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We construct a regular bound state of two extremal black holes in type IIB supergravity with opposite
charges. The bound state resembles the Schwarzschild black hole from the asymptotics to the photon ring
and has the same mass and charges as the Schwarzschild black hole. On the one hand, we show that the
bound-state entropy admits a microscopic description in terms of branes and antibranes in string theory. On
the other hand, we demonstrate that the entropy approaches half of the Schwarzschild entropy as the mass
becomes significantly larger than the Kaluza-Klein scales used to regularize the geometry. This opens up
the possibility of a brane/antibrane interpretation of the Schwarzschild entropy in string theory.
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I. INTRODUCTION

Understanding the microscopic description of the
Schwarzschild entropy stands as a key goal for a compre-
hensive theory of quantum gravity. In string theory, the
introduction of D-branes [1]—nonperturbative solitonic
states carrying charges under Ramond-Ramond fields—
provided a crucial framework to investigate the origin of
theBekenstein-Hawking entropy.A significant breakthrough
was achieved by Strominger and Vafa [2], who offered a
microscopic description of a class of five-dimensional super-
symmetric black holes by studying a Bogomol’nyi-Prasad-
Sommerfield (BPS) system of branes in type IIB string
theory. This involved matching the state counting within the
brane system at weak coupling with the black hole entropy at
strong coupling, resulting in an expression

S ¼ 2π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N1N5NP

p
;

where N1, N5, and NP are the numbers of D1-branes,
D5-branes, and momentum charge within the BPS system.
However, extending such descriptions beyond super-

symmetry encounters a significant challenge as the entropy
of non-BPS states varies with the string coupling.
Nevertheless, noteworthy microscopic descriptions have
been derived for near-extremal black holes by perturba-
tively introducing antibranes to a brane system [3] or by

assuming the absence of interaction between branes and
antibranes [4].
Despite these efforts, unraveling the fundamental nature

of black holes significantly far from extremality—for
which Schwarzschild is the best representation—remains
a challenge. While near-extremal analysis suggests a
plausible brane/antibrane interpretation of the entropy,
the mechanism for which these degrees of freedom organ-
ize at weak and strong coupling remains unclear [5].
Another attempt to offer a microscopic description of

the Schwarzschild black hole involves a correspondence
between the black hole and a self-gravitating gas of
hot string [6]. However, this correspondence does not
leave the entropy invariant, and the string star entropy
fails to capture the ðMassÞ2 growth of the Schwarzschild
entropy.
This article develops a novel approach to derive a brane/

antibrane origin of the Schwarzschild entropy. We con-
struct neutral geometries directly within type IIB super-
gravity, arising from the backreaction of D1–D5-branes and
D1–D5-antibranes with P and P̄ momentum charges. Our
focus is on a neutral bound state consisting of two extremal
black holes as in [2], which we will call “Strominger-Vafa
black holes” for simplicity. One is BPS and the other
is anti-BPS and they carry opposite brane charges. Unlike
other constructions of black hole bound states in the
literature [7–9], the separation between the black holes
is not singular. The black holes form a bubble between
them, counterbalancing their self-attraction and rendering
the geometry asymptotic to four-dimensional Minkowski
spacetime.
First, we demonstrate that the entropy of the bound state

remarkably matches the microscopic degrees of freedom
within the brane/antibrane system [2], despite being far
from extremality,
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S ¼ 2π
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

N1N5NP

p
þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

N1̄N5̄NP̄

p �
;

where N 1̄, N5̄, and NP̄ represent the numbers of antibranes
and antimomenta in the configuration.
Second, we show that gravitational constraints on the

bound state make the quantized charges scale with the
Arnowitt-Deser-Misner (ADM) mass M, such as NX,
NX̄ ∝ M

4
3, when the mass is much larger than the internal

dimensions. This ensures that the entropy scales like M2,
analogous to the Schwarzschild entropy. More precisely,
we show that the entropy is half the Schwarzschild entropy
(in units G4 ¼ 1),

S ¼ 2πM2 ¼ 1

2
SSchw:

This represents the first regular construction in super-
gravity of a brane/antibrane configuration with a well-
defined microscopic description of its phase space, nearly
as vast as that of a Schwarzschild black hole. Additionally,
we analyze the spacetime structure of the bound state,
derive some thermodynamic properties, and initiate a
discussion on explicit microstate constructions. This final
aspect involves leveraging the large families of microstate
geometries of Strominger-Vafa black holes constructed to
date [10], thereby establishing a robust connection between
the microstructure of supersymmetric black holes and that
of neutral systems in string theory.

II. ERNST FORMALISM IN TYPE IIB

The static Ernst formalism has been recently generalized
to supergravity theories in a series of works [11–14], laying
the foundation for classical constructions of nonsupersym-
metric systems in string theory.
We work in type IIB supergravity on T6 with electro-

magnetic flux corresponding to D1–D5-branes and P
momentum (and potentially antibranes and antimomentum
depending on the sign of the charges) [11,12]. The T6

decomposes in two S1 dimensions ðψ ; yÞ, with radii
ðRψ ; RyÞ, where y is the common direction of theD1-branes,
D5-branes, and P momenta. The remaining four compact
dimensions form a T4 wrapped by the D5-branes. The
external spacetime consists of a four-dimensional infinite
spacetime ðt; r; θ;ϕÞ. The spacetime and brane structure is
depicted in Table I.
The Einstein-Maxwell equations for static and axially

symmetric solutions decompose in a set of decoupled
electrostatic Ernst equations for the electromagnetic fields
and also for internal deformations of the T6 [11]. This
allows to generate regular topological structure in the
spacetime from the deformation of the T6 and support this
structure with D1-D5-P flux.
In this article, we consider solutions where a Kaluza-

Klein (KK) bubble of size l is nucleated along ψ , and the

D1, D5, and P fluxes are set equal for simplicity. This
results in a solution of minimal six-dimensional super-
gravity under KK reduction along the T4 given by

ds2 ¼ −
dt2

Z2
þ ðdy − TdtÞ2

þ Z

��
1 −

l
r

�
dψ2 þ e3ν

�
dr2

1 − l
r

þ r2dθ2
�

þ r2sin2θdϕ2

�
;

F ¼ dH ∧ dϕ ∧ dψ − dT ∧ dt ∧ dy: ð1Þ

The radial coordinate range is r ≥ l. The functions
ðZ; T;H; νÞ depend on ðr; θÞ, are governed by static
Ernst equations, and characterize the D1-D5-P fluxes
and their backreaction onto the geometry. In the absence
of flux (Z ¼ 1 and T ¼ H ¼ ν ¼ 0), the solution yields a
KK bubble geometry, so an Euclidean Schwarzschild
solution where the ψ circle degenerates smoothly at the
origin of space r ¼ l.
There is an extensive body of work dedicated to

constructing and analyzing solutions of the static Ernst
equations that correspond to bound states of charged black
holes in four dimensions [7–9]. However, these solutions
are unphysical due to the existence of stringlike singular-
ities, known as struts, which separate the black holes and
prevent their collapse. The present type IIB frame allows
for the embedding of these solutions in higher dimensions
and the resolution of struts using KK bubbles, akin to the
method employed in [14–16]. This enables the construction
of physical bound states of D1-D5-P black holes on
topologically nontrivial spacetime structures.

III. NEUTRAL BOUND STATE OF TWO
STROMINGER-VAFA BLACK HOLES

We solve the ðZ; T;H; νÞ sector by two extremal points
with opposite D1-D5-P charges located at both poles of the
bubble, r ¼ l and θ ¼ 0 and π [7,9,14,17,18]. The solution
is given by (1) with

TABLE I. The brane and spacetime configuration in type IIB
supergravity. The horizontal arrows represent the directions along
which the branes are extended, the vertical lines represent
smearing directions, the curly arrows represent the components
of the momentum waves, and finally the dots represent potential
local sources in the external space.

t r θ ϕ ψ y T4

D1 ↔ • • • j ↔ j
D5 ↔ • • • j ↔ ↔

P ↭ • • • j ↭ j
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Z ¼ 1þ 2Mð2rþM − lÞ
ð2r − lÞ2 − l2cos2θ −M2sin2θ

;

T ¼ 2M
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 −M2

p
cos θ

ð2rþM − lÞ2 − ðl2 −M2Þcos2θ ;

H ¼ M
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 −M2

p
ð2rþM − lÞsin2θ

ð2r − lÞ2 − l2cos2θ −M2sin2θ
;

eν ¼ 1 −
M2sin2θ

ð2r − lÞ2 − l2cos2θ
; ð2Þ

where M can be interpreted as the “brane mass,” and
the bubble size l also corresponds to the distance between
both black holes. The bound-state energy, so the four-
dimensional ADM mass after reduction along ðψ ; yÞ, is

M ¼ lþ 3M
4

: ð3Þ

We work in units where the four-dimensional Newton
constant, denoted as G4, is set to 1. Moreover, G4 is
expressed in terms of the T4 volume, ð2πÞ4V4, the string

coupling, and length such as G4 ¼ g2s l8s
8RψRyV4

¼ 1.

The large-distance behavior of the electromagnetic
potentials ðT;HÞ indicates that the bound state is neutral
with equal D1-D5-P dipoles J ¼ M

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 −M2

p
,

T∼
J cosθ

r2
; H∼

J sin2θ
r

: ð4Þ

Note that the brane mass is constrained by the separation
between both black holes M ≤ l. Beyond that limit, the
branes and antibranes are too massive for a given distance,
so that they would be within the “Schwarzschild radius” of
the bound state, rendering the solution (2) physically
invalid.
The solution is well behaved for r > l and is asymptotic

to R1;3 × T2. The spacetime ends at r ¼ l, as a KK bubble
with localized branes and antibranes at its poles, as
illustrated in Fig. 1.

A. Internal structure

The S1 parametrized by the ψ coordinate degenerates at
r ¼ l which ends the spacetime. For 0 < θ < π, the
geometry is most accurately described by the local coor-
dinate r̄2 ≡ 4ðr − lÞ as r̄ → 0. The end-to-spacetime locus
is smooth if the ðr̄;ψÞ space defines an origin in R2

ds22 ¼ dr̄2 þ r̄2

R2
ψ
dψ2; ð5Þ

where Rψ is the radius of the S1 defined by the periodicity
ψ ¼ ψ þ 2πRψ . By expanding the solution (1) with (2), we
find that this requires one to fix the bubble size l in terms of

the brane mass and Rψ such that

Rψ ¼ 2ðl2 −M2Þ32
l2

: ð6Þ

Now, we shift our focus to the north pole of the bubble,
r ¼ l and θ ¼ 0, by introducing local coordinates

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rðr−lÞ

p
sinθ≡Rsin2τ;

�
r−

l
2

�
cosθ≡l

2
þRcos2τ:

ð7Þ
As R → 0, the local topology corresponds to an intricate
S3 fibration over AdS2 × S1, characterizing a BPS five-
dimensional black hole, referred to as a Strominger-Vafa
black hole [2],

ds2 ∼ dỹ2 þMðlþMÞΔ2

2l4

h
dsðAdS2Þ2 þ 4dΩ̃2

3

i
; ð8Þ

where we have introduced Δ≡ l2 −M2 cos2 τ, ỹ ¼
y −

ffiffiffiffiffiffiffiffi
l−M
lþM

q
t, dsðAdS2Þ2 ¼ dR2

R2 − R2dt2, and dΩ̃2
3 is the line

element of the three-sphere at the horizon parametrized
by ðτ;ϕ;ψÞ.
The single-center solution in [2] has a round three-sphere

at the horizon. In our bound state, the three-sphere at the
black hole horizon is stretched, but remains regular [19],

dΩ̃2
3 ¼ dτ2 þ l6

Δ3

�
cos2τdϕ2 þ sin2τ

4l2
dψ2

�
:

Moreover, the S1 × S3 horizon area is derivable, and the
Bekenstein-Hawking entropy is given by

SN ¼ πðMðlþMÞÞ32
2
3
2l

: ð9Þ

The black hole is generated by the backreaction of D1-
and D5-branes with P momentum charge. The quantized

FIG. 1. The neutral bound state of two Strominger-Vafa black
holes. The angles written indicate which circle smoothly degen-
erates on the symmetry axis.
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charges, which are derived from integrating the field
strengths at the horizon, are

N1 ¼
V4RψM

gsl6s

ffiffiffiffiffiffiffiffiffiffiffiffiffi
lþM
l −M

r
; N5 ¼

RψM

gsl2s

ffiffiffiffiffiffiffiffiffiffiffiffiffi
lþM
l −M

r
;

NP ¼ V4R2
yRψM

g2sl8s

ffiffiffiffiffiffiffiffiffiffiffiffiffi
lþM
l −M

r
: ð10Þ

Remarkably, the regularity at the bubble (6) forces the
entropy to match the microscopic degrees of freedom
within the brane system,

SN ¼ 2π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N1N5NP

p
: ð11Þ

Therefore, despite dealing with a nonsupersymmetric
solution that does not guarantee the entropy as a conserved
quantity between strong-weak coupling, and despite having
an extremal black hole for which the horizon is stretched by
the bound state structure, the entropy still matches the
microscopic value derived at weak coupling for single-
center black holes in an asymptotically five-dimensional
spacetime [2].
The south pole of the bubble, r ¼ l and θ ¼ π, leads to

an identical geometry but with opposite charges. It corre-
sponds to the anti-BPS partner of the Strominger-Vafa
black hole at the North pole. It is produced by D1-D5-
antibranes and P̄ antimomenta, with the same quantized
charges, ðN 1̄; N 5̄; NP̄Þ ¼ ðN1; N5; NPÞ (see Fig. 1). It has,
therefore, the same entropy

SS ¼ 2π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N 1̄N 5̄NP̄

p ¼ SN:

We have successfully constructed a regular and neutral
bound state involving two Strominger-Vafa black holes in
type IIB on T4. They are induced by branes and antibranes
localized at distinct points in spacetime, generating a smooth
bubble between them. The size of this bubble—the size of
the bound state—is constrained by (6), ensuring that the
system is in equilibrium. The attractive force between
the BPS and anti-BPS centers is counterbalanced by the
topological pressure emanating from the bubble [15]. More
surprisingly, the degrees of freedom within the bound state
align with the microscopic description of the extremal
black holes.
A similar construction has been analyzed in [9], where

neutral bound states of (near-)extremal black holes have
been constructed in string theory and microscopically
described in terms of branes and antibranes. However, this
construction differs from the present one in crucial points:
the solutions in [9] do not have a KK bubble that
regularizes the geometry between the black holes, resulting
in a string singularity, and the matching with the micro-
scopic entropy in terms of branes and antibranes is only
made when the black holes are widely separated, l ≫ M.

The presence of the strut makes the supergravity solution
singular and nonphysical, and the black holes are four-
dimensional extremal black holes with an S2 horizon rather
than Strominger-Vafa black holes with a three-sphere at
their horizon.
Furthermore, as demonstrated in this section, the regulari-

zation of the strut through a KK bubble introduces essential
physics to the bound state given by the constraint (6). First, it
assigns a physical size to the bound state necessary for its
equilibrium. Specifically, the separation of the black hole
cannot be arbitrary; it closely approaches the brane mass
when the KK scale is small, l −M ¼ OðRψÞ. Second, it
establishes a connection between the Bekenstein-Hawking
entropy, as derived in supergravity (9), and the microscopic
entropy within the brane system (11).

B. Thermodynamics

The total entropy of the neutral bound state, denoted as
S≡ SN þ SS, is

S ¼ 2π
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

N 1̄N 5̄NP̄

p þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N1N5NP

p �
¼ π

	
MðlþMÞ
3

2ffiffiffi
2

p
l

:

ð12Þ

This microscopic description resembles the state counting
of a nonextremal five-dimensional black hole assuming the
branes and antibranes are not interacting [4],

S ¼ 2π
	 ffiffiffiffiffiffi

N1

p
þ ffiffiffiffiffiffi

N1̄

p 
	 ffiffiffiffiffiffi
N5

p
þ ffiffiffiffiffiffi

N5̄

p 
	 ffiffiffiffiffiffiffi
NP

p
þ ffiffiffiffiffiffiffi

NP̄

p 

;

ð13Þ

but differs crucially in various aspects.
First, our bound state solution is net neutral, far from

extremality, and corresponds to geometries that are asymp-
totic to a four-dimensional Minkowski spacetime.
Second, the brane/antibrane interaction in our bound

state is captured in a nonperturbative manner, unlike the
solution (13). In (13), the brane/antibrane interaction arises
through cross termsNIN J̄ in the entropy, while the values of
NI and N J̄ have been obtained assuming the branes and
antibranes do not interact. Despite the absence of NIN J̄ in
the entropy formula of our bound state (12), this interaction
is captured by the inherent dependence of the quantized
charges in terms of the brane mass (10). Indeed, when the
black holes are widely separated, indicating the absence of
interaction (l → ∞), the quantized charges behave linearly
as a function of the brane massM as expected. However, as
the branes and antibranes come closer (l → M) and interact
more significantly, this linear relation undergoes a drastic
change, and N can become significantly larger than M.
Consequently, a substantial portion of the brane energy
(measured by the quantized charges) is used as the binding
energy of the system, and only a fraction contributes to the
brane mass. Thus, the relationship between the quantized

PIERRE HEIDMANN PHYS. REV. D 109, 126015 (2024)

126015-4



charges and the brane mass inherently captures the brane/
antibrane interaction.
Overall, the bound state is determined by asymptotic

quantities, like the ADM mass M and the KK radius Rψ .
Although we could not find a closed-form solution to invert
the parametrization ðl;MÞ for ðM; RψÞ using (3) and (6),
we can derive the equivalence of the first law by computing
the variation of the entropy,

dM
M

¼ dS
2S

þ
�
π2l2

S2Rψ

�1
3 dRψ

8
: ð14Þ

This is related to the generalization of the first law of black
hole thermodynamics when considering a chain of black
holes and bubbles [20]. The first term on the right-hand side
arises from the variation in the extremal black hole entropy,
while the second arises from the variation in the bubble
tension. At fixed Rψ , we have

dM ¼ κ

2π
dS; κ≡ πM

S
; ð15Þ

where κ is the effective surface gravity of the bound state.
Thus, we retrieve the first law of a Schwarzschild black
hole, but κ depends on M instead of M. The quantity M
being the brane mass, this implies that the entropy variation
only arises from the branes and antibranes of the system
and not the bubbling topology, as expected from the
microscopic description (12).

C. Macroscopic limit

The regularity (6) imposes a lower bound on the ADM
mass and the size of the configuration,

l≥
Rψ

2
; M≥

Rψ

8
: ð16Þ

The minimum occurs when there are no branes,M ¼ 0, and
the geometry corresponds to a vacuum bubble, i.e., an
Euclidean Schwarzschild geometry. More generally, when
M ∼ 1

8
Rψ , most of the mass arises from the bubble, and the

branes and antibranes are just small perturbations on a
vacuum bubble.
In the macroscopic regime, when the ADMmass is much

larger than the KK scales M ≫ Rψ , the energy in the
bound state arises mainly from the branes and antibranes.
We obtain the following relations, from (6) and (3), at

leading order in ϵ≡ ð Rψ

2MÞ2=3 ≪ 1:

l¼M
�
1þ3ϵ

8

�
; M¼M

�
1−

ϵ

8

�
: ð17Þ

Remarkably, this implies that the bound-state entropy beco-
mes half of the Schwarzschild entropy, SSchw¼ 4πM2,

and its effective surface gravity becomes twice the
Schwarzschild value, κSchw ¼ ð4MÞ−1,

S¼ 1

2
SSchw; κ¼ 2κSchw; ð18Þ

with OðϵÞ corrections. The equivalent first law (15) is then
expressed as

dM ¼ κSchw
π

dSþ 3M
16

dϵ; ð19Þ

where we have chosen dϵ to capture the variation in the
bubble tension.
This is the main result of this paper. In type IIB

supergravity, we have successfully constructed a neutral
and regular bound state of two extremal black holes, which
exhibits similar thermodynamic properties to those of the
Schwarzschild black hole. Moreover, it has a clear micro-
scopic origin in terms of the Strominger-Vafa fundamental
description of five-dimensional BPS black holes [2].
The scaling of the entropy as M2 is not trivial, consid-

ering its microscopic description (12). Typically, a BPS (or
anti-BPS) system in string theory has charges that scale
with the energy, N ∝ M. As such, one could expect
S ∝ M

3
2. However, the charges for our bound state (10)

behave, at leading order in ϵ, as

ðN1̄; N5̄; NP̄Þ ¼ ðN1; N5; NPÞ ∝
	
M

4
3;M

4
3;M

4
3



; ð20Þ

which is the correct power in M for the Strominger-Vafa
entropy (11) to scale asM2. Remarkably, this scaling is not
something we had fine-tuned but emerged naturally from
gravitational constraints. This unusual feature is due to the
bound-state nature of the solution. A significant part of the
energy brought by the branes and momenta is used as
binding energy. The ADM mass takes into account this
fraction of energy lost and is therefore much less than what
the quantized charges could indicate: M ∝ N

3
4.

D. Spacetime structure

In the macroscopic regime, M ≫ Rψ , we have l ¼
Mð1þOðϵÞÞ and the electromagnetic fields ðdH; dTÞ (2)
are of order ϵ everywhere except in proximity to the bubble
at r ¼ l. Moreover, the backreaction of the branes induces
a significant redshift in that region, with Z−1 ∼ 1 − l=r.
Consequently, the bound state exhibits a structure resem-
bling a vacuum solution with a region of diverging redshift:
a black geometry.
This behavior aligns with the notion of electromagnetic

entrapment in gravity described in [18] for configurations
of self-gravitating extremal charges. In [18], it has been
shown that, when a spacetime structure sourced by intense
electromagnetic flux reaches a critical size associated with
its Schwarzschild radius, the structure entraps its own
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electromagnetic field so that the solution looks like a
neutral black hole up to the horizon scale.
For our bound state, the geometries are indistinguishable

from an embedding in higher dimensions of the δ ¼ 2Zipoy-
Voorheesmetric [21,22]. Indeed, for r≳Mð1þOðϵ14ÞÞ, the
electromagnetic field vanishes, F ∼ 0, and the metric is
ds26 ∼ ds2ZV þ dψ2 þ dy2, where ds2ZV is the δ ¼ 2 Zipoy-
Voorhees metric

ds2ZV ¼ −
�
1 −

M
r

�
2

dt2 þ r2sin2θ

1 − M
r

dϕ2

þ
�
1 − M

r

�
2

�
1 − M

r þ M2sin2θ
4r2

�
3

�
dr2

1 − M
r

þ r2dθ2
�
: ð21Þ

This solution is an S2 deformation on a Schwarzschild
metric, inducing a singular horizon where the S2 gets
flattened at its poles (refer to [18,22] for more details).
Despite this singularity, the horizon area remains finite and
notably equals the Schwarzschild value, 16πM2 [23].
In this context, the bound state replaces the singular

horizon of a δ ¼ 2 Zipoy-Voorhees solution with a regular
and topologically nontrivial structure in type IIB super-
gravity. This resolution occurs in an infinitesimal region
above the horizon, and the size of this region is determined
by the KK scales, ϵ

1
4M. The topology is supported by

intense electromagnetic flux with a clear microscopic
origin from branes and antibranes.
Furthermore, the δ ¼ 2 Zipoy-Voorhees geometry pre-

serves numerous properties of the Schwarzschild black hole
outside its singular horizon, including the two-sphere size,
light ring characteristics, andgravitational signature [18,22].
The main deviations arise in the region between the
Schwarzschild light ring and the horizon, specifically when
the S2 radius is smaller than 3M.
Consequently, the spacetime generated by a bound state

of two Strominger-Vafa black holes can be divided into
three zones (see Fig. 2): a Schwarzschild region from the
asymptotics to approximately the light ring, a distorted
region where the S2 deformation intensifies and stretches
the sphere, and the bound-state region where the structure
of branes and antibranes starts to emerge at the place of the
horizon of the Zipoy-Voorhees solution.
To demonstrate the proximity between the spacetimes

produced by our bound state and a Schwarzschild black
hole, we can provide a more detailed description of the
two-sphere surrounding both geometries. In the case of
Schwarzschild, the two-sphere is simply a round surface
described by the line element dsðS2Þ ¼ r2ðdθ2þ
sin2θdϕ2Þ, with a radius RS2 ¼ r. For the bound states,
obtained from the four-dimensional reduction of the
metric (1), we have

dsðS2Þ ¼ r2Z
3
2

ffiffiffiffiffiffiffiffiffiffiffi
1 −

l
r

r
ðe3νdθ2 þ sin2θdϕ2Þ: ð22Þ

To describe the two-sphere, we follow the approach out-
lined in [24]. We introduce a change of angular coordinate
so that the line element becomes

dsðS2Þ ¼ Rðr; θ̃Þ2	dθ̃2 þ sin2θ̃dϕ2


; ð23Þ

where Rðr; θ̃Þ parametrizes a two-dimensional surface
representing the two-sphere. Additionally, we define the
average two-sphere radius RS2ðrÞ from the area

RS2ðrÞ2 ≡ 1

2

Z
π

θ¼0

Rðr; θ̃Þ2 sin θ̃dθ̃: ð24Þ

In Fig. 3, we plot the two-sphere using Rðr; θ̃Þ for three
representative r coordinates, and for a bound state with
Rψ=M ¼ 10−1, along with a round sphere of radius RS2 for
comparison with a Schwarzschild black hole. The first plot
depicts the region around the photon ring where RS2 ∼ 3M
and indicates a close resemblance to the Schwarzschild
black hole’s geometry. This shows that, for any distance
r≳ 3M, the spacetime is mainly indistinguishable from
the Schwarzschild black hole as illustrated in Fig. 2. The
middle plot shows the distorted region where the bound
state closely resembles the δ ¼ 2 Zipoy-Voorhees geom-
etry, with the S2 deformation amplifying. Finally, the last
plot displays the region very close to r ¼ l, where the
regular inner structure of the bound state replaces the
singular horizon of the Zipoy-Voorhees geometry. It is in
this region that the two black holes and the bubble become
visible, along with their electromagnetic fields. This plot
clearly shows two highly stretched horizons due to the
intense gravitational field between them.
In conclusion, the spacetime generated by bound states

of Strominger-Vafa black holes holds strong resemblance
to the Schwarzschild black hole. However, it differs

FIG. 2. Spacetime structure of the neutral bound state of two
Strominger-Vafa black holes in type IIB supergravity.
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significantly at a scale much larger than the horizon scale,
particularly around the photon ring. Nevertheless, the
bound states exhibit ultracompact geometry and highlight
the characteristics of novel physics emerging from the
resolution of the Schwarzschild black hole into a novel
spacetime structure with a clear microscopic origin in string
theory, such as branes and antibranes.

IV. MICROSTATE CONSTRUCTION

The previous construction facilitates a counting of states
within a neutral brane/antibrane system involving both BPS
and anti-BPS black holes in supergravity. To construct
explicit microstates, the extremal black holes must be
resolved in terms of smooth, horizonless, and topologically
nontrivial geometries. While not all microstates should
admit such a classical description, it is possible to build
coherent (though atypical) states in the phase space.
Large families of microstate geometries of the five-

dimensional extremal black holes have been constructed to
date [10]. Two known categories are superstrata [25] and
multicenter bubbling geometries [26,27].
Both five-dimensional black holes in our bound state can

be locally resolved deep within their AdS2 near-horizon
throats by capping it off with two microstate geometries.
The interaction between both microstates can be controlled
by considering scaling geometries so that it will be mainly
given by the black hole values. Explicit bubbling geom-
etries can be found numerically, or potentially analytically,
by selecting the simplest geometries.
In Fig. 4, we depict a typical smooth and horizonless

geometry achievable by substituting both extremal black
holes with one of their superstratum microstates. The

resulting configuration corresponds to a bound state com-
posed of two superstrata: one BPS and one anti-BPS,
separated by the same smooth KK bubble as in the case of
the black hole bound state. Apart from a small region near
the poles of the bubble, the smooth solution is indistin-
guishable from the black hole bound state.
Furthermore, superstrata cover a significant fraction of the

total phase space of the Strominger-Vafa black hole.
Specifically, the entropy of the superstratum ensemble scales

likeN1=4
P

ffiffiffiffiffiffiffiffiffiffiffiffi
N1N5

p
[29]. By extending this result with (20), we

anticipate the existence of eM
5=3

smooth, horizonless geom-
etries corresponding to coherent microstates of the neutral
bound state of two Strominger-Vafa black holes. If it does
not scale with the Schwarzschild entropy, it significantly
exceeds the entropy bound that ordinary matter can reach

(S < S3=4Schw ∝ M3=2) [30]. Therefore, our approach estab-
lishes a strong connection between the microstructure of
supersymmetric black holes and the microstructure of non-
supersymmetric and neutral systems in string theory that
have a phase space as vast as the entropy of a Schwarzschild
black hole.
There is an other approach to build smooth horizonless

geometries indistinguishable from the previous black hole
bound state. This consists of exploiting the generalized
Ernst formalism in type IIB and in replacing the extremal
black holes with near-extremal bubbles supported by the
same amount of brane flux [14]. This resolution scheme
differs from the first approach by not preserving the local
extremality of the sources. Despite this, the advantage lies
in achieving a fully analytical construction by using the
Ernst formalism in higher dimensions, as demonstrated in
other similar contexts [14].

FIG. 3. Two-sphere surrounding the bound state at three distinct radial distances from the coordinate boundary r ¼ l, where the
Strominger-Vafa black holes and the bubbles are located. The two-sphere geometry is described by (23), with a faded round sphere of
radius RS2 overlaying it to represent the equivalent Schwarzschild two-sphere. The value of RS2 is derived from the area (24). These
illustrations are based on a bound state with Rψ=M ¼ 10−1. Moving from the left plot to the right, we observe the sphere in the region
near the photon ring, followed by the distorted region, and finally, the vicinity of the bound state locus.
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V. OUTLOOK

The bound state presented in this article is a highly
polarized configuration where the BPS and anti-BPS
constituents are localized at two centers. One could con-
sider more generic solutions where the branes and anti-
branes are distributed along the bubble using the solution of
Ernst equations sourced by N extremal centers [18]. It
would be interesting to investigate whether accounting for
all bound states in supergravity yield an ensemble with an
entropy of SSchw.
A crucial direction for further study concerns stability.

While the bound state is in gravitational equilibrium, it is
likely unstable. First, it would be interesting to explore the
classical stability of the solutions and the potential exist-
ence of Gregory-Laflamme modes [31], which could force
the black holes to merge. Note that this merging cannot
occur by having the black holes simply “roll” along the
bubble, as such a process would require a change of
topology that cannot be achieved by classical perturbation.
Therefore, the black holes must remain at the poles of the
bubble, but they can grow along the bubble until they fully
annihilate it.
Second, it would be interesting to investigate thermo-

dynamic instability, whereby the black holes might radiate
and decay. This could occur through the separation of
virtual pairs of branes and antibranes, similar to Hawking
radiation, with the difference that this can happen at the
bubble, in the region between the black holes. This process
would cause the bound state to lose energy by having the
extremal black holes lose charges. An interesting aspect to
explore is whether this decay can be associated with a form
of Hawking radiation of the system at the effective temper-
ature derived in Eq. (15).

The fact that the bound state is classically indistinguish-
able from a Zipoy-Voorhees metric, rather than the
Schwarzschild black hole itself, deserves further investi-
gation. We believe that similar constructions in type IIB
involving near-extremal sources, rather than extremal ones,
might solve this issue [32]. Since near-extremal D1-D5-P
black holes also have a well-defined microscopic descrip-
tion [3], achieving such constructions would represent a
significant breakthrough, potentially providing the first
microscopic description of the Schwarzschild black hole
using brane/antibrane bound states in supergravity.
Furthermore, in this study, we have focused on neutral

bound states of Strominger-Vafa black holes, featuring an
equal number of branes and antibranes, to facilitate
comparison with a Schwarzschild black hole. However,
we can explore scenarios with different numbers of branes
and antibranes, resulting in a nonzero net charge. This
investigation would allow us to compare such bound states
with nonextremal Reissner-Nordström black holes and
assess whether they offer a microscopic explanation for
their entropy. The near-extremal limit is particularly in-
triguing as it would establish connections with previous
works [3,4].
Despite the theoretical nature of the results presented in

this paper, we can explore how the novel spacetime structure
of branes and antibranes, replacing the Schwarzschild
black hole, may manifest in new observables. This consists
of deriving the gravitational signature of the solutions and
studying their response to perturbations. One avenue of
research could focus on the light scattering properties and
imaging simulation of these geometries, comparing them
to the Schwarzschild black hole, as done in previous
studies [33–35] for similar string-theoretical solutions.
Another direction would involve analyzing the quasinormal
mode spectrumof the bound states and investigating how the
internal structure modifies the Schwarzschild spectrum, as
explored in previous works [36–40]. Such investigations
could shed light on whether the atypical string-theoretic
structure constructed in this paper and that manifests below
the Schwarzschild photon ring might impact gravitational
wave signals.
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FIG. 4. Schematic description of a smooth, horizonless, and
neutral bound state of two superstrata held apart by a KK bubble.
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