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In the framework of linearized quantum gravity, we study the quantum gravitational interaction between
two nonpointlike objects induced by fluctuating gravitomagnetic fields in vacuum. We find that, in addition
to the quantum gravitational interaction induced by fluctuating gravitoelectric fields previously studied,
there exists a quantum gravitomagnetic interaction. This interaction originates from the interaction between
the instantaneous localized mass currents in nonpointlike objects induced by the fluctuating gravito-
magnetic fields. Using fourth-order perturbation theory, we derive the explicit form of the quantum gravito-
magnetic interaction energy, which shows an r−10 dependence in the near regime and an r−11 dependence in
the far regime, where r is the distance between the two objects. This interaction energy is expected to be
significant when the gravitomagnetic polarizability of the objects is large.
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I. INTRODUCTION

Although a theory of quantum gravity, which is neces-
sary to understand quantum gravitational effects near the
Planck energy scale, is elusive, one can still study quantum
gravitational effects at low-energy scales, for an example,
by taking general relativity as an effective field theory. In
such an effective field approach, it has been shown that
there exists a quantum correction to the classical Newtonian
potential, which can be obtained by summing one-loop
Feynman diagrams involving off-shell gravitons [1–6],
just as the consideration of the radiative corrections of
quantum electrodynamics would lead to a modification
of the Coulomb interaction between two charges (See,
e.g., Ref. [7]).
The works mentioned above deal with the quantum

gravitational interaction between two mass monopoles.
Recently, the quantum gravitational interaction between
two nonpointlike objects has also been investigated [8–10].
This interaction originates from the interaction between
instantaneous mass quadrupoles induced by the fluctuating
gravitational fields, and behaves as r−10 and r−11 in the near
and far regimes, respectively. Due to its close analogy to the
Casimir-Polder interaction between a pair of atoms due to
the interaction between instantaneous electric dipoles
induced by the fluctuating electromagnetic fields [11], it
is also dubbed as the gravitational Casimir-Polder inter-
action. Originally, this quantum gravitational interaction
is derived with a method in close analogy to that in the
computation of the electromagnetic Casimir-Polder

interaction between two atoms from their induced electric
dipole moments due to two-photon exchange [8], in which
the details of quantization of the gravitational field are
not needed. The result has soon been confirmed by the
leading-order perturbation calculations based on linearized
quantum gravity [9], and the calculation of scattering
amplitudes [10]. Later, in the framework of linearized
quantum gravity, the quantum gravitational interaction on a
nonpointlike object and between two nonpointlike objects
near a boundary [12,13], as well as the interaction between
two nonpointlike objects in a thermal bath [14], a pair
of objects in the symmetric or antisymmetric entangled
state [15], and among three nonpointlike objects [16] has
also been studied.
Under weak-field approximation, the linearized Einstein

field equations can be organized in a form similar to the
Maxwell equations, in which the gravitoelectric field and the
gravitomagnetic field play the roles similar to those played
by the electric and magnetic fields in electromagnetism
respectively. This is known as Weyl gravitoelectromagnet-
ism [17–23]. In the framework of the gravitoelectro-
magnetism, the instantaneous mass quadrupole moments
responsible for the gravitational Casimir-Polder inter-
action are induced by the fluctuating gravitoelectric fields
[8–10,12–16]. A question then naturally arises as to what
happens if the fluctuating gravitomagnetic fields are con-
sidered. Here, let us note that the Casimir-Polder inter-
action between a pair of neutral but polarizable atoms due
to the interaction between instantaneous magnetic dipoles
induced by the fluctuating electromagnetic fields (in natural
units c ¼ ℏ ¼ 1) is of the same form as that due to the inter-
action between instantaneous electric dipoles, apart from
the replacement of electric polarizability with magnetic
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susceptibility [24–26]. Therefore, we are particularly con-
cerned about whether such a correspondence still exists
in the gravitational case. This is what we are going to
investigate in the present paper. The paper is organized as
follows. In Sec. II, we derive the interaction Hamiltonian
describing the interaction between an object and the
fluctuating gravitomagnetic fields. In Sec. III, we calculate
the quantum gravitomagnetic interaction between two
nonpointlike objects induced by the fluctuating gravito-
magnetic fields using the fourth-order perturbation theory,
and analyze its asymptotic behaviors in the near and far
regimes. We summarize in Sec. IV. Throughout the paper,
the Greek indices take values from 0 to 3, and the Latin
indices run from 1 to 3. The Einstein summation convention
is assumed for repeated indices. Unless otherwise specified,
the natural units c ¼ ℏ ¼ 1 are adopted.

II. THE INTERACTION HAMILTONIAN

In the weak-field limit, the gravitational field can be
described as a linearized perturbation on a flat background
spacetime, so the spacetime metric gμν can accordingly be
expanded as gμν ¼ ημν þ hμν, where ημν is the flat space-
time metric, and hμν is the linear perturbation. Under this
approximation, the interaction Lagrangian density between
the gravitational fields and a nonpointlike object takes the
standard form [27,28]

L ¼ 1

2
hμνTμν; ð1Þ

where Tμν is the energy-momentum tensor of the object.
We treat hμν and pμν ¼ ∂L

∂ḣμν
as the generalized coordinate

and the generalized momentum respectively, where ḣμν is
the generalized velocity, and the dot denotes derivative with
respect to time t. To obtain the Hamiltonian density,
the standard choice is to work in a local inertial frame,
in which the generalized velocities ḣμν are considered
negligible. Therefore, the interaction Hamiltonian density
corresponding to the above Lagrangian density can be
expressed as [29,30]

H ¼ ∂L

∂ḣμν
ḣμν − L ¼ −

1

2
hμνTμν: ð2Þ

In the local inertial frame, the dominant term of the
energy-momentum tensor is T00 ¼ ρm, where ρm is the
mass-energy density. In addition, we also include the T0i

terms, where T0i ¼ ρmvi is the localized mass-current
density. Then, the interaction Hamiltonian density can be
expressed as

H ¼ −
1

2
h00T00 −

1

2
h0iT0i

¼ −
1

2
h00ρmðxÞ −

1

2
h0iρmðxÞvi: ð3Þ

Since the duration of the interaction between the fluc-
tuating gravitational fields and the objects may be long,
it is necessary to adopt a coordinate system that is locally
inertial for an extended time [29]. A suitable choice is to
work in the Fermi normal coordinate system. Here, we aim
to establish a relation between the linear perturbation of the
metric hμν and the corresponding Riemann tensor Rμναβ.
To this end, we need to express hμν as a Taylor expansion
in powers of the Fermi coordinates. Note that the time
component of Fermi coordinates is a constant [31,32],
so the expansion terms dependent on the time coordinate
naturally disappear, and the metric can be expanded as
follows:

gμν ¼ ημν þ
1

2
gμν;ijxixj þOðx3Þ; ð4Þ

where xi denotes a spatial coordinate in the Fermi normal
coordinate system. Replacing the second derivative of the
metric tensor gμν;ij in the equation above with the Riemann
curvature tensor Rαβγσ, one obtains [32–36]

h00 ¼ −R0j0kxjxk; ð5Þ

and

h0i ¼ −
2

3
R0jikxjxk: ð6Þ

Therefore, the dependence on the time enters the perturba-
tion metric only through the components of the Riemann
curvature tensor. Taking Eqs. (5) and (6) into Eq. (3), the
interaction Hamiltonian density can further be written as

H ¼ 1

2
ρmðxÞxjxkR0j0k þ

1

3
R0jikxjxkρmðxÞvi: ð7Þ

According to the Weyl gravitoelectromagnetism, a gravito-
electric field,

Eij ¼ −C0i0j; ð8Þ

and a gravitomagnetic field,

Bij ¼
1

2
ϵiflCfl0j; ð9Þ

can be defined by an analogy between the Maxwell
equations and the linearized gravitational field equations
[17–23], where ϵifl is the spatial Levi-Civita tensor, and
Cαβμν is the traceless part of the Riemann curvature tensor,
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i.e., the Weyl tensor. In the vacuum case, the energy-
momentum tensor Tμν is zero, and the definitions in Eqs. (8)
and (9) are equivalent to Eij ¼ −R0i0j and Bij ¼ 1

2
ϵiflRfl0j.

Then, the Hamiltonian density H can be rewritten as

H ¼ −
1

2
ρmðxÞxjxkEjk −

1

3
ρmðxÞðx × vÞlxjBlj: ð10Þ

Allowing for the fact that Eij and Bij are symmetric traceless
tensors, the interaction Hamiltonian can be expressed as

H ¼
Z

d3xH ¼ −
1

2
QjkEjk −

1

3
SljBlj; ð11Þ

where Qjk ≡ R
d3xρmðxÞðxjxk − 1

3
δjkr2Þ is the mass quad-

rupole moment tensor, and Slj ≡ 1
2

R
d3xρmðxÞ½ðx × vÞlxj þ

ðx × vÞjxl� is the mass-current quadrupole moment of the
object which has localized mass-current density [37,38]. So,
the interaction Hamiltonian (11) represents the interaction
between the mass quadrupole moment and the mass-current
quadrupole moment of the object and the fluctuating
gravitational fields. Note that the Hamiltonian (11) is gauge
invariant. In contrast, L is not gauge invariant, although it is
a scalar in its mathematical form.

III. THE QUANTUM GRAVITOMAGNETIC
INTERACTION

The system we consider consists of a pair of gravita-
tionally polarizable objects (labeled as A and B respec-
tively), which are coupled with fluctuating gravitational
fields in vacuum. The two objects are considered as two-
level systems. The excited and ground states of the two
objects are labeled as jeAðBÞi and jgAðBÞi respectively, and
the energy level spacing is ωAðBÞ. Hence, the total
Hamiltonian of this system can be expressed as

Htot ¼ HA þHB þHF þHint; ð12Þ

where HAðBÞ is the Hamiltonian of object A(B), HF is the
Hamiltonian of the gravitational fields, and Hint is the
interaction Hamiltonian between the objects and the gravi-
tational fields, which can be expressed in the form of
Eq. (11) as

Hint ¼ HGE
int þHGM

int ; ð13Þ

where

HGE
int ≡ −

1

2
Qij

AEijðrAÞ −
1

2
Qij

BEijðrBÞ; ð14Þ

and

HGM
int ≡ −

1

3
SijABijðrAÞ −

1

3
SijBBijðrBÞ: ð15Þ

As has been mentioned, the gravitational Casimir-Polder
interaction studied in the existing literature [8–10,12–16]
originates from the interaction between the instantaneous
mass quadrupole moments induced by the fluctuating
gravitoelectric fields, which corresponds to the interaction
Hamiltonian equation (14). In what follows, we study the
contribution of the fluctuating gravitomagnetic fields to the
quantum gravitational interaction between two nonpoint-
like objects. Correspondingly, the interaction Hamiltonian
is given by Eq. (15).
In the transverse tracefree (TT) gauge, the linear gravi-

tational perturbation can be quantized as [14,30]

hijðr; tÞ ¼
X
k;λ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8πG

ð2πÞ3ω

s �
aλðωÞeijðk; λÞeik·r−iωt

þ a†λðωÞeijðk; λÞe−ik·rþiωt
�
; ð16Þ

where G is the Newton’s gravitational constant, k the wave
vector, ω ¼ jkj the frequency, aλ and a†λ the annihilation
and creation operators, eijðk; λÞ the polarization tensor, and
λ labels the polarization. In the weak-field approximation,
the Riemann curvature tensor Rαβμν can be expressed in
terms of the gravitational metric perturbation as

Rαβμν ¼
1

2

�
∂β∂μhαν − ∂α∂μhβν − ∂β∂νhαμ þ ∂α∂νhβμ

�
: ð17Þ

Then, in the TT gauge, the gravitomagnetic tensor can be
written according to Eq. (9) as

Bij ¼ −
1

2
ϵifl∂fḣlj; ð18Þ

where a dot represents the first derivative with respect to
time t. Taking Eq. (16) into Eq. (18), the quantized
gravitomagnetic field can be obtained as

Bijðr; tÞ ¼
i
2

X
λ

Z
d3k

ffiffiffiffiffiffiffiffiffiffiffiffi
8πGω
ð2πÞ3

s
ϵifl∂f

�
aλðω; tÞeljðk;λÞeik·r

−a†λðω; tÞeljðk;λÞe−ik·r
�
: ð19Þ

Now we introduce a vector e3 ≡ k
jkj, which is the unit vector

along the propagation direction of the gravitational field.
Then, we have

Bijðr; tÞ ¼ −
1

2

X
λ

Z
d3k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8πGω3

ð2πÞ3

s
ϵifle

f
3eljðk; λÞ

×
�
aλðω; tÞeik·r þ a†λðω; tÞe−ik·r

�
; ð20Þ

where ef3ðf ¼ x; y; zÞ represents the fth coordinate com-
ponent of the vector e3.
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We assume that the two objects are in their ground states.
Since the coupling between the object and the gravitational
field is linear in the object and field operators, each object
should interact with the gravitational field at least twice

and then return to its initial ground state. Therefore, the
quantum gravitomagnetic interaction energy between two
ground-state objects can be calculated by the fourth-order
perturbation theory, which takes the standard form

ΔEGM
AB ¼ −

X
I;II;III

0 hϕjHGM
int jIihIjHGM

int jIIihIIjHGM
int jIIIihIIIjHGM

int jϕi
ðEI − EϕÞðEII − EϕÞðEIII − EϕÞ

: ð21Þ

Here jϕi ¼ jgAijgBij0i is the ground state of the whole
system, where j0i is the vacuum state of the fluctuating
gravitational field. The primed summation means that jϕi
is excluded in the summation. Here, jIi, jIIi and jIIIi are
the three intermediate states in the interaction processes.
During each interaction between the objects and the
gravitational field, a virtual graviton may be emitted or
absorbed by an object. Hence, the intermediate states jIi
and jIIIi which are adjacent to the initial and final states
respectively in Eq. (21) must consist of a virtual graviton
and an object in an excited state. For the intermediate state

jIIi, there are three possibilities, which can be summarized
as (a) Both of the two objects are in the ground state and
there are two virtual gravitons; (b) Both of the two objects
are in the excited state and there are no virtual gravitons;
(c) Both of the two objects are in the excited state and there
are two virtual gravitons. See Table I in Appendix A for
the possible intermediate states and the corresponding
denominators.
Summing up all the contributions of possible intermedi-

ate states, we obtain the quantum gravitomagnetic inter-
action energy between the pair of objects as

ΔEGM
AB ðrA; rBÞ ¼ −

1

81

Z þ∞

0

dω
Z þ∞

0

dω0X12
n¼1

1

Dn
ŜijA Ŝ

�kl
A ŜabB Ŝ�cdB Gijabðω; rA; rBÞGklcdðω0; rA; rBÞ

¼ −
1

81

Z þ∞

0

dω
Z þ∞

0

dω0ŜijA Ŝ
�kl
A ŜabB Ŝ�cdB Gijabðω; rA; rBÞGklcdðω0; rA; rBÞ

×
4ðωA þ ωB þ ωÞ

ðωA þ ωBÞðωA þ ωÞðωB þ ωÞ
�

1

ωþ ω0 −
1

ω − ω0

�
: ð22Þ

Here Dn ðn ¼ 1; 2; 3;…; 12Þ are the energy denominators
in Eq. (21) shown in Table I. ŜijAðBÞ ¼ hgAðBÞjSijAðBÞjeAðBÞi is
the quadrupole transition matrix element, and Ŝ�ijAðBÞ ¼
heAðBÞjSijAðBÞjgAðBÞi is the corresponding conjugate term.

Gijabðω; rA; rBÞ is the two-point correlation function of the
gravitomagnetic fields in the frequency domain, which
takes the form

Gijabðω; rA; rBÞ ¼ h0jBijðω; rAÞBabðω; rBÞj0i: ð23Þ

We assume that the objects are isotropically polarizable,
then the relation satisfied by the product between the
quadrupole transition matrix element and its conjugate
can be expressed as

ŜijAðBÞŜ
�kl
AðBÞ ¼ ðδikδjl þ δilδjkÞχ̂AðBÞ; ð24Þ

where χ̂ ≡ jŜijj2. Substituting Eq. (24) into Eq. (22), one
obtains

ΔEGM
AB ðrA; rBÞ ¼ −

4

81ðωA þ ωBÞ
Z þ∞

0

dω
Z þ∞

0

dω0

×Gijabðω; rA; rBÞGijabðω0; rA; rBÞ

×
χ̂Aχ̂BðωA þ ωB þ ωÞ
ðωA þ ωÞðωB þ ωÞ

×

�
1

ωþ ω0 −
1

ω − ω0

�
: ð25Þ

The two-point function Gijabðω; rA; rBÞ can be obtained
from GijabðrA; rB; tA; tBÞ by the Fourier transforms. In the
time domain, the two-point function of the gravitomagnetic
field can be obtained by using Eq. (20) as

Gijabðr; r0; t; t0Þ ¼ h0jBijðr; tÞBabðr0; t0Þj0i

¼
Z

d3k
Gω3

ð2πÞ2 GijabðkÞeik·ðr−r0Þ−iωðt−t0Þ;

ð26Þ

where GijabðkÞ in the equation above is the polarization
summation term, which can be expressed as
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GijabðkÞ ¼ ϵifle
f
3ϵapqe

p
3

X
λ

eljðk; λÞeqbðk; λÞ

¼
X
λ

eijðk; λÞeabðk; λÞ

¼ δiaδjb þ δibδja − δijδab þ k̂ik̂jk̂ak̂b þ k̂ik̂jδab

þ k̂ak̂bδij − k̂ik̂aδjb − k̂ik̂bδja

− k̂jk̂aδib − k̂jk̂bδia; ð27Þ

with k̂i being the ith component of the unit vector k̂ ¼ k=k.
The derivation of Eq. (27) is shown in Appendix B.
Transforming to the spherical coordinate, i.e., letting k̂x ¼
sin θ cosφ, k̂y ¼ sin θ sinφ and k̂z ¼ cos θ, and labeling

GijabðkÞ ⟶
ðθ;φÞ

Gijabðθ;φÞ; ð28Þ

the two-point correlation function in the time domain can
be written as

Gijabðr;ΔtÞ ¼
Z þ∞

0

dω
Gω5

ð2πÞ2
Z

π

0

dθ sin θ

×
Z

2π

0

dφGijabðθ;φÞeiωðr cos θ−ΔtÞ; ð29Þ

where r ¼ jr − r0j, and Δt ¼ t − t0. Performing the Fourier
transform, one obtains the two-point correlation function in
the frequency domain as

Gijabðω̃; rA; rBÞ ¼
1

2π

Z þ∞

−∞
dðΔtÞeiω̃ΔtGijabðr;ΔtÞ

¼ Gω̃5

ð2πÞ2
Z

π

0

dθ sin θ
Z

2π

0

dφ

× Gijabðθ;φÞeiω̃r cos θ: ð30Þ

Plugging Eq. (30) into Eq. (25), and performing the integral
over ðθ;φ; θ0;φ0Þ, we obtain

ΔEGM
AB ðrÞ¼−

32G2

81π2ðωAþωBÞr10
Z þ∞

0

dω
Z þ∞

0

dω0

×
χ̂Aχ̂BðωAþωBþωÞ
ðωAþωÞðωBþωÞ

�
1

ωþω0−
1

ω−ω0

�

×
�
F1ðωr;ω0rÞcosðω0rÞþF2ðωr;ω0rÞsinðω0rÞ�;

ð31Þ

where

F1ðωr;ω0rÞ ¼ ðωrÞðω0rÞ�315þ 8ðωrÞ2ðω0rÞ2 − 30ðωrÞ2 − 30ðω0rÞ2� cosðωrÞ
− ðω0rÞ�315 − 135ðωrÞ2 − 30ðω0rÞ2 þ 18ðωrÞ2ðω0rÞ2 þ 3ðωrÞ4 − 2ðωrÞ4ðω0rÞ2� sinðωrÞ; ð32Þ

and

F2ðωr;ω0rÞ ¼ ðωrÞ�−315þ 135ðω0rÞ2 þ 30ðωrÞ2 − 18ðωrÞ2ðω0rÞ2 − 3ðω0rÞ4 þ 2ðωrÞ2ðω0rÞ4� cosðωrÞ
þ �

315 − 135ðωrÞ2 þ 3ðωrÞ4 − 135ðω0rÞ2 þ 63ðωrÞ2ðω0rÞ2 − 3ðωrÞ4ðω0rÞ2 þ 3ðω0rÞ4
− 3ðωrÞ2ðω0rÞ4 þ ðωrÞ4ðω0rÞ4� sinðωrÞ: ð33Þ

Obviously, F1ðωr;−ω0rÞ ¼ −F1ðωr;ω0rÞ and F2ðωr;−ω0rÞ ¼ F2ðωr;ω0rÞ. So, the gravitomagnetic interaction energy
ΔEGM

AB ðrÞ can further be written as

ΔEGM
AB ðrÞ ¼ −

16G2

81π2ðωA þ ωBÞr10
Z þ∞

0

dω
χ̂Aχ̂BðωA þ ωB þ ωÞ
ðωA þ ωÞðωB þ ωÞ

Z þ∞

−∞
dω0

�
1

ωþ ω0 þ
1

−ωþ ω0

�

×
�
F1ðωr;ω0rÞ − iF2ðωr;ω0rÞ�eiω0r: ð34Þ

Performing the principle value integral on ω0 in the equation above gives

ΔEGM
AB ðrÞ ¼ −

16G2

81πðωA þ ωBÞr10
Z þ∞

0

dω
χ̂Aχ̂BðωA þ ωB þ ωÞ
ðωA þ ωÞðωB þ ωÞ

�
F3ðωrÞ cosð2ωrÞ þ F4ðωrÞ sinð2ωrÞ

�
; ð35Þ

where

F3ðωrÞ ¼ −630ðωrÞ þ 330ðωrÞ3 − 42ðωrÞ5 þ 4ðωrÞ7; ð36Þ
F4ðωrÞ ¼ 315 − 585ðωrÞ2 þ 129ðωrÞ4 − 14ðωrÞ6 þ ðωrÞ8: ð37Þ
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Note that F3ð−ωrÞ ¼ −F3ðωrÞ and F4ð−ωrÞ ¼ F4ðωrÞ, and as a result, Eq. (35) can further be expressed as

ΔEGM
AB ðrÞ ¼ −

8G2

81πðωA þ ωBÞr10
	Z þ∞

0

dω
χ̂Aχ̂BðωA þ ωB þ ωÞ
ðωA þ ωÞðωB þ ωÞ

�
F3ðωrÞ − iF4ðωrÞ

�
ei2ωr

þ
Z

−∞

0

dω
χ̂Aχ̂BðωA þ ωB − ωÞ
ðωA − ωÞðωB − ωÞ

�
F3ðωrÞ − iF4ðωrÞ

�
ei2ωr



: ð38Þ

Letting ω ¼ iu, and performing the integral above on the
imaginary axis, one obtains

ΔEGM
AB ðrÞ ¼ −

16G2

81πr10

Z þ∞

0

duχAðiuÞχBðiuÞTðurÞe−2ur;

ð39Þ
where

TðxÞ ¼ 315þ 630xþ 585x2 þ 330x3 þ 129x4 þ 42x5

þ 14x6 þ 4x7 þ x8; ð40Þ
and

χAðBÞðiuÞ ¼ lim
ϵ→0þ

χ̂AðBÞωAðBÞ
ω2
AðBÞ − ðiuÞ2 − iϵðiuÞ ð41Þ

is defined as the object’s ground-state gravitomagnetic
polarizability satisfying

SijðiuÞ ¼ χðiuÞBijðiu; rÞ: ð42Þ

Now, let us discuss the asymptotic behaviors of the quan-
tum gravitomagnetic interaction energy (39) in the near and
far regimes respectively. In the near regime, i.e., when the
distance between the two objects r is much smaller than the
transition wavelength of the objects ω−1

AðBÞ, all the terms

in the integrand containing ur can be neglected, so the
quantum gravitomagnetic interaction energy takes the form

ΔEGM;near
AB ðrÞ ¼ −

560ℏG2

9πr10

Z þ∞

0

duχAðiuÞχBðiuÞ: ð43Þ

Note that here the result is shown in the International
System of Units (SI units). According to the definition of
the gravitomagnetic polarizability in Eq. (41), the fre-
quency dependence of the gravitomagnetic polarizability
χAðBÞðωÞ can be expressed as

χAðBÞðωÞ ¼
χAðBÞð0Þ

1 −
�

ω
ωAðBÞ

�
2
: ð44Þ

Substituting Eq. (44) into Eq. (43), and performing the
integration with respect to the variable u, we can further
obtain an explicit expression for the interaction energy in
the near regime as

ΔEGM;near
AB ðrÞ ¼ −

280ℏG2

9r10
ωAωB

ωA þ ωB
χAð0ÞχBð0Þ: ð45Þ

Note that χAðBÞð0Þ represents the static gravitomagnetic
polarizability of object AðBÞ. On the other hand, in the far
regime, i.e., when the distance between the two objects r is
much larger than the transition wavelength of the objects
ω−1
AðBÞ, the frequency-dependent polarizability χAðBÞðiuÞ can

be approximated with the static one χAðBÞð0Þ due to the
exponential decay term in Eq. (39). By using integration by
parts, the quantum gravitomagnetic interaction energy in
the far regime is found to be

ΔEGM;far
AB ðrÞ ¼ −

1772ℏcG2

9πr11
χAð0ÞχBð0Þ: ð46Þ

By setting Eqs. (45) and (46) equal, we can find the critical
distance r� at which we transition from the near regime to
the far regime:

r� ¼ 443cðωA þ ωBÞ
70πωAωB

; ð47Þ

which is of the order of c=ωAðBÞ as expected. This critical
distance marks the boundary where the nature of the
interaction shifts, indicating the transition between different
scaling behaviors in the gravitational interaction.
The calculations above show that the quantum gravito-

magnetic interaction between two nonpointlike objects
induced by fluctuating gravitomagnetic fields in vacuum
shows an r−10 dependence in the near regime and an r−11

dependence in the far regime. A comparison between
Eqs. (46)–(43) and Eqs. (1) and (2) in Ref. [8] shows that,
although the distance dependence is the same as that of
the quantum gravitational interaction between two objects
induced by fluctuating gravitoelectric fields, the coeffi-
cients are different. This contrasts significantly with the
electromagnetic case, where the Casimir-Polder interaction
due to the interaction between instantaneous magnetic
dipoles is of the same form as that due to the interaction
between instantaneous electric dipoles, apart from the
replacement of electric polarizability with magnetic sus-
ceptibility [24–26]. Moreover, the quantum gravitomag-
netic interaction energy is proportional to G2, which can
be understood as a result of an exchange of two virtual
gravitons according to the rules of the Feynman diagram.
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In this sense, it is of the same order as that of the quantum
gravitational interaction induced by fluctuating gravito-
electric fields. However, according to the interaction
Lagrangian density (1), in the gravitomagnetic case, it is
the mass-current density ρmvi rather than the mass-energy
density ρm that is coupled to the fluctuating gravitational
fields hμν. Therefore, the ratio between the gravito-
magnetic interaction Lagrangian and the gravitoelectric
one is of the order of v=c, and correspondingly, the
ratio between the quantum gravitomagnetic interaction
energy and the quantum gravitoelectric interaction energy
is of the order of v4=c4. This is why the contribution
of the fluctuating gravitomagnetic fields to the quantum
gravitational interaction energy was not considered in
previous studies. Nevertheless, if there exists some specific
material such that the induced mass-current velocity can
be close to the speed of light, or equivalently, the grav-
itomagnetic polarizability is very large, then the contribu-
tion of the fluctuating gravitomagnetic fields to the
quantum gravitational interaction energy should be non-
negligible.
Finally, we would like to note that, when fluctuating

gravitomagnetic fields are considered, there should be
contribution to the quantum gravitational interaction from
the gravitoelectric-gravitomagnetic cross terms, which is
of the order of v2=c2. This is in addition to the gravito-
electric-gravitoelectric interaction investigated in previous
studies [8–10], and the quantum gravitomagnetic-
gravitomagnetic interaction investigated here. It is expected
that, in the retarded regime, the distance dependence of the
quantum gravitational interaction from the gravitoelectric-
gravitomagnetic cross terms (∝ r−11) is the same as that in
the gravitoelectric-gravitoelectric and gravitomagnetic-
gravitomagnetic cases. However, in the near regime,
the distance dependence should be different. We hope to

leave the explicit investigation of these interactions for
future work.

IV. SUMMARY

In summary, we have investigated the quantum gravita-
tional interaction between two nonpointlike objects
coupled with fluctuating gravitomagnetic fields in vacuum
within the framework of linearized quantum gravity. We
found that these fluctuating gravitomagnetic fields induce
instantaneous localized mass currents in the objects, which
interact to generate a quantum gravitomagnetic interaction
energy. Using fourth-order perturbation theory, we deter-
mined that this interaction exhibits an r−10 dependence in
the near regime and an r−11 dependence in the far regime,
where r is the distance between the two objects. The
contribution of the fluctuating gravitomagnetic fields to the
quantum gravitational interaction between two objects is
expected to be significant when the gravitomagnetic polar-
izability of the objects is large.
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APPENDIX A: INTERMEDIATE PROCESSES
OF THE QUANTUM GRAVITOMAGNETIC

INTERACTION

The intermediate states and the associated energy
denominators of Eq. (21) are as follows.

TABLE I. Twelve intermediate states contributing to the interaction energy and the explicit expressions of the
corresponding energy denominators.

Case jIi jIIi jIIIi Denominator

(1) jeAijgBij1i jgAijgBij1; 10i jgAijeBij10i D1 ¼ ðω0 þ ωBÞðω0 þ ωÞðωþ ωAÞ
(2) jeAijgBij1i jgAijgBij1; 10i jgAijeBij1i D2 ¼ ðωþ ωBÞðω0 þ ωÞðωþ ωAÞ
(3) jeAijgBij1i jeAijeBij0i jgAijeBij10i D3 ¼ ðω0 þ ωBÞðωB þ ωAÞðωþ ωAÞ
(4) jeAijgBij1i jeAijeBij0i jeAijgBij10i D4 ¼ ðω0 þ ωAÞðωB þ ωAÞðωþ ωAÞ
(5) jeAijgBij1i jeAijeBij1; 10i jgAijeBij1i D5 ¼ ðωþ ωBÞðωB þ ωA þ ω0 þ ωÞðωþ ωAÞ
(6) jeAijgBij1i jeAijeBij1; 10i jeAijgBij10i D6 ¼ ðω0 þ ωAÞðωB þ ωA þ ω0 þ ωÞðωþ ωAÞ
(7) jgAijeBij1i jgAijgBij1; 10i jeAijgBij10i D7 ¼ ðω0 þ ωAÞðω0 þ ωÞðωþ ωBÞ
(8) jgAijeBij1i jgAijgBij1; 10i jeAijgBij1i D8 ¼ ðωþ ωAÞðω0 þ ωÞðωþ ωBÞ
(9) jgAijeBij1i jeAijeBij0i jeAijgBij10i D9 ¼ ðω0 þ ωAÞðωB þ ωAÞðωþ ωBÞ
(10) jgAijeBij1i jeAijeBij0i jgAijeBij10i D10 ¼ ðω0 þ ωBÞðωB þ ωAÞðωþ ωBÞ
(11) jgAijeBij1i jeAijeBij1; 10i jeAijgBij1i D11 ¼ ðωþ ωAÞðωB þ ωA þ ω0 þ ωÞðωþ ωBÞ
(12) jgAijeBij1i jeAijeBij1; 10i jgAijeBij10i D12 ¼ ðω0 þ ωBÞðωB þ ωA þ ω0 þ ωÞðωþ ωBÞ
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APPENDIX B: SUMMATION
OF GRAVITOMAGNETIC POLARIZATION

TENSORS IN THE TT GAUGE

As shown in Fig. 1, we introduce a coordinate-
independent triad of unit orthonormal vectors ½e1ðkÞ;
e2ðkÞ; e3ðkÞ�. Here, e3ðkÞ ¼ k=k≡ k̂ is the unit vector
in the direction of gravitational perturbation propagation.
The orthogonal relation satisfied by the triad can be
written in the coordinate system describing the spacetime
metric as [39]

eiaðkÞeibðkÞ ¼ δab; a; b ¼ 1; 2; 3; ðB1Þ
and

eiaðkÞejaðkÞ ¼ ei1e
j
1 þ ei2e

j
2 þ k̂ik̂j ¼ δij; i; j ¼ x; y; z;

ðB2Þ
where k̂i is the ith coordinate component of the unit
vector k̂. On the other hand, the cross product relations
that this triad of unit vectors satisfies can be written in the
coordinate system as

e3ðkÞ × e1ðkÞ ¼ e2ðkÞ ⇒ ϵijke
j
3e

k
1 ¼ ei2; ðB3Þ

e3ðkÞ × e2ðkÞ ¼ −e1ðkÞ ⇒ ϵijke
j
3e

k
2 ¼ −ei1: ðB4Þ

Therefore, the gravitational polarization tensor eijðk; λÞ in
the TT gauge can be expressed by the vectors e1ðkÞ and
e2ðkÞ in this triad as [32]

eijðk;þÞ ¼ ei1ðkÞ ⊗ ej1ðkÞ − ei2ðkÞ ⊗ ej2ðkÞ; ðB5Þ

eijðk;×Þ ¼ ei1ðkÞ ⊗ ej2ðkÞ þ ei2ðkÞ ⊗ ej1ðkÞ: ðB6Þ

Then we obtain that

X
λ

eijðk; λÞeklðk; λÞ ¼ eijðk;þÞeklðk;þÞ þ eijðk;×Þeklðk;×Þ

¼ ½ei1ðkÞ ⊗ ej1ðkÞ − ei2ðkÞ ⊗ ej2ðkÞ�½ek1ðkÞ ⊗ el1ðkÞ − ek2ðkÞ ⊗ el2ðkÞ�
þ ½ei1ðkÞ ⊗ ej2ðkÞ þ ei2ðkÞ ⊗ ej1ðkÞ�½ek1ðkÞ ⊗ el2ðkÞ þ ek2ðkÞ ⊗ el1ðkÞ�: ðB7Þ

Using Eq. (B7), the gravitomagnetic polarization summation term labeled as GijabðkÞ in Eq. (26) can be further expressed as

GijabðkÞ ¼ ϵifle
f
3ϵapqe

p
3f½el1ðkÞ ⊗ ej1ðkÞ − el2ðkÞ ⊗ ej2ðkÞ�½eq1ðkÞ ⊗ eb1ðkÞ − eq2ðkÞ ⊗ eb2ðkÞ�

þ ½el1ðkÞ ⊗ ej2ðkÞ þ el2ðkÞ ⊗ ej1ðkÞ�½eq1ðkÞ ⊗ eb2ðkÞ þ eq2ðkÞ ⊗ eb1ðkÞ�g
¼ ϵifle

f
3 ½el1ðkÞ ⊗ ej1ðkÞ − el2ðkÞ ⊗ ej2ðkÞ�ϵapqep3 ½eq1ðkÞ ⊗ eb1ðkÞ − eq2ðkÞ ⊗ eb2ðkÞ�

þ ϵifle
f
3 ½el1ðkÞ ⊗ ej2ðkÞ þ el2ðkÞ ⊗ ej1ðkÞ�ϵapqep3 ½eq1ðkÞ ⊗ eb2ðkÞ þ eq2ðkÞ ⊗ eb1ðkÞ�

¼ f½ϵiflef3ðkÞel1ðkÞ� ⊗ ej1ðkÞ − ½ϵiflef3ðkÞel2ðkÞ� ⊗ ej2ðkÞg
× f½ϵapqep3 ðkÞeq1ðkÞ� ⊗ eb1ðkÞ − ½ϵapqep3 ðkÞeq2ðkÞ� ⊗ eb2ðkÞg
þ f½ϵiflef3ðkÞel1ðkÞ� ⊗ ej2ðkÞ þ ½ϵiflef3ðkÞel2ðkÞ� ⊗ ej1ðkÞg
× f½ϵapqep3 ðkÞeq1ðkÞ� ⊗ eb2ðkÞ þ ½ϵapqep3 ðkÞeq2ðkÞ� ⊗ eb1ðkÞg: ðB8Þ

According to the cross product relations shown in Eqs. (B3) and (B4), the equation above can be rewritten as

GijabðkÞ ¼ ½ei2ðkÞ ⊗ ej1ðkÞ þ ei1ðkÞ ⊗ ej2ðkÞ�½ea2ðkÞ ⊗ eb1ðkÞ þ ea1ðkÞ ⊗ eb2ðkÞ�
þ ½ei2ðkÞ ⊗ ej2ðkÞ − ei1ðkÞ ⊗ ej1ðkÞ�½ea2ðkÞ ⊗ eb2ðkÞ − ea1ðkÞ ⊗ eb1ðkÞ�

¼
X
λ

eijðk; λÞeabðk; λÞ; ðB9Þ

FIG. 1. The schematic diagram of the triad of unit vectors and
their orthogonal relations.
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which can be further calculated by using Eqs. (B1) and (B2) as

GijabðkÞ ¼ δiaδjb þ δibδja − δijδab þ k̂ik̂jk̂ak̂b þ k̂ik̂jδab þ k̂ak̂bδij − k̂ik̂aδjb − k̂ik̂bδja − k̂jk̂aδib − k̂jk̂bδia: ðB10Þ
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