∼23 μas for M87. VLBI telescopes are expected to attain a resolution of ∼5 μas in the
near future. However, direct detection of photon ring will require the resolution of ∼1 μas for M87, which
can potentially be probed by the space-based Event Horizon Explorer.
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Introduction. Einstein’s general relativity (GR) has
been tested at solar system scales and in the weak field
limit [1–3]. Until recently, strong-gravity regime observa-
tions were difficult. The detection of gravitational waves by
the LIGO-VIRGO-KAGRA collaboration [4–6] and the
imaging of the black hole shadow by the Event Horizon
Telescope (EHT) using very-long-baseline interferometry
(VLBI) [7–9] offer fresh possibilities to search for devia-
tions from GR in the strong-gravity regime.
GR is based on the universality of gravity and Einstein’s

equivalence principle (EEP) [3,10]. EEP specifies the
interaction between gravity and all other matter fields
[11–13]. EEP is divided into three subprinciples: the weak
EP (the universality of free fall), local Lorentz invariance,
and local position invariance. EEP is satisfied if all these
three subprinciples are satisfied [3].
However, EEP is not a basic principle of physics but an

empirical fact [14]. Hence, one way to assess the validity
of GR is to test EEP. In the weak field limit, the weak
EP has been tested in several parts in 1016 using the torsion
balance, lunar-laser ranging, and space missions like
MicroSCOPE [15–27]. Experiments using laser-cooled
trapped atoms to look for variations in the relative frequen-
cies of different types of atoms as the Earth rotates
around the mean rest frame of the universe have placed
very strict constraints on local Lorentz invariance [1,28–30].
Additionally, gravitational redshift experiments and tests of

variations in fundamental constants have been used to
examine local position invariance [31].
While the tests of EP have improved over the years,

contamination by complex physics is one of the primary
challenges of testing GR in the strong-gravity regime. This
work aims to develop an observational test of GR by
investigating the potential violation of EEP in future VLBI
observations. Although the black hole image depends on
the details of the accretion flow, two signatures of the image
are unique [32]: First, regardless of the black hole’s spin,
the horizon casts a shadow on the image of the source at
around

ffiffiffiffiffi
27

p
GM=c2 [33]. Second, due to the high velocity

of the accreting plasma and the effects of gravitational
lensing, the image brightness of the accretion flow is highly
nonuniform [34]. We show that nonminimal coupling
(NMC) of the electromagnetic field distinctly modifies
these two signatures [35–39].
EEP excludes products between curvature and matter

fields (aka NMC) in action [40]. One way EEP violation
occurs is due to NMC [35–37]. Interestingly, NMC is
required for consistency of the standard model in curved
space-time [38,39]. NMC is unique if we demand at most
second derivatives of gμν, and the electromagnetic potential
(Aμ) appears in the field equations [37]. The effects due to
NMC manifest in the strong-gravity regime, such as in the
cores of neutron stars or close to the black hole horizon.
The curvature effects cannot be ruled out despite the
extreme precision of current experiments on the electro-
magnetic field [30,41,42].
VLBI observations of black holes allow for testing NMC

as their effects are substantial near black hole horizons [43].
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EHT image shows glowing gas circling the black hole at
high speed and a black hole shadow caused by lensing and
photon capture [7,9]. Future VLBI telescopes, including
the space-based projects [44] with the help of advanced
data analysis techniques, and imaging techniques such as
superresolution are expected to detect and observe the
unstable photon circular orbit as a photon ring [45–48].
Furthermore, as we show explicitly, NMC will lead to
modified dispersion relations leading to different propa-
gation for the two polarization modes. We also analyze the
difference in the resulting black hole shadow for the two
modes compared to GR for Schwarzschild and slowly
rotating Kerr.
First, we analyze the photon trajectories in the

Schwarzschild black hole and observe photon flux distri-
bution for each mode that determines the properties of the
black hole image. We show that, for one polarization
mode, the horizon casts a shadow of radius greater thanffiffiffiffiffi
27

p
GM=c2 on the source image. For the other polarization

mode, it is smaller than
ffiffiffiffiffi
27

p
GM=c2. Later, in the case of

the Kerr black hole, we show that the size of the observed
black hole shadow is largely independent of the spin of the
black hole. The effect of NMC on the shadow size follows a
similar trend as in the case of Schwarzschild. [By shadow,
we mean the interior region of the observed photon ring.]
Finally, we discuss the possibility of constraining the NMC
constant using future VLBI observations.
[Variables, like ðr; t; s; aÞ, used below are dimensionless.

They are related to dimensionful variables ðr̃; t̃; s̃; ãÞ by a
factor 1=rH where rH ¼ 2GM=c2 is the Schwarzschild
radius. The rotational parameter (a) is twice the dimension-
less rotational parameter used in the literature. Over-dot
denotes derivative w.r.t. dimensionless affine parameter s
and prime denotes derivative w.r.t. r.]

Implications of NMC for Schwarzschild. As mentioned
above, NMC is unique if we demand at most second
derivatives of gμν and Aμ appear in the field equations [37].
For the Ricci-flat space-times, NMC electromagnetic (test)
field action is [35,49]

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p h
−FμνFμν þ 2λ̃RμναβFμνFαβ

i
=4; ð1Þ

where λ̃ is the dimensionful NMC constant. The resulting
equation of motion is:

∇νFμν ¼ 2λ̃½Rμνρσð∇νFρσÞ þ ð∇ρR
μ
σÞFρσ�: ð2Þ

In the local inertial (tetrad) frame basis, the above equation
leads to the following dispersion relation [49]:

�
pðμÞpðμÞδ

ðjÞ
ðkÞ þ 4λ̃

�
pðjÞ

pð0Þ
ϵð0ÞðkÞ þ ϵðjÞðkÞ

��
Fð0ÞðkÞ ¼ 0; ð3Þ

where pðμÞ is the photon momenta in the tetrad basis and

ϵðαÞðβÞ ≡ RðαÞðμÞðνÞðβÞpðμÞpðνÞ: ð4Þ

Note that the above expression is valid for any Ricci-flat
space-time. However, the tetrad basis depends on the
background geometry, leading to modified dispersion
relations for different space-times.
To discern the effects of NMC on the photon orbit and

the flux, we first consider the Schwarzschild background:

ds2 ¼ −fðrÞdt2 þ dr2=fðrÞ þ r2dΩ2; ð5Þ

where, fðrÞ ≔ 1 − 1=r and dΩ2 is the metric on unit S2. In
these coordinates, the conserved quantities—energy (E)
and angular momentum (L)—are

E ¼ fðrÞṫ; L ¼ r2ϕ̇: ð6Þ

Substituting the above metric in Eq. (3) and using the tetrad
basis defined [in Eq. (31.4a)] in Ref. [10], the modified
dispersion relation for the two polarization modes of the
photon (denoted by 0 þ 0 and 0 − 0) is

p2 ¼ C�p2
ðϕÞ; Cþ ¼ 6λ

2λþ r3
; C− ¼ 6λ

4λ − r3
; ð7Þ

where p2 ¼ pμpμ, and λ ¼ λ̃=r2H is dimensionless. In the
equatorial plane, Eq. (7) reduces to:

ṙ2 ¼ E2
�
1 − b2ð1 − C�ÞfðrÞ=r2

�
; ð8Þ

where b ¼ L=E denotes the impact parameter. The photon
circular orbit satisfy two independent conditions [50–52]:
ṙ ¼ 0 and ̈r ¼ 0. It is not easy to obtain an exact analytical
solution for these equations; hence, we numerically obtain
the radius (rc) of the circular orbits and the corresponding
impact parameter bc. (Using the perturbative approach, one
can obtain rc and bc. These are consistent with numerical
results. For details, see the Supplemental Material [53].)
Figure 1 contains the plot of r (solid line) and b (dotted

line) corresponding to the circular orbit for the þ;− modes
as functions of λ. For a Schwarzchild black hole, bc denotes
the position of the photon ring as seen by a distant observer.
As mentioned, we consider the interior of the photon ring as
the shadow of the black hole. However, in general
scenarios, depending on the characteristics of the accretion
process that acts as the light source around the black hole,
the observed shadow consists of a region larger than the
photon ring. The black hole shadow with NMC for
Novikov-Thorne accretion model [54] (with low numerical
accuracy) is discussed in the Supplemental Material [53].
Figures 2 and 3 in [53] contain black hole image for the two
accretion flows.
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From the above figure, we infer the following: First, for
both (0 þ 0 and 0 − 0) modes, rc and bc intersect at λ ¼ 0.
Second, there is no observable photon ring (rc > rH) for
0 þ 0 mode in the case of λ < −0.5 and 0 − 0 mode in the
case of λ > 0.25. Third, for 0 þ 0 mode, when λ > 0 radius
of the photon sphere and the corresponding impact param-
eter are larger than the minimally coupled case, resulting in
a larger observed shadow. When λ < 0, 0 þ 0 mode forms a
smaller shadow. This trend is reversed in the case of 0 − 0
mode, where λ > 0 leads to the formation of a smaller
shadow, and λ < 0 results in a larger shadow. Lastly, the
perturbative approach to obtain rc and bc matches with
numerical results for jλj < 0.2 (See Supplemental Material
[53]). Later, we use this approach for Kerr to obtain rc and
bc. As we show below, the above results for Schwarzschild
continue to hold for Kerr.
The probability of photons from the unstable circular

orbit reaching the distant observer, hence forming a bright
ring in the observer’s image plane with its position given
by bc [50,51]. We now obtain the flux for the NMC photons
by considering radially free-falling optically thin light-
emitting accretion flow [33]. For such a system, photon
flux as observed at a point ðx; yÞ in the observer’s image
plane is [52]

Fðx; yÞ ∝
Z

dr g3pt=½jprjr2�; ð9Þ

where g≡ pαuαobs=ðpβu
β
eÞ is the redshift factor. uobs and ue

are the four velocities of distant observer and accreting gas,
respectively, and are given by:

uobs ¼ ð1; 0; 0; 0Þ; ue ¼
�
1=fðrÞ;−1= ffiffiffi

r
p

; 0; 0
�
: ð10Þ

The impact parameter of the photon trajectory is related to
the image plane coordinates by b2 ¼ x2 þ y2.
In Fig. 2, we plot the observed flux as a function of b for

two specific values of λ. From the figure, we infer the
following: First, the spikes in the observed flux (scaled by a
constant) correspond to the observed photon ring for the

two NMC modes and minimally coupled photons. Second,
in the case of minimally coupled photons, it is known that
the horizon casts a shadow on the image of the source atffiffiffiffiffi
27

p
GM=c2 ¼ ffiffiffiffiffiffiffiffiffiffi

27=4
p

rH [33]. However, for λ > 0 and þ
mode, the shadow radius is greater than

ffiffiffiffiffiffiffiffiffiffi
27=4

p
rH and for

−mode, the shadow radius is smaller. This trend is reversed
for λ < 0. Third, we have not imposed the circular orbit
conditions to obtain the flux distribution. These results,
including the observed position of the photon ring, are
consistent with Fig. 1. Lastly, we also see that the
brightness and the position of the lensing ring are affected
by the nonminimal coupling [34]. For λ < 0 and þ mode
(and λ > 0 and −mode), the lensing ring is more prominent
as compared to other cases. Hence, the NMC leads
to two distinct observable effects in Schwarzschild—
shadow radius changes and lensing ring characteristics
are modified.
An attentive reader might ask: How do the above results

translate for Kerr space-time, describing the supermassive
black holes at the galactic centers? As mentioned earlier,
regardless of the black hole’s spin, the horizon casts a
shadow on the image of the source at around

ffiffiffiffiffiffiffiffiffiffi
27=4

p
rH

[33]. Noting that the black hole spin is not tightly con-
strained [55,56], we show that the shadow radius of NMC
photons in a slowly rotating black hole shows the same
trend as Schwarzschild space-time.

Implications of NMC for Kerr. In dimensionless rational
polynomial coordinates ðt; r; ζ½¼ cos θ�;ϕÞ, the Kerr space-
time is [57]

ds2 ¼ −
Δ
ρ2

½dt − að1 − ζ2Þdϕ�2 þ ρ2

Δ
dr2 þ ρ2

1 − ζ2
dζ2

þ ð1 − ζ2Þ
ρ2

½ðr2 þ a2Þdϕ − adt�2; ð11Þ

where a is dimensionless spin parameter, Δ ¼ a2 þ r2 − r,
and ρ2 ¼ r2 þ a2ζ2. Substituting the above metric in
Eq. (3) and using the tetrad basis defined in Eq. (2.9) in
Ref. [58], the modified dispersion relation for the two
modes of the photon, for arbitrary a, is

FIG. 2. Observed flux as a function of impact parameter b for
0 þ 0ðC�Þ, and minimally coupled ðC0Þ modes. The dashed lines
are the position of the photon ring (cf. Fig. 1).

FIG. 1. Position of the photon ring r� and corresponding
impact parameter b� as functions of the coupling constant λ along
with the values corresponding to the minimally coupled (MC)
mode (r0, b0) and the horizon radius rH .
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p2 ¼
6ðp2

ðζÞ þ p2
ðϕÞÞλρ3

3λρ3 ∓ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ12 þ 9λ2ρ6 þ 2λrΓ½ρ2 − 4λrΓ�

p ; ð12Þ

where Γ ¼ ð3ρ2 − 4r2Þ and the relation between momenta
in tetrad and coordinate bases is

p2 ¼ p2
r
Δ
ρ2

−
ða2E − aLþ Er2Þ2

Δρ2
þ p2

ðϕÞ þ p2
ðζÞ;

p2
ðϕÞ þ p2

ðζÞ ¼ p2
ζ

1 − ζ2

ρ2
þ ðL − aEð1 − ζ2ÞÞ2

ð1 − ζ2Þρ2 : ð13Þ

Unlike the minimally coupled case, the above dispersion
relation lacks separability in r and ζ. However, this does not
affect the analysis of the photon trajectory in the equatorial
plane. For the � photon modes, photon trajectory in the
equatorial plane is determined by

ṙ2�
E2

¼ 1þ a2 − b2

r2
þ ða − bÞ2

r2

�
1

r
þ C�

�
a2

r2
− fðrÞ

��
: ð14Þ

Like in the Schwarzschild, the above equations cannot be
solved analytically for the photon circular orbit. However,
we can perturbatively solve the same by expanding
the variables to any order in λ and a. As shown in In
the a → 0 limit, the perturbative solutions are consistent
with the above results for Schwarzschild (see Supplemental
Material [53]). In λ → 0 limit, the perturbative solutions
reduce to Kerr results for minimal coupling [50].

Black hole shadow by a slowly rotating Kerr. One must
look at the photon trajectory around the black hole to
analyze the shadow properties. Since the modified
dispersion relation for Kerr (13) is not variable separable,
obtaining analytical solutions for the photon trajectory is
difficult. Interestingly, for a slowly rotating black hole at
linear order in the spin parameter (a), the dispersion
relation (13) can be separated and are given by:

p2
θ þ

b2E2

sin2θ
¼ E2C∓

fðrÞ
�
2ab

�
1 −

1

rC∓

�
−

r2

C�

�

þ p2
r
C∓
C�

r2fðrÞ ¼ k�E2; ð15Þ

where C� are defined in Eq. (7) and k� are the separation
constants. Corresponding radial motion of the nonmini-
mally coupled photon (0 � 0 modes) is

ṙ2� ¼ E2

�
1þ C�

r2C∓

�
k�fðrÞ − 2ab

	
C∓ −

1

r


��
: ð16Þ

As in Schwarzschild space-time, we can obtain the circular
orbit of the photon by imposing the conditions ṙ ¼ 0 and
̈r ¼ 0. For the two modes, we get the following:

b� ¼ r4fðrÞ½C∓C0� − C�C0∓� − r2½2rfðrÞ − 1�C�C∓
2aC�2ðC∓ − r2fðrÞC0∓ − 1Þ

����
r¼rc

k� ¼ r2½rC�C0∓ þ r2fðrÞC∓C0� þ C∓C�½3 − 2rC∓��
C�2ðC∓ − r2fðrÞC0∓ − 1Þ

����
r¼rc

:

ð17Þ

The above values of b and k (in terms of the radius rc of the
circular orbits) determine the shape of the black hole
shadow on the image plane of a distant observer. Before
we proceed with the black hole shadow, we want to
mention the following points about the validity of the
slowly rotating approximation for the supermassive black
holes: First, the spin of the supermassive black holes
observed by EHT is not tightly constrained [55,56].
Second, for minimal coupling, the horizon casts a shadow
on the image of the source at around

ffiffiffiffiffiffiffiffiffiffi
27=4

p
rH [33],

regardless of the black hole’s spin.
Image of the photon ring seen by a distant observer can

be described by the celestial coordinates ðx; yÞ [50,51].
These celestial coordinates are defined using the momen-
tum components of photon measured by a distant locally
nonrotating observer (LNRO) [50,51]:

x ¼ −½rpðϕÞ=pðtÞ�r→∞; y ¼ ½rpðθÞ=pðtÞ�r→∞: ð18Þ

Using the relation between the nonzero components of the
inverse tetrad in Boyer-Linquist coordinate and LNRO
frames (cf. Eq. (3.2) in Ref. [51]), the celestial coordinates
in the distant LNRO’s image plane are

x ¼ −b= sin θ0; y ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k − b2= sin2 θ0

q
; ð19Þ

where θ0 is the inclination angle of the observer with
respect to the symmetry axis of the black hole. Using
Eq. (17), one can evaluate the celestial coordinates ðx; yÞ
corresponding to photon circular orbit with radius rc.
Collection of points ðxðrcÞ; yðrcÞÞ for all possible values
of rc will form the outline of the black hole shadow seen by
a distant observer. The values of all possible rc are given by
the conditions ImðyðrcÞÞ ¼ 0 and rc ≥ rh, where rh is the
radius of the outer horizon of the black hole.
Figure 3 contains the outline of the shadow of a slowly

rotating black hole observed by a distant LNRO for
different photon modes for different λ values. This is the
key result of this work, regarding which we want to
mention the following points: First, w.r.t λ, we see a similar
trend as in the case of the Schwarzschild space-time.
Observable photon circular orbits (rc > rh) do not form
if λ ≤ −0.5 for 0 þ 0 mode and λ ≥ 0.25 for 0 − 0 mode.
Second, for λ > 0 the shadow radius is greater thanffiffiffiffiffiffiffiffiffiffi
27=4

p
rH for the 0 þ 0 mode. The 0 þ 0 mode forms a

smaller shadow when λ < 0. This trend is reversed in the
case of 0 − 0 mode; for λ > 0 leads to the formation of a
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smaller shadow, and λ < 0 results in the shadow radius
greater than

ffiffiffiffiffiffiffiffiffiffi
27=4

p
rH. Third, repeating the analysis for

a ¼ 0.1 and a ¼ 0.15 shows that the spin a does not have a
significant effect on the shadow radius, even though there is
a visible effect on the shadow shape (see Fig. 4 in
Supplemental Material [53]). This is similar to the results
of the minimally coupled case for Kerr space-time [33].
Hence we expect that the predicted deviation in the shadow
radius due to the nonminimal coupling will be similar for
higher-spin black holes. However, this needs to be verified
by numerics.
Fourth, the current resolution of EHT—one of the

popular VLBI telescopes—has a resolution of 24 μas [7].
This translates to 2.4rH for Sagittarius A� and 3.2rH for
M87, in the image plane of the observer [8]. This is not
good enough for the direct detection of the photon ring in
the case of an equatorial accretion disk with the inner radius
of rISCO ¼ 3rH. However, as discussed below, the reso-
lution is expected to improve in future missions.
Lastly, the difference between the shadow widths for the

nonminimally coupled modes and minimally coupled case,
as well as the difference between theþ and −modes for the
two nearly limiting values of λ, are
(1) Deviation of shadow size for λ ¼ −0.4999

Δx−;0¼1.55; Δxþ;0¼−3.03; Δxþ;−¼−4.58:

(2) Deviation of shadow size for λ ¼ 0.2499

Δx−;0¼−2.16; Δxþ;0¼0.98; Δxþ;−¼3.14:

Thus, we see that even though the current resolution of
EHT is insufficient to directly detect the photon ring, it is
expected that the future VLBI missions will be able to
constrain the nonminimal coupling. Proposed projects
include the Event Horizon Explorer, which aims to
add a space-based node to the EHT to detect and
study the photon ring [44]. Advancements in imaging
techniques such as superresolution and hybrid imaging
are expected to improve the resolution to 5 μas by the

current estimates [48]. This, along with the higher-fre-
quency observations (such as 345 GHz), can improve the
coverage, along with the improvements in the data analysis
techniques can enhance the instrumental resolution in the
near future [45–47,59,60].
Analyzing the difference between the shadows corre-

sponding to the þ and − modes requires more information
regarding their polarization, which we plan to analyze in a
future work, along with the effect of NMC on the black hole
shadow for a variety of accretion flow models. For instance,
the black hole shadow with NMC for Novikov-Thorne
accretion model [54] (with low numerical accuracy) is
discussed in Ref. [53].

Conclusions. EEP is not a basic principle of physics but an
empirical fact [14]. Therefore, testing EEP will assess the
validity of GR. NMC of electromagnetic fields violates
EEP and their effects manifest in the strong-gravity regime.
Hence, VLBI observations of black hole image provide an
opportunity to test NMC in the strong-gravity regime. We
explicitly showed that NMC of the electromagnetic field
modifies the black hole image in two ways: First, in linear
order in the spin parameter a, the horizon casts a shadow of
radius greater than

ffiffiffiffiffiffiffiffiffiffi
27=4

p
rH on the image of the source

for one mode. For the other mode, it is smaller thanffiffiffiffiffiffiffiffiffiffi
27=4

p
rH. Second, the brightness and the position of the

lensing ring are affected by the nonminimal coupling. For
λ < 0 and þ mode (and λ > 0 and − mode), the lensing
ring is more prominent as compared to other cases.
Interestingly, the black hole image observations can pro-
vide a weak bound on λ. The observable photon ring does
not form for λ < −0.5 for þ mode and for λ > 0.25 for the
−mode. EEP constraint we predict is different from the one
reported Gravity collaboration [61]. Here our interest is to
constrain NMC constant while the authors constrain the
violation of EEP via atomic transitions.
For Kerr space-time, the dispersion relation of the NMC

photon is more complicated and lacks separability in r and
ζ. Hence, in the current work, we considered slowly
rotating black holes at linear order in the rotational
parameter a. Our analysis is valid for a ≤ 0.20
(ã ≤ 0.4M). In order to compare with ngEHT observation
for higher a, we need to solve Eq. (13) numerically for
higher spins. This is currently in progress.
EHT has detected high linear polarization fractions

ð2 − −15%Þ and large rotation measures (> 103) for Sgr
A� andM87 [62,63]. EHT has associated linear polarization
due to the strong magnetic field. Our analysis shows that
the nonminimal coupling of the electromagnetic field
affects the two polarization modes of the photon distinctly.
Thus, our analysis suggests that some percentage of the
linear polarization seen in EHT observations can be due to
NMC. Note that the synchrotron emission can contribute to
the polarized image, which can complicate the proposed
measurements [64]. Next, we plan to do a detailed

FIG. 3. Outline of the shadow of a slowly rotating black hole
(a ¼ 0.2) observed by a distant LNRO for � modes for
λ ¼ −0.4999, 0.2499, and 0 (MC).
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numerical analysis to investigate the polarization effects of
NMC and possible constraints from future VLBI projects
such as ngEHT and Event Horizon Explorer.
Since NMC introduces direct interaction between cur-

vature and electromagnetic field, our analysis is indepen-
dent of the accretion flow. Hence, we have considered
radially free-falling optically thin light-emitting accretion
flow mode. However, to establish the robustness of the
NMC signatures on the black hole image, it is imperative to
extend the analysis for other types of accretion models, like

Keplerian accretion disk, thin infinite accretion disk, and
Ion torus [65,66]. This is currently under investigation.
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