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We study general correlation functions of various quantum field theories in the holographic setup.
Following the holographic proposal, we investigate correlation functions via a geodesic length connecting
boundary operators. We show that this holographic description can reproduce the known two- and three-
point functions of conformal field theory. Using this holographic method, we further study general two-point
functions of a two-dimensional thermal conformal field theory (CFT) and of a scalar field theory living in a
de Sitter or anti–de Sitter space. Due to the nontrivial thermal or curvature effect, the two-point functions in
an IR limit show different scaling behaviors from those of the UV CFT. We study such nontrivial IR scaling
behaviors by applying the holographic method.

DOI: 10.1103/PhysRevD.109.126019

I. INTRODUCTION

After the AdS/CFT correspondence proposal, there were
many attempts to account for strongly interacting systems
on the holographic dual gravity side. The AdS/CFT con-
jecture allows us to relate a (dþ 1)-dimensional classical
gravity theory to a d-dimensional nongravitational con-
formal field theory (CFT) [1–4]. Moreover, the AdS/CFT
correspondence proposed that the gravity theory can give us
information about the nonperturbative features of a quantum
field theory (QFT). In this case, the extra dimension in the
bulk is identified with the energy scale observing the dual
QFT. Therefore, the gravity theory maps to the renormal-
ization group (RG) flow of the dual QFT. From the RG flow
point of view, non-Abelian gauge theories are weakly
interacting at a UV fixed point and have a conformal
symmetry. In the IR limit, they are strongly interacting and
reveal various nonperturbative features. In a situation with-
out a well-established mathematical method describing the
nonperturbative RG flow, the AdS/CFT correspondence can
provide a new chance to look into the nonperturbative IR
physics.
In general, quantum correlation plays a crucial role in

understanding physics in both the weak and strong coupling

limits. Despite its importance, it is still difficult to calculate
correlation functions nonperturbatively. On the QFT side,
computing nonperturbative correlation functions is a diffi-
cult task because all loop quantum corrections must be
taken into account. Although the perturbative method is
applicable to UV theories, it is no longer valid in the IR
region where a coupling constant becomes strong. One way
to understand such nontrivial IR physics is to take into
account the nonperturbative RG flow. The AdS/CFT cor-
respondence may shed light on constructing the nonpertur-
bative RG flow and understanding the IR physics correctly.
Therefore, it would be interesting to investigate how to
evaluate the nonperturbative correlation functions and their
RG flow in the holographic dual gravity. The main goal of
this work is to study correlation functions of various QFTs
defined in nontrivial backgrounds, like finite temperatures
and curved spacetimes.
One of the interesting features of the AdS/CFT corre-

spondence is that many important physical quantities, like
the qq̄ potential [5–7] and entanglement entropy [8–18],
can be realized as geometrical objects on the dual gravity
side. Similarly, it was also conjectured that a two-point
function maps to a geodesic curve connecting two boun-
dary operators [19–23]

hOðτ1; x⃗1ÞOðτ2; x⃗2Þi ¼ e−ΔLðτ1;x⃗1;τ2;x⃗2Þ=R; ð1:1Þ

where Δ is the conformal dimension of a local operator
Oðτ; x⃗Þ and Lðτ1; x⃗1; τ2; x⃗2Þ indicates a geodesic length
connecting two local operators. This holographic technique
has been widely employed to understand the correlation
functions of various dual CFTs [19–40]. When the dual
QFT possesses Lorentz symmetry, one can easily derive
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general correlation functions depending on temporal and
spatial coordinates simultaneously. For example, if one
solves the equation of motion of the Green function on
the QFT side, one can determine a QFT’s two-point function
directly. However, if the QFT is interacting, one has to take
into account loop quantum corrections. In the holographic
setup, such loop quantum corrections are encoded in the
classical gravity. When the Lorentz symmetry of the dual
QFT is preserved, a time-independent spatial correlation
function is readily generalized to a general correlator by
applying the Lorentz transformation. However, when con-
sidering QFTs with broken Lorentz symmetry, obtaining
general correlation functions is not straightforward even if
spatial correlators are known. QFTs with broken Lorentz
symmetry often arise in thermal systems or curved space-
times. In this work, we develop a systematic holographic
method to obtain general correlators even when the Lorentz
symmetry is broken. After validating the consistency of our
method by comparing with the known results of various
CFTs [24,25,32,33], we apply our method to curved spaces,
like de Sitter (dS) and anti–de Sitter (AdS) spaces, and
evaluate general two-point functions in curved spaces. The
holographic method developed here can be further applied
to QFTs defined in other nontrivial curved spaces.
Computing correlation functions in thermal systems

[24–31] is an interesting research area. For thermal systems,
although the finite thermal corrections are negligible in the
UV region, they can give rise to a significant effect on IR
physics. Due to this, IR physics can show a new physics law
like a thermodynamic relation, which cannot be explained
by the fundamental UV theory. In order to understand such
new macroscopic orders, it would be important to know
how the correlations of operators depend on the energy
scale. By applying the holographic technique, we calculate a
general two-point function of a thermal two-dimensional
CFT [32–40]. We show that, although thermal CFTs are
conformal at the UV fixed point, the screening effect caused
by the background thermal fluctuations leads to exponential
suppression of the two-point function, which can be
reinterpreted as an effective mass proportional to temper-
ature. We also check that the results derived here are
consistent with the previously known ones obtained in a
different way [24,25].
Since the holographic method developed here is general

and systematic, we can apply it to more nontrivial bulk
spaces that map to the nontrivial background of the dual
QFT. In this work, we study correlation functions in an
eternally expanding universe. The dS space describing an
eternal inflation is an important background geometry to
understand the birth and evolution of our Universe. The
correlation functions on that background also provide
important information, like the power spectrum and non-
Gaussianity, to understand the history of our Universe.
Many works studied the correlation function of massive and
massless scalar fields in a dS background [41–50]. In this

work, we look into the correlation function of a dS space by
applying the holographic method developed here. To do so,
we take into account an (dþ 1)-dimensional AdS space
whose boundary is given by a d-dimensional dS space.
After calculating the geodesic length connecting two
operators living in the dS boundary, we derive the general
two-point function in an eternally expanding universe. We
show that this holographic result is coincident with the
result of the free scalar field theory defined in a d-dimen-
sional dS space. This work is further generalized to the
correlation function in a d-dimensional AdS space.
The rest of this paper is organized as follows. According

to the AdS/CFT correspondence, in Sec. II we discuss how
to systematically calculate general correlation functions at
both zero and finite temperature. After deriving the well-
known CFT’s two-point functions from the QFT point of
view in Sec. II A, we reproduce the same results in the
holographic setup without using the Lorentz transformation
in Sec. II B. We apply this holographic method to a three-
point function in Sec. II C and to a thermal two-point
function in Sec. II D. We further study general two-point
functions in d-dimensional curved spaces, specifically a dS
space in Sec. III A and an AdS space in Sec. III B. Finally,
we conclude this work with some remarks in Sec. IV.

II. HOLOGRAPHIC DESCRIPTION FOR
CORRELATION FUNCTIONS

For CFTs with a Lorentzian signature, the conformal
symmetry uniquely determines two- and three-point
correlation functions up to overall constants. Denoting
the distance between two operators as jr1 − r2j ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−jt1 − t2j2 þ jx⃗1 − x⃗2j2

p
, two- and three-point functions

are given by

hOðt1; r⃗1ÞOðt2; r⃗2Þi ¼
N

jr1 − r2j2Δ
; ð2:1Þ

hOðt1; r1ÞOðt2; r2ÞOðt3; r3Þi

¼ C123

jr1 − r2jΔ1þΔ2−Δ3 jr2 − r3jΔ2þΔ3−Δ1 jr3 − r1jΔ3þΔ1−Δ2
;

ð2:2Þ

where Δ ¼ Δ1 ¼ Δ2 and Δi means the conformal dimen-
sion of the ith operator, Oðti; x⃗iÞ. Normalizing operators,
without loss of generality, allows us to set N ¼ 1. The
structure constant C123 for the three-point function corre-
sponds to the operator product expansion coefficient, which
cannot be fixed by the conformal symmetry. According
to the AdS/CFT correspondence, a d-dimensional CFT has
a one-to-one map to a gravity defined on a (dþ 1)-
dimensional AdS space. Therefore, it would be interesting
to reproduce the above general correlators in the holographic
setup. This holographic study of correlators may be helpful
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to understand the microscopic and macroscopic correlation
for interacting QFTs nonperturbatively.

A. Two-point functions of d-dimensional CFTs

For later comparison with correlators of CFTs at finite
temperature or in curved spaces, we first discuss how one
can derive the known two-point function in a d-dimensional
Euclidean CFT. The metric of a d-dimensional Euclidean
space is given by

ds2 ¼ δμνdxμdxν ¼ dτ2 þ dx⃗ · dx⃗: ð2:3Þ

On this flat background geometry, we take into account a
massless scalar field theory,

S ¼ 1

2

Z
ddxð∂ϕÞ2: ð2:4Þ

The free scalar field theory is conformal and the conformal
dimension of ϕ is given byΔϕ ¼ ðd − 2Þ=2. In this case, the
two-point function of ϕ is determined by the following
equation:

−∂μ∂μhϕðτ1; x⃗1Þϕðτ2; x⃗2Þi ¼ δðdÞðjr1 − r2jÞ; ð2:5Þ

where jr1 − r2j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jτ1 − τ2j2 þ jx⃗1 − x⃗2j2

p
.

A general solution satisfying this equation is given by

hϕðτ1; x⃗1Þϕðτ2; x⃗2Þi ∼
1

jr1 − r2j2Δϕ
: ð2:6Þ

If we further consider an operator O ¼ ϕn, the Wick
contraction allows the general two-point function to be

hOðτ1; x⃗1ÞOðτ2; x⃗2Þi ∼
1

ðjτ1 − τ2j2 þ jx⃗1 − x⃗2j2ÞΔ
; ð2:7Þ

where the conformal dimension of O is given by Δ ¼ nΔϕ.
After the Wick rotation (τ ¼ it), the Euclidean two-point
function reduces to a Lorentzian one,

hOðt1; x⃗1ÞOðt2; x⃗2Þi ∼
1

ð−jt1 − t2j2 þ jx⃗1 − x⃗2j2ÞΔ
; ð2:8Þ

where
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−jt1 − t2j2 þ jx⃗1 − x⃗2j2

p
means a proper distance

preserving the SOð1; d − 1Þ Lorentz symmetry. This is the
two-point function expected by the conformal symmetry.
In the holographic study, there are two different ways to

obtain a two-point function. One is to consider a bulk field
that is the dual of a local operator of the boundary theory.
After calculating the bulk-to-boundary Green function, we
move the bulk field to the boundary to obtain the boundary-
to-boundary Green function, which is identified with the
two-point function of the dual field theory. It was shown
that this boundary-to-boundary Green function leads to the

above two-point function in (2.1) [2–4]. Due to the direct
relation between the bulk field and its dual operator, this
method is useful to understand the internal structure of the
two-point function. However, if we consider a non-AdS
geometry, it is usually hard to find the bulk-to-boundary
Green function. In this case, there is another way to
evaluate the two-point function. It was proposed that the
two-point function can be described by a geodesic length
connecting two boundary operators,

hOðτ1; x⃗1ÞOðτ2; x⃗2Þi ¼ e−ΔLðτ1;x⃗1;τ2;x⃗2Þ=R; ð2:9Þ

where Δ is the conformal dimension of the boundary
operator. Using this proposal, one can reproduce the
previous CFT’s general two- and three-point functions
exactly. In Refs. [22,23], the authors exploited the quotient
construction to calculate the geodesic length for a Bañados-
Teitelboim-Zanelli (BTZ) black hole. Unfortunately, the
quotient construction is only possible for a three-dimen-
sional BTZ black hole. In this section, we discuss another
systematic way to evaluate the geodesic length without
constructing the quotient space, and then apply this sys-
tematic method to general two-point functions of CFTs at
finite temperature or in curved spaces.
According to the AdS/CFT correspondence, the known

CFT’s two-point function in (2.8) must be reproduced in
the dual AdS gravity. In previous works [28,29], a spatial
(equal-time) correlator at τ1 ¼ τ2 and a temporal (equal-
position or autocorrelation) two-point function at x⃗1 ¼ x⃗2
were studied. For example, the spatial two-point function is
governed by the following geodesic length:

Lðt; x⃗1; t; x⃗2Þ ¼ R
Z

x2

x1

dx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ z02

p

z
; ð2:10Þ

where the prime means a derivative with respect to x. After
finding the configuration of the geodesic and applying the
holographic formula in (2.9), one finally obtains the spatial
two-point function

hOðt; x⃗1ÞOðt; x⃗2Þi ∼
1

jx⃗1 − x⃗2j2Δ
: ð2:11Þ

Applying the Lorentz transformation, one can easily
generalize this spatial two-point function to the general
one in (2.8). This process cannot be applied when the
boundary Lorentz symmetry is broken.

B. Holographic description for the general
two-point function

Now we discuss how to calculate the general two- and
three-point functions without applying the Lorentz sym-
metry. For convenience, we first calculate Euclidean
correlation functions and then obtain Lorentzian ones
by applying the Wick rotation. In order to describe a
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d-dimensional CFT holographically, we take into account
a (dþ 1)-dimensional Euclidean AdS space whose metric
is given by

ds2 ¼ R2

z2
ðdτ2 þ dx⃗ · dx⃗þ dz2Þ; ð2:12Þ

where the dual CFT lives at the boundary (z ¼ 0).
In order to evaluate general two- and three-point func-

tions, we first investigate a bulk-to-boundary Green func-
tion running from fτ; x⃗; zg ¼ fτJ; x⃗J; zJg to fτi; x⃗i; 0g,
which corresponds to the position of the ith operator
Oðτi; x⃗iÞ. To find a geodesic connecting these two points,
we regard x⃗ and z as functions of τ. Then, the geodesic
length is governed by

LðτJ; x⃗J; zJ;τ1; x⃗1;0Þ≡
Z

τJ

τ1

dτL¼R
Z

τJ

τ1

dτ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ẋ2þ ż2

p

z
;

ð2:13Þ

where x ¼ jx⃗j and a dot means a derivative with respect to
τ. Since the geodesic depends on τ and x implicitly, there
exist two conserved charges. The first one is the canonical
momentum of x⃗,

P⃗ ¼ ∂L

∂˙x⃗
¼ R˙x⃗

z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ẋ2 þ ż2

p ; ð2:14Þ

and the other is the Hamiltonian corresponding to the
canonical momentum of τ,

H ¼ ∂L

∂˙x⃗
˙x⃗þ ∂L

∂ż
ż − L ¼ −

R

z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ẋ2 þ ż2

p : ð2:15Þ

To fix the conserved charges, we introduce a turning point
fτt; rt; ztg, where żðτtÞ ¼ 0. Then, the conserved charges at
the turning point reduce to

P⃗ ¼ Rv⃗

zt
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ v2

p ; ð2:16Þ

H ¼ −
R

zt
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ v2

p ; ð2:17Þ

where v ¼ jv⃗j denotes the velocity at a turning point,
v⃗ ¼ ˙x⃗ðτtÞ.
Comparing these conserved charges, we find that ṙ is

given by a constant,

dx⃗
dτ

¼ v⃗: ð2:18Þ

A solution satisfying two boundary conditions, x1 ¼ xðτ1Þ
and xJ ¼ xðτJÞ, reduces to

x⃗ðτÞ ¼ v⃗ðτ − τ1Þ þ x⃗1: ð2:19Þ

where v⃗ ¼ Δx⃗=Δτ, with Δx⃗ ¼ x⃗J − x⃗1 and Δτ ¼ τJ − τ1.
Moreover, comparing (2.15) with (2.17) leads to an
equation governing the radial motion of a geodesic,

dz
dτ

¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ v2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2t − z2

p
z

: ð2:20Þ

A solution satisfying 0 ¼ zðτ1Þ and zJ ¼ zðτJÞ becomes

zðτÞ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΔτ2þΔx2þ z2JÞðτ− τ1Þ

Δτ
−
ðΔτ2þΔx2Þðτ− τ1Þ2

Δτ2

s
;

ð2:21Þ

where the turning point appears at

zt ¼
Δτ2 þ Δx2 þ z2J
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δτ2 þ Δx2

p : ð2:22Þ

After substituting (2.18) and (2.20) into (2.13), the
integration of (2.13) for τ1 < τt < τJ results in

LðτJ; xJ; zJ; τ1; x1; 0Þ ¼ R
�Z

zt

ϵ
dz −

Z
zJ

zt

dz
�

zt
z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2t − z2

p
¼ R log

Δτ2 þ Δx2 þ z2J
zJ

− R log ϵ;

ð2:23Þ

where ϵ is introduced as a UV cutoff. Following (2.9), the
bulk-to-boundary Green function reads

hOðτJ; x⃗J; zJÞOðτ1; x⃗1; ϵÞi ¼
zΔJ ϵ

Δ

ðΔτ2 þ Δx2 þ z2JÞΔ
: ð2:24Þ

If we take zJ → ϵ, the bulk-to-boundary Green function
further reduces to a boundary-to-boundary Green function
or a general two-point function of the dual CFT,

hOðτJ; x⃗JÞOðτ1; x⃗1Þi ¼
1

ðΔτ2 þ Δx2ÞΔ ; ð2:25Þ

where the normalized operator is defined as O≡O=ϵΔ.
After the Wick rotation, we finally obtain the Lorentzian
two-point function in (2.8).

C. Holographic three-point function

Now we take into account the correlation function of
three operators located at arbitrary positions. Reference [51]
studied how to evaluate a three-point autocorrelation func-
tion when three operators are located at the same spatial
position. In order to describe a three-point function holo-
graphically, we introduce a junction point in the bulk, whose
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position is denoted by xJ ¼ fτJ; x⃗J; zJg. The junction point
in the bulk represents a three-point vertex [51]

−
λ

3!

Z
ddþ1x

ffiffiffiffiffiffi
−g

p
Φ1ðxÞΦ2ðxÞΦ3ðxÞ; ð2:26Þ

where the bulk field Φ is the dual of an operator O. At the
leading order of λ, the three-point function of the dual QFT
is described by the tree-level Witten diagram in the holo-
graphic setup,

G3ðx1; x2; x3Þ ¼ hOðx1ÞOðx2ÞOðx3Þi

¼ −λ
Z

ddþ1xJ
ffiffiffiffiffiffi
−g

p
G2ðx1; xJÞ

× G2ðx2; xJÞG2ðx3; xJÞ; ð2:27Þ

where xi ¼ fτi; x⃗i; 0g indicates the position of the boundary
operator and Gn is an n-point function. Using the two-point
function studied in the previous section, the three-point
function is determined as the sum of minimal geodesic
lengths connecting the junction point to three boundary
operators [24,51]

hOðτ1; x⃗1ÞOðτ2; x⃗2ÞOðτ3; x⃗3Þi

∼ −λ exp
�
−
P

3
i¼1 ΔiLiðτi; x⃗i; 0; τJ; x⃗J; zJÞ

R

�
; ð2:28Þ

where Δi indicates the conformal dimension of the ith
boundary operator. Using the previous bulk-to-boundary
Green function in (2.23), the geodesic length connecting
three operators via the junction point is given by

P
3
i¼1 ΔiLiðτi; x⃗i; 0; τJ; x⃗J; zJÞ

R

¼
X3
i¼1

Δi

�
log

Δτ2i þ Δx2i þ z2J
zJ

− log ϵ

�
; ð2:29Þ

where Δxi ¼ jx⃗J − x⃗ij and Δτi ¼ jτJ − τij. In this case, the
junction point is determined as the position that minimizes
the geodesic length. After variation, the junction point must
satisfy

0 ¼
X3
i¼1

ΔiΔri
Δr2i þ z2J

;

0 ¼
X3
i¼1

ΔiðΔr2i − z2JÞ
Δr2i þ z2J

: ð2:30Þ

Solving these equations determines the position of the
junction point. To do so, we parametrize Δτi and Δxi as
follows:

Δτi ¼ Δri cosΔθi and Δxi ¼ Δri sinΔθi; ð2:31Þ

where Δri ¼ jrJ − rij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δτ2i þ Δx2i

p
, with Δθi ¼

jθJ − θij. Since the geodesic length is invariant under
rotation in the τ − x plane, we can set Δτi ¼ Δri, with
Δθi ¼ 0, without loss of generality. This implies that a
general three-point function up to rotation in the τ-x plane is
the same as the three-point autocorrelation function studied
in Ref [51]. As a result, the general three-point function is
given by

hOðτ1; x⃗1ÞOðτ2; x⃗2ÞOðτ3; x⃗3Þi

∼
C123

jr1 − r2jΔ1þΔ2−Δ3 jr2 − r3jΔ2þΔ3−Δ1 jr3 − r1jΔ3þΔ1−Δ2
;

ð2:32Þ

where jri − rjj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jτi − τjj2 þ jxi − xjj2

q
, and the structure

constant C123 is given by

C123 ¼ −
λγΔ

2ΔΔΔ1

1 ΔΔ2

2 ΔΔ3

3 ðΔ1 − Δ2 − Δ3ÞΔ1ðΔ2 − Δ3 − Δ1ÞΔ2ðΔ3 − Δ1 − Δ2ÞΔ3

; ð2:33Þ

with

Δ ¼ Δ1 þ Δ2 þ Δ3;

γ ¼ 2ðΔ1
2Δ2

2 þ Δ2
3Δ2

1 þ Δ2
2Δ2

3Þ − Δ4
1 − Δ4

2 − Δ4
3: ð2:34Þ

This is consistent with the three-point function expected
in CFT.

D. Holographic general two-point function
of two-dimensional thermal CFT

The holographic method studied here is also applicable
to other theories. For example, we can study a thermal CFT
at finite temperature. Although a finite-temperature effect is
negligible in the UV region, in the IR region it crucially
modifies the IR correlators. To study this thermal effect, we
calculate the two-point function of a two-dimensional
thermal CFT whose dual gravity is described by a BTZ
black hole,
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ds2 ¼ R2

z2

�
fðzÞdτ2 þ dx2 þ 1

fðzÞ dz
2

�
; ð2:35Þ

with a blackening factor

fðzÞ ¼ 1 −
z2

z2h
: ð2:36Þ

For zh → ∞, the black hole geometry reduces to an AdS
space corresponding to the zero-temperature limit. To apply
(2.9), we first calculate a geodesic length extending to the
BTZ black hole geometry. First, we assume that two local
operators are located at the boundary, fz; τ; xg ¼ f0; τ1; x1g
and f0; τ2; x2g. Due to the translational symmetry in the τ
and x directions, the two-point function is reexpressed in the
following form:

hOðτ1;x1ÞOðτ2;x2Þi¼hOð−Δτ=2;−Δx=2ÞOðΔτ=2;Δx=2Þi;
ð2:37Þ

where Δτ ¼ jτ1 − τ2j and Δx ¼ jx1 − x2j. Then, the geo-
desic length in the black hole geometry is governed by

Lðτ1; x1; τ2; x2Þ ¼ R
Z

Δτ=2

−Δτ=2
dτ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f2 þ fẋ2 þ ż2

p
z

ffiffiffi
f

p : ð2:38Þ

The geodesic length, similar to the previous case, relies
on τ and x implicitly, so that the canonical momenta of x
and τ are conserved. More precisely, the canonical
momenta of x and τ are given by

P¼ Rẋ
ffiffiffi
f

p

z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f2þfẋ2þ ż2

p and H¼ Rf3=2

z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f2þfẋ2þ ż2

p : ð2:39Þ

In this case, a turning point appears at fτ; x; zg ¼ f0; 0; ztg
due to the invariance under τ → −τ and x → −x. At the
turning point, the conserved quantities read

P ¼ Rv

zt
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ft þ v2

p and H ¼ Rft
zt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ft þ v2

p ; ð2:40Þ

where ft and v are the values of f and ẋ at the turning point.
Comparing the conserved quantities, we find the relations
between x, z, and τ:

dx
dτ

¼ fv
ft

; ð2:41Þ

dz
dτ

¼ ðz2h − z2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
z2t − z2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðv2þ 1Þz2h −v2z2− z2t

p
zhðz2h − z2t Þz

: ð2:42Þ

Solving (2.42), we can find zt and v as functions of
Δτ and Δx,

zt ¼ zh sin

�
Δτ
2zh

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ cot

�
Δτ
2zh

�
2

tanh

�
Δx
2zh

�
2

s
; ð2:43Þ

v ¼ cot

�
Δτ
2zh

�
tanh

�
Δx
2zh

�
: ð2:44Þ

These results finally determine the geodesic length as

Lðτ1; x1; τ2; x2Þ ¼ R

�
2 log

1

ϵ
þ log

�
2z2h cosh

�
Δx
zh

�

− 2z2h cos

�
Δτ
zh

���
: ð2:45Þ

According to the holographic proposal in (2.9), a
general Euclidean two-point function becomes, up to
normalization,

hOðτ1; x1ÞOðτ2; x2Þi ∼
1

j sin2ðjτ1−τ2j
2zh

Þ þ sinh2ðjx1−x2j
2zh

ÞjΔ
:

ð2:46Þ

In a UV limit with a short distance and time interval
(Δτ;Δx → 0), the thermal two-point function reduces to the
previous CFT’s result in (2.7). This is because finite thermal
corrections are negligible in the UV region. Applying the
Wick rotation to (2.46), the general Lorentzian two-point
function is rewritten as [24]

hOðt1; x1ÞOðt2; x2Þi ∼
1

j − sinh2ðjt1−t2j
2zh

Þ þ sinh2ðjx1−x2j
2zh

ÞjΔ
:

ð2:47Þ

In the IR region with a long distance (jx1 − x2j ≫
jt1 − t2j ≫ zh), the spatial two-point function reduces to

hOðt1; x1ÞOðt2; x2Þi ∼ e−jx1−x2j=ξ; ð2:48Þ

with the correlation length ξ or the inverse of the effective
mass meff ,

ξ≡ 1

meff
¼ 1

2πΔTH
; ð2:49Þ

where TH ¼ 1=ð2πzhÞ means the Hawking temperature.
Exponential suppression of the thermal correlator in the IR
limit is due to the screening effect of thermal background.
In another IR limit with a long time interval (jt1 − t2j ≫
jx1 − x2j ≫ zh), a similar feature also appears for the
temporal two-point function,

hOðt1; x1ÞOðt2; x2Þi ∼ e−jt1−t2j=t1=2 ; ð2:50Þ
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where the half-life time t1=2 is given by the inverse of the
effective mass, t1=2 ¼ 1=meff . As expected, the IR corre-
lators in the thermal CFT behave totally different from the
UVones. In the UV region, the correlation suppresses by a
power law due to the conformal symmetry, while the IR
correlation exponentially suppresses due to the screening
effect of the thermal background.

III. CORRELATION FUNCTIONS
IN CURVED SPACES

Now we consider a holographic dual of QFTs living in
curved spaces like a dS or AdS space, and then investigate
correlation functions of such theories. On the QFT side,
two-point correlators of a massive field in a global dS space
were studied in Refs. [52,53]. In order to describe QFTs
living in a d-dimensional dS and AdS space holographi-
cally, we have to take into account a (dþ 1)-dimensional
AdS space whose boundary is given by a dS or AdS space.
To do so, let us first consider a (dþ 1)-dimensional
Poincaré AdS space,

ds2 ¼ R2

z2
ð−dt2 þ δijdxidxj þ dz2Þ; ð3:1Þ

where i; j ¼ 1 � � � d − 1. This AdS metric has a
d-dimensional flat boundary at z ¼ 0. To describe an
AdS space with an AdS boundary, we introduce new
coordinates, u and y,

z¼ uw
R

; xa ¼ ya; and xd−1 ¼ w

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1−

u2

R2

r
; ð3:2Þ

where a; b ¼ 1;…; d − 2. Then, the AdS metric is
rewritten as

ds2 ¼ R2

u2

�
du2

1 − u2=R2
þ R2

w2
ð−dt2 þ δabdyadyb þ dw2Þ

�
:

ð3:3Þ

At u ¼ ϵ in the limit of ϵ → 0, the boundary reduces to a
d-dimensional AdS space,

ds2AdS ¼ R̃2

w2
ð−dt2 þ δabdyadyb þ dw2Þ; ð3:4Þ

where R̃ ¼ R2=ϵ. Applying the Wick rotation (τ ¼ it), the
Euclidean bulk metric becomes

ds2 ¼ R2

u2

�
du2

1 − u2=R2
þ R2

w2
ðdτ2 þ δabdyadyb þ dw2Þ

�
:

ð3:5Þ

This is the metric of a (dþ 1)-dimensional Euclidean AdS
space with a d-dimensional AdS boundary.

We can also consider an AdS space with a dS boundary.
Introducing another coordinate system,

z ¼ Tū
R

and t ¼ T

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ū2

R2

r
; ð3:6Þ

the bulk AdS metric (3.1) is rewritten as

ds2 ¼ R2

ū2

�
dū2

1þ ū2=R2
þ R2

T2
ð−dT2 þ δijdxidxjÞ

�
: ð3:7Þ

When the boundary is located at a fixed u ¼ ϵ, it becomes a
d-dimensional dS space,

ds2dS ¼
1

H2T2
ð−dT2 þ δijdxidxjÞ; ð3:8Þ

where the Hubble constant is given by H ¼ ϵ=R2. If we
further introduce τ ¼ iT and u ¼ iū, the Lorentzian AdS
metric in (3.7) becomes a Euclidean one,

ds2 ¼ R2

u2

�
du2

1 − u2=R2
þ R2

τ2
ðdτ2 þ δijdxidxjÞ

�
; ð3:9Þ

which has the same form as that of the Euclidean AdS
metric with an AdS boundary in (3.5). If we evaluate the
two-point function on this Euclidean background, we can
easily derive a Lorentzian correlation function on the
boundary dS and AdS space.

A. Two-point function in an expanding universe

First, we focus on the dual of a QFT living in a dS space
and study its two-point functions holographically. When
two local operators are located at fu; τ; r⃗g ¼ f0; τ1; r⃗1g
and f0; τ2; r⃗2g, we rearrange the operator’s positions to be at
fu; τ; r⃗g ¼ f0; τ1; x1; 0;…; 0g and f0; τ2; x2; 0;…; 0g,
with jr⃗1 − r⃗2j ¼ jx1 − x2j due to the (d − 1)-dimensional
rotational symmetry. For the Euclidean AdS space in (3.9),
the geodesic length connecting two operators is governed by

LðT1; x1;T2; x2Þ ¼
Z

x2

x1

dx
R
u

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u02

1 − u2=R2
þ R2

τ2
ð1þ τ02Þ

s
;

ð3:10Þ

where τ and u are considered as functions of x and the prime
means a derivative with respect to x. It is worth noting that,
due to the translation symmetry in the x direction, it is more
convenient to take τ and u as functions of x. We first assume
that there exists a turning point at x ¼ xt, where u0ðxtÞ ¼ 0.
Due to the translation symmetry in the x direction, there is a
conserved charge satisfying
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 − u2

p

τz
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ τ02ÞðR2 − u2Þ þ τ2z02

p ¼ 1

τtzt
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ τ02t

p ; ð3:11Þ

where ut ¼ uðxtÞ, τt ¼ τðxtÞ, and τ0t ¼ τ0ðxtÞ.
Unlike the previous cases, this system has only one

conserved charge. Therefore, we have to solve the dynami-
cal equation of τ and u to determine a geodesic. Note that
two dynamical equations in this case are not independent
because of the conservation law. Combining two dynamical
equations of u and τ, we can find the following decoupled
equation of τ [54–56]:

0 ¼ ττ00 þ τ02 þ 1: ð3:12Þ

This allows a general solution,

τðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c22 − ðc1 − xÞ2

q
; ð3:13Þ

where c1 and c2 are two integral constants. This solution
was also utilized to calculate the holographic entangle-
ment entropy in a three-dimensional AdS space with a dS
boundary [55,56]. The dual of the three-dimensional AdS
space with a dS boundary corresponds to a two-dimensional
inflating universe. Therefore, the holographic entanglement

entropy in a three-dimensional AdS space with a dS
boundary measures quantum correlations of two macro-
scopic subsystems in a two-dimensional inflating universe.
Since the entanglement entropy is defined at a fixed time, τ
must satisfy τðx1Þ ¼ τðx2Þ at the dS boundary. In the two-
point function calculation we are interested in, two local
operators can be located at arbitrary positions and times.
Therefore, we do not need to impose τðx1Þ ¼ τðx2Þ in the
general two-point function calculation. There is another
remark. If one calculates the entanglement entropy in
higher-dimensional AdS space with a dS boundary, (3.13)
is not a solution anymore. For the two-point function
calculation in higher-dimensional AdS space with a dS
boundary, however, (3.13) still remains as a solution. This
is because the two-point function is described by a one-
dimensional geodesic curve regardless of the dimension of
the bulk space, while the entanglement entropy is governed
by a (d − 1)-dimensional minimal surface in a (dþ 1)-
dimensional AdS space.
Plugging (3.13) into (3.11), we obtain

du
dx

¼ � c2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2t − u2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 − u2

p

uðc22 − ðc1 − xÞ2Þ : ð3:14Þ

A solution of this differential equation is given by

uðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2½ð1þ c3Þxþ c2 − c1 − ðc1 þ c2Þc3�2 − z2t ½ð1 − c3Þxþ c2 − c1 þ ðc1 þ c2Þc3�2

p
2

ffiffiffiffiffi
c3

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c1 − c2 − x

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c1 þ c2 − x

p ; ð3:15Þ

where c3 is another integral constant. Here, four unde-
termined parameters, c1, c2, c3, and zt, can be fixed
by imposing the following four boundary conditions:
τ1 ¼ τðx1Þ, τ2 ¼ τðx2Þ, 0 ¼ uðx1Þ, and 0 ¼ uðx2Þ. The
first two boundary conditions determine c1 and c2 as

c1 ¼
τ22 − τ21þ x22 − x21

2ðx2 − x1Þ
;

c2 ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðτ1 − τ2Þ2þðx1 − x2Þ2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðτ1þ τ2Þ2þðx1 − x2Þ2

p
2ðx1 − x2Þ

:

ð3:16Þ

The remaining two boundary conditions determine c3 as a
function of c1 and c2,

c3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðc1 − c2 − x1Þðc1 − c2 − x2Þ

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðc1 þ c2 − x1Þðc1 þ c2 − x2Þ

p : ð3:17Þ

Using these results, we finally determine the turning point
ut in terms of the operator’s positions,

ut ¼
R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðτ1 − τ2Þ2 þ ðx1 − x2Þ2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðτ1 þ τ2Þ2 þ ðx1 − x2Þ2

p : ð3:18Þ

The obtained solutions determine the geodesic length in
the following form:

Lðτ1; x1; τ2; x2Þ ¼
Z

ut

ϵ
du

2R2ut
z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 − z2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2t − z2

p
¼ R log

�
4R2u2t

ðR2 − u2t Þϵ2
�
; ð3:19Þ

where ϵ is introduced as a UV cutoff. In the Euclidean dS
space, the general two-point function up to normalization
reduces to

hOðτ1; r⃗1ÞOðτ2; r⃗2Þi∼
�

τ1τ2
jτ1 − τ2j2þjr⃗1 − r⃗2j2

�
Δ
; ð3:20Þ

where Δ indicates the conformal dimension of O. After the
Wick rotation τ ¼ iT, the Lorentzian two-point function
becomes

HANSE KIM, JITENDRA PAL, and CHANYONG PARK PHYS. REV. D 109, 126019 (2024)

126019-8



hOðT1; r⃗1ÞOðT2; r⃗2Þi ∼
�

T1T2

−jT1 − T2j2 þ jr⃗1 − r⃗2j2
�

Δ
:

ð3:21Þ

In the above calculation, we exploited the conformal
time T for convenience. In order to study the two-point
function in the expanding universe, it is more convenient to
introduce the cosmological time t,

T ¼ e−Ht

H
: ð3:22Þ

In terms of the cosmological time, the dS metric in (3.8) is
rewritten as

ds2dS ¼ −dt2 þ e2Htδijdxidxj; ð3:23Þ

which describes an eternal inflation. In this eternally
expanding universe, the two-point function for t2 > t1 is
given by

hOðt1; r⃗1ÞOðt2; r⃗2Þi∼
T2Δ
1 e−ΔHjt2−t1j

j−T2
1ð1− e−Hjt2−t1jÞ2þðr⃗1− r⃗2Þ2jΔ

;

ð3:24Þ

where the conformal time is determined as a function of the
cosmological time,

T1 ¼
e−Ht1

H
and T2 ¼ T1e−Hjt2−t1j: ð3:25Þ

A temporal two-point function at early times
(jr⃗1 − r⃗2j ≪ jt2 − t1j ≪ 1=H) decreases as a power law,

hOðt1; r⃗1ÞOðt2; r⃗2Þi ≈
1

jt1 − t2j2Δ
: ð3:26Þ

This is the correlator of a CFT. In the late-time era
(jr⃗1 − r⃗2j ≪ 1=H ≪ jt2 − t1j), the holographic result
shows that the temporal two-point function suppresses
exponentially,

hOðt1; r⃗1ÞOðt2; r⃗2Þi ≈ e−ΔHjt2−t1j: ð3:27Þ

This is a typical feature of the massive operator’s correlator.
In this case, ΔH plays the role of an effective mass. On the
other hand, the spatial two-point function for jr⃗1 − r⃗2j ≫
jt1 − t2j leads to the following correlator:

hOðt1; r⃗1ÞOðt2; r⃗2Þi ≈
e−ΔHjt2−t1j

jr⃗1 − r⃗2j2Δ
: ð3:28Þ

This shows that the two-point function always suppresses
by a power law in the spatial direction. This implies that the

operator behaves as a massless one in the spatial direction,
unlike the temporal correlator. When two operators are
located at the same time (t1 ¼ t2 ¼ t), athe spatial two-
point function at the time t is given by

hOðt; r⃗1ÞOðt; r⃗2Þi ∼
T2
0e

−2ΔHðt−t0Þ

jr⃗1 − r⃗2j2Δ
; ð3:29Þ

where t0 is an appropriate reference time satisfying
T0 ¼ e−Ht0=H. Therefore, the spatial two-point function
exponentially suppresses with time due to the expansion of
the background spacetime. This is consistent with the
results obtained in a different holographic model [55,56].
To understand the obtained holographic result further

on the dual QFT side, we take into account a QFT living in
a d-dimensional dS space and discuss its two-point
function. The Euclidean metric of a d-dimensional dS
space can be written as

ds2dS ¼ gμνdxμdxν ¼
R2

τ2
ðdτ2 þ δijdyidyjÞ; ð3:30Þ

where xμ ¼ fτ; yig, with i; j ¼ 1;…; ðd − 1Þ, and τ indi-
cates the Euclidean time. Now, we consider a scalar field on
this dS space,

S ¼ 1

2

Z
ddx

ffiffiffi
g

p ð∂μϕ∂μϕþ ξRðdÞ
dS ϕ

2Þ: ð3:31Þ

When the scalar field conformally couples to the dS
background, the coefficient ξ is given by

ξ ¼ ðd − 2Þ
4ðd − 1Þ : ð3:32Þ

In this theory, the conformal dimension of ϕ is given by
Δϕ ¼ ðd − 2Þ=2. Since the background dS space has a

positive-curvature scalar, RðdÞ
dS ¼ dðd−1Þ

R2 , the scalar field in
the dS space has an effective mass,

m2
dS ¼

ðd − 2Þ
4ðd − 1ÞR

ðdÞ
dS ¼ dðd − 2Þ

4R2
: ð3:33Þ

Therefore, the two-point function of ϕ satisfies

1ffiffiffi
g

p
h
−∂μ

ffiffiffi
g

p
gμν∂ν þm2

dS

i
hϕðτ1; y⃗1Þϕðτ2; y⃗2Þi

¼ δðdÞðx1 − x2Þffiffiffi
g

p : ð3:34Þ

Solving this equation, we can obtain the following
Lorentzian two-point function after the Wick rotation
(τ ¼ iT):
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hϕðτ1; y⃗1Þϕðτ2; y⃗2Þi ∼
�

T1T2

j − ðT1 − T2Þ2 þ ðy⃗1 − y⃗2Þ2j
�

Δϕ

:

ð3:35Þ

If we further consider an operator O ¼ ϕn, its two-point
function becomes

hOðT1; y⃗1ÞOðT2; y⃗2Þi ∼
�

T1T2

j − ðT1 − T2Þ2 þ ðy⃗1 − y⃗2Þ2j
�

Δ
;

ð3:36Þ

where Δ ¼ nΔϕ at the tree level. This is the two-point
function obtained in the previous holographic calculation.
If we further take into account interactions and their
quantum corrections, they can generate an anomalous
dimension, which modifies the conformal dimension of
the operator. At the quantum level, as a result, the
conformal dimension of O can be different from the
tree-level result [29].

B. Two-point correlation in an AdS space

The previous holographic calculation with the dS boun-
dary can be easily generalized to the case with an AdS
boundary because the Euclidean bulk AdS metric in (3.5) is
invariant under exchanging time and one of the spatial
coordinates. When we express the boundary AdS metric as

ds2 ¼ R2

w2
ðdw2 − dt2 þ δabdxadxbÞ; ð3:37Þ

where w (w ≥ 0) corresponds to the radial coordinate and
a; b ¼ 1;…; ðd − 2Þ, the general two-point function in the
holographic setup is given by

hOðt1; w1; x⃗1ÞOðt2; w2; x⃗2Þi

∼
�

w1w2

j − ðt1 − t2Þ2 þ ðw1 − w2Þ2 þ ðx⃗1 − x⃗2Þ2j
�

Δ
: ð3:38Þ

Similar to the dS case, this result shows that the two-point
function suppresses by a power law except for the radial
direction w. For t1 ¼ t2 ¼ t and x⃗1 ¼ x⃗2 ¼ x⃗, the two-point
function in the radial direction of the AdS space reduces to

hOðt; w1; x⃗ÞOðt; w2; x⃗Þi ∼
�				w1 þ w2

w1 − w2

				2 − 1

�
Δ
: ð3:39Þ

When the distance of two operators is short, satisfying
jw1 − w2j ≪ jw1 þ w2j, the two-point function behaves
like

hOðt; w1; x⃗ÞOðt; w2; x⃗Þi ∼
1

jw1 − w2j2Δ
; ð3:40Þ

which is equivalent to the two-point function in the
other directions. In the large-distance limit satisfying
jw1 − w2j ≈ jw1 þ w2j, however, the two-point function
in the w direction shows a different behavior,

hOðt; w1; x⃗ÞOðt; w2; x⃗Þi ∼
1

jw1 − w2jΔ
: ð3:41Þ

In other words, the scaling dimension of the operator O
changes from Δ to Δ=2 as jw1 − w2j increases.
From the QFT point of view, similar to the dS case, the

previous holographic two-point function can be understood
via a scalar field conformally coupled to the background
Euclidean AdS space,

S ¼ 1

2

Z
ddx

ffiffiffi
g

p ð∂μϕ∂μϕþ ξRðdÞ
AdSϕ

2Þ; ð3:42Þ

where the scalar field has an effective mass due to the
curvature of the background AdS space,

m2
AdS ¼

ðd − 2Þ
4ðd − 1ÞR

ðdÞ
AdS ¼ −

dðd − 2Þ
4R2

: ð3:43Þ

Therefore, the two-point function of a scalar field must
satisfy the following equation in the AdS space:

1ffiffiffi
g

p
h
−∂μ

ffiffiffi
g

p
gμν∂ν þm2

AdS

i
hϕðτ1; y⃗1Þϕðτ2; y⃗2Þi

¼ δðdÞðx1 − x2Þffiffiffi
g

p : ð3:44Þ

The solution of this equation is coincident with the
Euclidean version of the holographic result in (3.38).

IV. DISCUSSION

In this paper, we have studied how to calculate general
correlation functions in the holographic setup. After regard-
ing the dual gravity of a QFT, we evaluated the geodesic
length connecting boundary operators, which is directly
related to a boundary-to-boundary Green function in the
bulk. According to the AdS/CFT correspondence, this
Green function can be regraded as a correlation function
of the dual QFT. We showed that this holographic approach
reproduces the known correlation functions of CFT and
offers a novel method to understand the scale dependence of
correlation functions in various situations, like a thermal
CFT or QFT in curved spacetimes.
First, we discussed how to calculate general two- and

three-point functions of CFT holographically when oper-
ators are located at arbitrary positions and times. This is the
generalization of the equal-time and equal-position corre-
lation functions studied before [28,29]. For equal-time and
equal-position correlators, there is only one conserved
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charge in the dual description. For the general correlator,
however, there are two conserved charges due to the
translational symmetries in the temporal and spatial
directions. Exploiting these conserved quantities with
appropriate boundary conditions, we determined the exact
configuration of the geodesic and evaluated its length
analytically. Intriguingly, we showed that this holographic
calculation reproduces the exact two-and three-point func-
tions expected by the conformal symmetry.
The holographic approach was also applied to the two-

point functions of nontrivial QFTs, like a thermal CFT or
QFT in an expanding universe. A thermal system or
expanding background usually has a parameter—either
temperature or the Hubble constant—specifying the sys-
tem’s scale. Since this parameter is finite, its effect is
negligible in the UV limit. Therefore, the correlation
function of such a system reduces to the CFT result in
the UV limit having a short distance and time interval. In
the IR limit, however, the finite correction can give rise to a
significant effect on the theory that modifies the correlation
functions. Although it is important to understand such IR
modification, it is generally hard to calculate the IR
correlation function exactly because of the nonperturbative
feature of IR physics. In the present work, we calculated the
exact correlation functions valid over the entire energy
scale by applying the holographic method. The holographic
result showed that the correlation functions of a thermal
CFT or QFT in an expanding universe, as expected, are the

same as the CFT results in the UV limit. In other words, the
correlation function suppresses by a power law in the short
time interval and distance limit. In the IR limit, however,
the correlation functions decreases exponentially due to the
screening effect for a thermal CFT or the expansion of the
background spacetime for the expanding universe.
If we further consider relevant operators deforming the

UV CFT, they significantly modify the IR physics by
providing a nontrivial RG flow. In this procedure, corre-
lation functions also seriously change. Therefore, it would
be interesting to investigate the scale-dependent correlators
for a system with a nontrivial RG flow. In this case, a UV
CFT can flow to a new IR CFT in which the scaling
dimension of an operator changes with the anomalous
dimension. We hope to report more interesting results on
this issue in future work.
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