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We present a novel approach to solving combinatorial assignment problems in particle physics. The
correct assignment of decay products to parent particles is achieved in a model-agnostic fashion by
introducing a neural network architecture, Passwd-ABC, which combines a custom layer based on attention
mechanisms and dual autoencoders. We demonstrate how the network, trained purely on background
events in an unsupervised setting, is capable of reconstructing correctly hypothetical new particles
regardless of their mass, decay multiplicity, and substructure, and produces simultaneously an anomaly
score that can be used to efficiently suppress the background. This model allows the extension of the suite
of searches for localized excesses to include nonresonant particle pair production where the reconstruction
of the two resonant masses is thwarted by combinatorics.
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Searches for beyond the Standard Model (BSM) physics
at the LHC are producing stringent bounds on the most
theoretically appealing models [1–7]. This has led to a
paradigm shift in the program toward more signature-based
rather than model-based searches. The archetype of this
approach is the search for an excess in the diobject mass
spectrum, which has provided a fruitful history of discov-
eries, from the J=ψ meson [8,9] to the Higgs boson [10,11].
An important shortcoming of this approach is that it is
restricted to models with resonant production of a single
particle, from which all the relevant final-state objects are
assumed to originate. However, many BSM models lead to
nonresonant pair production which faces the additional
challenge of assigning the decay products to parent
particles in order to reconstruct masses. This challenge
is further exacerbated in decays to high-multiplicity final
states. Heuristic approaches have been applied in final
states with low object multiplicities, such as dijet pairs or
di-b-jet pairs [12–15], where all possible combinations can
be tested. Some common choices are minimizing the sum
of distances or the mass asymmetry. These approaches do
not scale easily to higher object multiplicity as the amount

of combinations grows in a factorial way, leading to a
worsening in the resolution of the reconstructed mass
together with a rapid increase in complexity beyond
CPU capacity. Though machine-learning approaches have
been proposed to tackle this problem, they always start with
a fixed signal model assumption [16–21]. This restricts the
model to learn the specific multiplicity, structure and
intermediate resonances of the decay. Furthermore, by
imposing the signal hypothesis in the final state topology,
the background spectrum is sculpted to become strongly
signal-like.
In this paper, we present a methodology to reconstruct

the four-momenta of pair-produced particles by assigning
decay products to parent particles without knowledge of the
decay mode. The only assumption embedded in the model
is pair-production of new particles with identical decays.
This is accomplished by training a custom neural network
(NN) directly on data in an unsupervised approach, out-
putting an object-to-parent assignment and an anomaly
score. Beyond this, the significant computational innova-
tions are:

(i) A custom permutation equivariant and easily scal-
able NN layer tailored to address combinatorial
assignment problems based on the attention mecha-
nism [22], dubbed attention-based combinatorial
layer, or ABC layer. The ABC layer provides a
per-object probability to be assigned to a certain
category.

(ii) A model based on ABC layers, named particle
assignment for unknown decays, Passwd-ABC. It is
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trained in an unsupervised setting directly on data
events, without any signal hypothesis or input from
simulation, and is capable of assigning accurately
the decay products of pair-produced particles. The
performance of the model is shown to be insensitive
to the BSM particle masses and decay structure, and
capable of reconstructing high-multiplicity final
states.

Formally, given an input set X ¼ fx1;…; xNg and a
category set Y ¼ fy1;…; yCg, the goal is to assign to each
input x∈X a label y∈Y, lðxiÞ ¼ yj. This defines C
exclusive subsets Pk ¼ fx∈X∶lðxÞ ¼ yk; ∀ x∈Xg.
A combinatorial assignment is a function f∶X →A¼
f0;1gN×C, and for the correct assignment aij¼ I½lðxiÞ¼yj�,
where I½·� is an indicator function that is one when · is true
and zero otherwise. Our goal is then to build a model that
provides a differentiable approximation to f ∼ f0∶ X →
A0 ¼ ½0; 1�N×C, which can be mapped back to the hard com-
binatorial assignment if desired via aij¼ argmaxj∈Cða0ijÞ.
In our setup, each of the two parent particles is considered a
category (P1, P2). An additional category can be introduced
to account for objects not originating from the decay
products, such as initial-state radiation (ISR), underlying
event, or pileup. Setups with a higher number of categories,
for example targeting four-top production, are also possible
but not considered here for simplicity. The parent particles
are reconstructed as pj ¼

P
N
i aTij · xi, which also enables a

differentiable approximation to the assignment of objects to
parent candidates by introducing a0 instead. Other differ-
entiable approximations for the object assignment such as
Gumbel-Softmax [23,24] were tested and found to yield
worse performance.
If a signal model is assumed, the assignment problem

can be framed in a supervised learning approach. Objects
can be assigned a label based on truth-level information and
the loss function is simply the binary or multiclass cross-
entropy loss summed over all objects. This strategy,
adopted by previous works [16–21], requires training the
model on signal simulation, inducing a strong model
dependence and shaping of background distributions.
In order to adapt the problem to an unsupervised learning

strategy, the problem is reframed as finding the combina-
torial assignment such that the similarity between the two
particle sets is maximized, P1 ≈ P2. The choice of sim-
ilarity metric is therefore the key ingredient to this setup.
Different heuristic approaches have been used in the past in
analyses where the number of combinations allows for a
brute-force approach, such as the grouping with minimum

mass asymmetry, A ¼ jm1−m2j
m1þm2

. Such similarity metrics can
also be introduced in our setup which would lead to a CPU-
efficient way of approximating the result from iterating
over all combinations, but the performance of the recon-
structed variable would never surpass the heuristic
approach. Instead, as detailed below, the chosen similarity

metric is taken to be the distance between both parent
particles in a learned feature space, allowing the model to
identify and build better features to quantify the similarity.
The ABC layer and Passwd-ABC model composition are

shown in Fig. 1. The input to the model, x∈RN×I , consist
of N objects with I input features. The input objects are fed
through NNs to produce learned embeddings per object,
e ¼ ðNNðx1Þ;…;NNðxNÞÞ∈RN×E, with E the embedding
dimension. At various points in the model, the C first
embedded features per object will be softmax-ed to
represent the probability for each object to be assigned
to a given category: a0 ¼ σðe0 ⊂ eÞ∈RN×C, with σ the
softmax function acting over the category dimension.
TheABC layer consists of three individual attention blocks.

The first is an object self-attention block, after which
category probabilities are computed and candidate parents
are built in the embedded space by summing all the
input objects weighted by their category probabilities,

pðeÞ
j ¼ P

N
i a0ij

T · ei. The parent candidates are input to the
second self-attention block, followed by an object-candidate

FIG. 1. Sketch of the Passwd-ABC model and components of the
ABC layer. Multiple ABC layers are stacked followed by a final
candidate-building operation. The C first features encoding the
category probability are swapped for the mass of the candidate.
This final candidate building block is notated with an asterisk.
Red lines indicate the terms that are used to build the
reconstruction and similarity loss.
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cross-attention block. This structure allows the layer to learn
relations among objects, candidates, and object-candidate
pairs. The input and output of the ABC layer have the same
ðN;EÞ dimension, which allows multiple such layers to be
stacked. The ABC layer is permutation equivariant. This
avoids the need to arbitrarily sort the input objects and
alleviates problems in supervised training applications due to
varying class imbalances at each input position.
Depending on the use case, another candidate-building

block can be appended as a last step, summing objects in
the learned feature space or Lorentz space to obtain parent
candidate four-momenta. This architecture allows great
flexibility as the training target can be defined at the
per-object level, e.g., classification of truth-labeled objects;
at the particle candidate level in Lorentz space, e.g.,
regressing the BSM particle mass; or even mixtures of
learned features and Lorentz features as described below.
The ABC layer is used as the foundation block for Passwd-

ABC. The additional ingredient is an autoencoder block
which is applied identically to each particle candidate.
More advanced configurations of autoencoders can easily
be adapted to the network structure but are left for future
works. Particle candidates are built using the same
approach as in the ABC layer. In addition, the reconstructed
mass is added as an extra feature of the parent particle and
the category scores are dropped. The autoencoder com-
presses the dimensionality of the embedded feature space to
a latent space, z ¼ fAEencðpjÞ∶j∈Cg∈RC×L, summariz-
ing each particle candidate’s properties, and then attempts
to reconstruct the original inputs, p̂ ¼ fAEdecðzjÞ∶j∈Cg.
The distance in latent space between the two candidates,
kz1 − z2k, is used as the metric for similarity that is
required to solve the problem. Other approaches such as
minimizing the energy mover’s distance [25,26] between
the two candidates were also examined but found to have
worse performance.
The loss function used to train Passwd-ABC is

L ¼ Lreco þ Lcrossed þ LrandomðþLISRÞ
Lreco ¼ λreco · ðkp1 − p̂1k þ kp2 − p̂2kÞ

Lcrossed ¼ λcrossed · kz1 − z2k
Lrand ¼ λrand · max ð0; 1þ kz1 − z2k − kzrand1 − zrand2 kÞ
LISR ¼ λISR · ETðPISRÞ=GeV

Where Lreco is the typical autoencoder reconstruction loss
and Lcrossed is the distance between both reconstructed
particles in the autoencoder latent space. Since all of the
candidate features are learned, a simple minimization of
these two terms will lead to a collapse of zero-valued
candidate input features and latent space. This is avoided
by adding an additional term, Lrandom, based on the triplet
loss [27]. Two additional parent particles are built using a
random combination of objects, and the distance between

them is maximized. This term is implemented in the form
of a hinge loss to avoid divergences where the NN ignores
the main task and focuses on maximizing the difference
among random candidates. We observed that frequent
trainings lead to dimensional collapse [28]. Several meth-
ods were tested to mitigate the issue [29]. None yielded
significantly different results compared to the selected
training which showed no collapse. An extra term, LISR,
is introduced when the additional ISR category is consid-
ered and is simply the transverse energy, ET , of the ISR
system in units of GeV. This term is introduced to avoid all
objects being flagged as ISR which leads to perfectly
identical, and empty, parent particles. All loss terms are
multiplied with a corresponding hyperparameter to balance
the relative weight.
In order to demonstrate the generality of the approach

and to quantify the performance of the model we focus
on the multi-jet final state with varying decay structures.
We use a simplified R-parity-violating supersymmetry
model [30,31] with a nonzero baryon-number-violating
Ū D̄ D̄ coupling [32]. We consider gluino, squark, and stop
pair production (g̃, q̃, t̃) with cascade decays among
themselves or to the lightest neutralino (χ̃01). The lightest
supersymmetric particle then decays through the Ū D̄ D̄
coupling to SM quarks, leading to final states with 6 to 12
jets and different internal substructures. An example signal
is g̃ g̃ → 2 × qqχ̃01 → 2 × qqðqqqÞ. For the sake of general-
ity, and to emphasize the model-agnostic focus of this letter,
the following notation is used: XXmX → 2 × NjðMjÞ, to
denote pair-production of particle X with mass mX
decaying to N jets plus an intermediate particle, which
in turn decays to M jets, producing a final state with 2 ×
ðN þMÞ decay products. The signals, decays, and number
of final state jets considered are given in Table I, ranging
broadly over event topologies.
Simulated signal events are generated at leading-

order using Madgraph [33,34] with up to one additional
parton, and interfaced with Pythia 8 [35]. Background
QCD events are simulated using Pythia 8. Both signal and
background events are interfaced with Delphes event

TABLE I. Benchmark production modes and decays that are
considered within the context of R-parity-violation SUSY.
Hadronic decays of bosons and top quarks are considered as
they have the highest branching fractions. No jet-flavor infor-
mation is used in the model, therefore b-quarks are not explicitly
notated.

Decay Number of jets

g̃ → qq̃ → qðqqÞ 6
q̃ → qχ̃01 → qðqqqÞ 8
q̃ → W=Z=Hq̃0 → qqðqqÞ 8
g̃ → qqχ̃01 → qqðqqqÞ 10
t̃ → tχ̃01 → qqqðqqqÞ 12
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reconstruction [33,35], and required to have at least 6 jets
with pT > 25 GeV and HT > 1000 GeV (scalar sum of jet
pT) to mimic hadronic trigger selections at the LHC
experiments. A sample of about 200k background events
is retained after selection, where 90% is used for training
and the other 10% is reserved for evaluation. A sample of
10k events is generated for each signal and none of the
signal events are used in the training.
A minimal Passwd-ABC model is implemented using a

stack of two ABC layers, the first one with two categories
and the second with three. This choice allows for a first
splitting into two candidate particles which is then refined
in the second layer by trimming some of the jets and
assigning them to the ISR category. All activation func-
tions are rectified linear units (ReLu). Embedding is a

three-layer feed-forward network (FFN) with a 16-feature
embedding space. All attention blocks are 4-headed
attention layers, followed by a three-layer FFN, using
the same 16-feature dimensionality. The autoencoder uses
four layers for each of the encoder and the decoder,
mapping into a 2-dimensional latent space. The model has
a total of 16.7K trainable parameters. All hyperparameters
in the loss function are set to 1 except for λreco ¼ 10. Only
the jet four-momenta are used as input features, para-
meterized as xi ¼ ðlogpT; η; sinϕ; cosϕ; logEÞ. Other
features such as particle type or identification scores
can be added but are not considered here. Up to 12 jets
are used as input and events with fewer than 12 are zero-
padded. The model is trained for 10 epochs using the
ADAM optimizer [36]. The batch size is 1024. The
learning rate is warmed up for the first 2% of training
steps to a maximal value of 10−3 and then decayed by
95% every further 2%.
The performance of the model is shown in Fig. 2 for a

variety of signals with different masses and decay struc-
tures. The model is able to correctly reconstruct all signal
distributions regardless of the mass and decay, despite
having been trained purely on background. The selection of
HT > 1000 GeV drives the background distribution to
peak at around HT=2 ≈ 500 GeV. The reconstruction loss
of the autoencoder block provides an excellent discrimi-
nating feature to suppress the background, achieving
background rejection factors of Oð200Þ with 50% signal
efficiency for the lowest mass points. The loss is found to
be strongly correlated with the reconstructed mass but still

FIG. 2. The average of the two reconstructed masses mavg ¼
1
2
ðm1 þm2Þ (top) and reconstruction loss (bottom) of the Passwd-

ABC model on a simulated sample of QCD background (black)
and multiple signals with different masses and decay chains
(colored). No signal sample has been used in the training of the
model. The mass of the intermediate particle is chosen to be half
the mass of the parent particle.

FIG. 3. Comparison of the average of the two reconstructed
masses mavg ¼ 1

2
ðm1 þm2Þ for the background (black) and an

example signal (green) as reconstructed by Passwd-ABC in its last
layer (solid line), intermediate layer (dotted line), and the mass
reconstructed from the minimization of the mass asymmetry
(dashed line). An improvement of the signal resolution is
observed after the first layer prediction is refined. The back-
ground distribution is strongly sculpted toward high masses when
reconstructed by minimizing the mass asymmetry.
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retains additional rejection power when analyzed in bins of
reconstructed mass. Multiple possibilities exist to reduce or
remove the correlation [37–42] that are left for future work.
The performance of the model is further inspected using

the jet assignment right after the first ABC layer to build the
parent candidates. As shown in Fig. 3, the resolution of the
reconstructed mass improves from the first to the second
layer as the jet classification is refined. The performance is
further compared with a heuristic approach such as iterating
over all possible jet combinations and selecting the one that
minimizes the mass asymmetry. The reconstructed signal
mass exhibits worse resolution, a positive bias, and a large
high-mass tail as measured by the peak (mpeak) and full
width at half max (Δm) values. The background spectrum
is pulled toward high masses, leading to a factor 30 worse
signal-to-background ratio under the signal peak, and a
factor 200 worse when integrating to the highest mass.
In conclusion, this paper presents an innovative method

to expand the BSM search program at the LHC. We
develop the model-agnostic Passwd-ABC, based on ABC

layers, which is suited for unsupervised learning directly
on data and addresses critical limitations of current
approaches. Our method not only obviates the need for

predefined signal models but also demonstrates remarkable
resilience in decoding complex, high-multiplicity final
states. The ability to reconstruct pair-produced particles
without knowledge of the decay mode is a significant leap
in the pursuit of model-independent searches. The pre-
sented model, while falling in the category of anomaly-
based searches, provides handles for the inspection of a
possible signal through the explicit reconstruction from its
decay products. This would allow the measurement of its
mass, decay structure, and other properties. We encourage
the experimental collaborations to leverage this method to
expand their suite of model-independent searches into final
states with high object multiplicity.
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