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The Gribov-Zwanziger prescription applied within Yang-Mills theory is demonstrated to be an efficient
method for refining the theory’s infrared dynamics. We study the collisional energy loss experienced by a
high-energetic test parton as it traverses through the Grivov plasma at finite temperature. To achieve this,
we employ a semiclassical approach that considers the parton’s energy loss while accounting for the
backreaction induced by the polarization effects due to its motion in the medium. The polarization tensor of
the medium is estimated within a nonperturbative resummation considering the Gribov-Zwanziger
approach. The modification of the gluon and ghost loops due to the presence of the Gribov parameter
plays a vital role in our estimation. We observe that the nonperturbative interactions have a sizable effect on
the parton energy loss. Further, we discuss the implications of our findings in the context of relativistic
heavy-ion collisions.
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Introduction. The vibrant research programs at the
Relativistic Heavy Ion Collider (RHIC) and Large Hadron
Collider (LHC) offer an effective way to study extremely
dense and hot matter, referred to as the quark-gluon plasma
(QGP), which is governed by the laws of strong interaction.
These experiments yield valuable insights about the QGP’s
properties through the analysis of various experimental
observables, such as particle spectra, anisotropic flow, etc.
[1,2]. High energy partons that originate from the initial hard
scatterings of the nuclei serve as hard probes and play an
efficient role in unraveling the properties of the QGP. They
traverse through the QGPwhile interacting with the medium
constituents and leave behind imprints of the QGP on its
experimental observables [3–8].
The behavior of energy loss of themoving parton is linked

to the characteristics of the surrounding medium. Efforts
have been made to study the complex dynamics of preequi-
librium, unstable, expanding, magnetized, and chiral media

by investigating the energy loss of partons within their
respective environments [9–20]. The moving parton under-
goes interactions with both hard components, arising from
elastic collisions with the medium constituents carrying
momenta on the order of T (the temperature scale), and soft
modes,which encompass thegauge fieldswithin themedium
carrying momenta around gT, where g represents the
coupling constant. The impact of the soft modes has received
comparatively less attention in the literature, which may be
due to the fact that the energy loss caused by the hard
components is typically more significant. Nevertheless, it is
essential to consider that the soft modes, represented by the
gauge fields in the medium, play a non-negligible role in
the interaction dynamics with the test parton. This is due to
the high occupation number of these soft modes within the
plasma [21], which leads to a nontrivial interaction frequency
between the parton and the classical fields.
A semiclassical approach is employed to analyze the

soft contribution of energy loss experienced by an energetic
parton that takes into account its interaction with the
chromodynamic fields by quantifying the polarization
effects of the QCD medium due to the passage of the
parton. It is important to highlight that there exists a
substantial disparity between the resummed perturbative
results and the lattice-based estimations. For instance, a
notable discrepancy has been observed in the estimation of
the charm quark diffusion coefficient when comparing
results from pQCD analysis with the lattice data [22].
In a very recent study [23], the authors have shown a
remarkable improvement over the pQCD estimate of
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diffusion coefficient with the implementation of the
Gribov-Zwanziger prescription [24,25] in the analysis.
Notably, the Gribov-Zwanziger approach improves the
infrared (IR) behavior of QCD, where the conventional
resummed perturbative approach may not be reliable as the
region is strongly coupled. This is done by addressing
residual gauge transformations that persist by applying the
Faddeev-Popov quantization procedure. Recent progress
on the Gribov-Zwanziger approach and its application in
various processes in QCD can be found in Refs. [26–39].
In this work, utilizing the Gribov-Zwanziger prescription

for the first time in the analysis of the passage of a fast
moving parton, we show that the energy loss is highly
influenced by the nonperturbative effects and has an
important role in the phenomenological implication within
the context of heavy-ion collision. We construct the gluon
self-energy for the Gribov plasma and determine the
effective gluon propagator to quantify the induced current
generated by the moving parton in the medium. Further, we
formulated the energy loss of parton with the Gribov-
Zwanziger approach and studied the momentum evolution
and nuclear suppression factor of the test parton in Gribov
plasma.

Energy loss in Gribov plasma. As a high-energy test parton
moves through the plasma, it is subject to energy loss
stemming from interactions with the color fields. To
comprehensively describe the dynamics of a test parton
in the presence of these chromodynamic fields, the Wong
equations offer a valuable and Lorentz covariant framework
as follows [40]:

dXμðτÞ
dτ

¼ VμðτÞ; ð1Þ

dQμðτÞ
dτ

¼ gq̃aðτÞFμν
a ðXðτÞÞVνðτÞ; ð2Þ

dq̃aðτÞ
dτ

¼ −gfabcVμðτÞAμ
bðXðτÞÞq̃cðτÞ; ð3Þ

in which τ, XμðτÞ, QμðτÞ, and VμðτÞ correspond to the
proper time, position, momentum, and velocity of the test
parton, respectively with a color charge q̃a. Here, Fμν

denotes the chromodynamic field tensor, Aμ represents
the gauge potential, fabc is the structure constant of the
SUðNcÞ group, and a serves as the color index, where
a ¼ 1; 2;…; N2

c − 1. These equations provide a formalism
for understanding how the test parton behaves within the
intricate interplay of forces and fields, shedding light on the
energy loss phenomenon in this context. This energy loss is
quantified by examining the work done by retarding forces
acting on the parton within the medium. These forces arise
from the induction of a chromoelectric field due to the
parton’s motion. By adopting the well-established formal-
ism described in Refs. [10,18], Wong equations, along with

the linearized Yang-Mills equation, provide the parton
energy loss in the Gribov plasma as

dE
dx

¼ i
1

jvj g
2CFvivj

Z
d3p
ð2πÞ3 ωΔ

ij; ð4Þ

with CF as the Casimir invariant of SUðNcÞ, ω ¼ p · v
where v ¼ q

Eq
, and Δij is the IR improved gluon propagator

with the Gribov-Zwanziger approach. The properties of
Gribov plasma are captured in Δij and can be represented
by employing the Dyson-Schwinger equation as

Δ−1
μν ¼ ðΔ0

μνÞ−1 − Πμν: ð5Þ

The gluon propagator with Gribov term can be described
as [36]

Δ0
μνðPÞ ¼

�
δμν − ð1 − ξÞPμPν

P2

�
P2

P4 þ γ4G
; ð6Þ

where Pμ ≡ ðp0 ¼ ω;pÞ, ξ denotes the gauge parameter,
and δμν ¼ diagð1; 1; 1; 1Þ. Here, γG represents the Gribov
parameter. Its temperature dependence can be extracted
within the framework of finite-temperature Yang-Mills
theory by solving the gap equation. The presence of the
parameter γG in the denominator has the effect of shifting
the pole of the gluon to an unphysical position, specifically
P2 ¼ �iγ2G. These unphysical excitations, which emerge
when incorporating the Gribov parameter, signify the
effective confinement of gluons [26–28]. The gluon self-
energy is characterized by two independent symmetric
tensors, which can be expressed in terms of form factorsΠL
and ΠT as

Πμν ¼ ΠTAμν þ ΠLBμν: ð7Þ

Here, Bμν ¼ ūμūν

ū2 where ūμ ¼ Gμνuν with Gμν ¼ δμν − PμPν

P2

and Aμν ¼ Gμν − Bμν. Employing Eqs. (6) and (7) in
Eq. (5), the inverse effective gluon propagator can be
expressed as

Δ−1
μν ¼ P4 þ γ4G

P2ξ
δμν þ

�
ξ − 1

ξ

P4 þ γ4G
P2

− ΠT

�
Aμν

þ
�
ξ − 1

ξ

P4 þ γ4G
P2

− ΠL

�
Bμν: ð8Þ

The general structure of the gluon propagator can be
decomposed in the tensor basis as

Δμν ¼ αPμPν þ βAμν þ γBμν; ð9Þ

where the coefficients α, β, γ can be determined from the
relation δνα ¼ ΔμνðΔμαÞ−1. We obtain the gluon propagator
in Gribov plasma as
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Δμν ¼
ξPμPν

P4 þ γ4G
þ P2Aμν

P4 þ γ4G − P2ΠT
þ P2Bμν

P4 þ γ4G − P2ΠL
:

ð10Þ

The modified dispersion relation of gluons with the Gribov
term can be extracted from the pole of the propagator. It is
important to emphasize that in the case γG ¼ 0, Eq. (10)
reduces back to the form of thermal gluon propagator. The
form factors ΠL and ΠT can be obtained from one-loop
gluon self-energy as

ΠLðω; pÞ ¼ −
ω2 − p2

p2
Π00ðω; pÞ; ð11Þ

ΠTðω; pÞ ¼
1

2
½Πμμðω; pÞ − ΠLðω; pÞ�: ð12Þ

One needs to estimate the quark, gluon, and ghost loops
contributions to the gluon self-energy. It is important to
emphasize that the gluon and ghost loops will be affected
by the Gribov-Zwanziger approach. The Gribov constraint
does not affect the quark sector, as it only affects the gauge
sector of the QCD. We focus on the estimation of Πμμ and
Π00 from each sector to obtain Gribov parameter depend-
ence of ΠT and ΠL.
The contribution of the tadpole diagram and gluon

(b) Gluon loop(a) Tadpole diagram

loop to the gluon self-energy can be described as

Πaþb
00 ðp0;pÞ ¼ −

13

2
g2CAJ1 þ 3g2CAJ4ðp0;pÞ

þ 13

2
g2CAJ2ðp0;pÞ þ 6g2CAJ3ðp0;pÞ;

ð13Þ

Πaþb
μμ ðp0;pÞ ¼

5

2
g2CAðδμμ − 1ÞJ1 þ

1

2
g2CAδμμJ2ðp0;pÞ

− 6g2CA

�
J1 − J2ðp0;pÞ

�
: ð14Þ

It is important to note that the Πa
μνðPÞ is independent of

external momentum. A detailed derivation of Eqs. (13) and
(14) along with the functional forms of Jiði ¼ 1;…; 4Þ is
discussed in Sec. A of the Supplemental Material [41].

(c) Ghost loop

In the Landau gauge, the ghost propagator in the infrared
limit reads as [26]

DcðK2Þ ¼ 128π2γ2G
3g2

1

K4
: ð15Þ

Employing the form of the ghost propagator, we can define
the ghost loop contribution to Πμμ and Π00 as

Πc
μμ ¼

�
128π2γ2G

3g2

�
2

Icμμ; Πc
00 ¼

�
128π2γ2G

3g2

�
2

Ic00; ð16Þ

where the functional form of Icμμ and Ic00 take the forms as
follows:

Icμμ ¼ −
1

4π2
7ζð3Þ
8π2T2

�
1

4
þ
�

p2
0

p2
0 − p2

−
p0

2p
log

�
p0 þ p
p0 − p

��	
;

ð17Þ

Ic00 ¼−
1

8π2
7ζð3Þ
8π2T2

þ 1

ð2πÞ2
p2
0

ðp2 −p2
0Þ2

−
2

ð2πÞ2
7ζð3Þ
8π2T2

�
p2
0

p2
0−p2

−
p0

2p
log

�
p0þp
p0−p

��
: ð18Þ

The derivation of Eqs. (17) and (18) is presented in Sec. B
of the Supplemental Material [41].

(d) Quark loop

Quark loop contribution to the gluon self-energy Πd
μν

remains the same as it is in the usual perturbative case.
Similar to the thermal case, we have

Πd
μνðp0;pÞ ¼

g2T2

6
Nf

Z
dΩ
4π

�
δμ0δν0 þ

iω

P · K̂
K̂μK̂ν

�
;

ð19Þ
with Nf as the number of flavors. Hence, we can define

Πd
00ðp0;pÞ ¼

g2T2

6
Nf

�
1 −

p0

p
R0ðp0; pÞ

�
; ð20Þ
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Πd
μμðPÞ ¼

g2T2

6
Nf

Z
dΩ
4π

ð1Þ ¼ g2T2

6
Nf; ð21Þ

with R0ðp0; pÞ ¼ 1
2
ln j p0þp

p0−p
j − iπ

2
θðp2 − p2

0Þ. Gribov para-
meter-dependent form factors can be obtained by summing
up all the contributions from different sectors, and this
can be used in the analysis of energy loss formalism as
described in Eq. (4). For the quantitative estimation of the
energy loss of parton in the Gribov plasma, we consider the
temperature dependence of the γG that can be described
from the gap equation as [23]

γG ¼ d − 1

d
Nc

4
ffiffiffi
2

p
π
g2T: ð22Þ

Details of the temperature behavior of γG are discussed in
the Supplemental Material [41] (Sec. C).

Results and discussions. We start with the discussion of
momentum dependence of Gribov-modified parton
energy loss in the QGP medium. We performed the
numerical integration of the integral described in Eq. (4)
by employing the effective gluon propagator for the
Gribov-Zwanziger plasma. The gluon and ghost loops
contribution to the gluon self-energy is modified with
the Gribov-Zwanziger framework and is reflected in the
energy loss of the test parton in the medium. In Fig. 1,
energy loss experienced by the moving massless and
massive parton in the medium is plotted as a function of
its momentum at a finite temperature. For the massive
case, we chose M ¼ 1.25 GeV. The estimations from the
Gribov-Zwanziger approach are compared with those from
the perturbative calculations in the thermal medium. It is
seen that non-perturbative effects incorporated through the
Gribov-Zwanziger framework significantly enhance the
leading order pQCD estimation of the energy loss pattern
of the moving parton. The analysis holds true for both
massless and massive cases. This observation is consistent
with the result of the heavy quark diffusion coefficient
2πDT based on the transport theory framework in the
Gribov and quasiparticle approaches [23,42] as 2πDT∝

1
−dE=dx. Notably, the pQCD estimation of energy loss of
massless and massive parton converges at a higher momen-
tum regime. However, in Gribov plasma, where the analysis
incorporates a temperature-dependent Gribov mass param-
eter along with the parton mass, we observe that the mass of
the parton exerts a more substantial impact on the energy
loss even at higher momentum scales.
The impact of the Gribov parameter on the momentum

evolution of the massless parton is depicted in Fig. 2. The
proper time evolution of the parton momentum is obtained
by solving Langevin equations. Langevin equation [43–45]
requires the knowledge of the stochastic force and dis-
sipative force experienced by the energetic parton in the

FIG. 1. Gribov-modified energy loss of massless and massive
parton and its comparison with that from the pQCD calculations.

FIG. 2. Momentum evolution of the massless parton in Gribov plasma with different choices of initial momentum.
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medium. The latter is estimated from the Gribov-modified
energy loss, and the random kicks are described by a
Gaussian noise with the width related to the momentum
diffusion coefficient. We use the fluctuation-dissipation
theorem to determine the momentum diffusion in the
analysis [46,47]. We observe that the parton loses a higher
fraction of its initial momentum while propagating through
the Gribov medium due to the soft interactions in com-
parison with that in a thermal pQCD medium. Notably, the
proper time evolution of the momentum is sensitive to
the value of the initial momentum of the parton and the
temperature of the medium.
We have considered the static thermal medium by fixing

a constant temperature profile. This choice is justified as the
focus of the current study is to analyze the nonperturbative
effect of the QCD medium by comparing estimations
from the Gribov-Zwanziger framework and pQCD results.
Importantly, we find that the nonequilibrium corrections to
parton energy loss arising due to the medium evolution are
negligible when compared to the impact of nonperturbative
effects. The gluon self-energy of anisotropic nonequili-
brium can be decomposed as Πij ¼ αAij þ βBij þ γYij þ
δZij where Yij ¼ ãiãj

ã2 , Z
ij ¼ piãj þ pjãi with ãi ¼ Aijaj

(a is the direction of anisotropy). The structure functions α,
β, γ, δ for the anisotropic QCD medium are discussed in
detail in Refs. [48,49]. Employing the form of Πij, parton
energy loss in an evolving anisotropic medium can be
defined as

dE
dx

¼ −i
1

jvj g
2CFvivj

Z
d3p
ð2πÞ3 ω

h
Δ1ðωÞðAij − YijÞ

þ Δ2ðωÞ
�
ðω2 − jpj2 − α − γÞBij

þ ðω2 − βÞYij þ δZij
�i

;

with Δ1 ¼ ω2 − jpj2 − α and Δ2 ¼ ðω2 − βÞðω2 − jpj2 −
α − γÞ − jpj2δ2ã2. We have verified that these nonequili-
brium corrections to the energy loss due to the anisotropy
of the evolving medium are marginal in comparison with
the nonperturbative effect of the QCD medium. This
conclusion aligns with the findings of the recent study
[50], where it was shown that nonequilibrium corrections
play a negligible role in the momentum evolution of charm
quarks within a 1þ 3-dimensional evolving QGP medium.
To quantify the phenomenological implication of the

Gribov-modified energy loss of parton in the context of
heavy-ion collision experiments, we study the nuclear
suppression factor RAAðqTÞ in a static medium that can
be described as [43]

RAAðqTÞ ¼
fτfðqTÞ
fτ0ðqTÞ

; ð23Þ

where fτ0ðqTÞ and fτfðqTÞ represent the initial and final
momentum distribution of the parton in the medium at the

time evolution period. Here, we consider the case of charm
quark with M ¼ 1.25 GeV and τf ¼ 5 fm=c. The initial
momentum spectra and fτ0 , have been taken from fixed
order + next-to-leading log calculations, as described in
Refs. [51,52]. Final spectra and fτ0 are obtained by solving
the stochastic Langevin dynamics with the Gribov-modi-
fied transport coefficients in the medium as an essential
input parameter to the simulation. We observe a stronger
suppression (smaller RAA) upon the inclusion of non-
perturbative effects as depicted in Fig. 3, and the impact
is more pronounced in the higher momentum regimes. This
finding is a consequence of the fact that Gribov plasma
imposes a greater hindrance for the energetic parton as it
traverses through the medium.

Summary and outlook. In this work, we studied the energy
loss of a test parton, considering the nonperturbative
resummation using the Gribov-Zwanziger prescription
for the first time. We utilized Wong’s equations along with
linearized Yang-Mills equations to quantify the backreac-
tion exerted on the parton. This analysis involves examin-
ing the polarization effects of the medium, thereby
determining the parton’s energy loss as it traverses through
the medium. As a first step, we estimated the gluon, quark,
and ghost loop contributions to the Gribov-modified gluon
self-energy. Notably, gluon and ghost loops are modified
with the inclusion of the Gribov parameter, and their effects
are reflected in the energy loss pattern of the energetic
parton in the medium. We conducted a systematic analysis
of the momentum evolution of the massless fast-moving
parton by solving the Langevin dynamics. We observe that
the Gribov-modified estimation of the energy loss pattern
and momentum evolution significantly improves the lead-
ing order pQCD results. Moreover, the incorporation of
nonperturbative effects is essential for ensuring consistency
in the theoretical description of parton energy loss within a

FIG. 3. RAA in the static Gribov-Zwanziger plasma as a
function of transverse momentum.
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realistic QGP medium. Further, we explored the nuclear
suppression factor for the charm quark to analyze the
phenomenological implication of the present study. It is
seen that RAA is highly sensitive to the nonperturbative
effects, evidenced by a stronger suppression in the Gribov
plasma in comparison with that of the leading order pQCD
estimation.
Looking ahead, it will be interesting to extend the energy

loss formalism to an evolving medium within the Gribov
approach which requires the knowledge of the medium
evolution of the Gribov plasma. The thermodynamics
and temperature dependence of transport coefficients of
the Gribov plasma were recently studied in Ref. [53]. The
challenging task ahead lies in obtaining second-order
viscous hydrodynamics within the Gribov-Zwanziger
framework, which is essential for describing the medium

evolution and exploring energy loss phenomena in an
expanding medium. Another interesting direction is to
study the influence of fluctuations in chromodynamic
fields during the early stages of evolution (which may
lead to energy gain [54,55]) on the passage of parton within
the nonperturbative resummation method. We leave these
interesting aspects for future works.
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