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The nonequilibrium process where the system does not evolve to the featureless state, that without
quantum properties, is one of the new central objects in the nonequilibrium phenomena. In this paper,
starting from the short-range entangled state in the two-dimensional conformal field theories (2D CFTs),
the boundary state with a regularization, we evolve the system with the inhomogeneous Hamiltonians
called Möbius/sine-square-deformed (SSD) ones. Regardless of the details of CFTs considered in this
paper, during the Möbius evolution, the entanglement entropy exhibits the periodic motion called quantum
revival. During SSD time evolution, except for some subsystems, in the large time regime, entanglement
entropy and mutual information are approximated by those for the vacuum state. We argue the time regime
for the subsystem to cool down to vacuum one is t1 ≫ OðL ffiffiffiffi

lA
p Þ, where t1, L, and lA are time, system, and

subsystem sizes. This finding suggests the inhomogeneous quench induced by the SSD Hamiltonian may
be used as the preparation for the approximately vacuum state. We propose the gravity dual of the systems
considered in this paper, furthermore, and generalize it. In addition to them, we discuss the relation between
the inhomogeneous quenches and continuous multiscale entanglement renormalization ansatz (cMERA).

DOI: 10.1103/PhysRevD.109.126014

I. INTRODUCTION

A major trend in twenty-first-century theoretical physics
is the extensive utilization of quantum information-theo-
retic ideas and techniques in a wide range of seemingly
disparate subfields of theoretical physics. For example, in
the study of holography [1], an understanding of the
quantum mechanical properties possessed by the system
is expected to lead to a deeper grasp of the subject [2,3].
One such quantum information-theoretic concept is that of
quantum error correction which originated from the field of
quantum computing but has since been used for bulk
reconstruction in holography [4,5] as well as the study
of measurement-induced phase transition [6,7] by the

condensed matter community. Another topic from the field
of quantum computation that might be of relevance to
condensed matter physics is the preparation of quantum
states [8–27]. In particular, obtaining low entropy states
will allow the simulation of exotic phases of matter ranging
from antiferromagnetic spin liquids to high-temperature
superconductors [28,29]. One of the desired outcomes of
state preparation is the preparation of these states faster
than an adiabatic evolution of the system. In holography,
preparing quantum states corresponds to the production of
asymptotically AdS spacetimes.
Since two-dimensional conformal field theories (2D

CFTs) possess the infinite-dimensional Virasoro sym-
metry, they may allow an analytic treatment of vacuum
state preparation. In this paper, we consider the inhomo-
geneous quenches induced by the so-calledMöbius and sine-
squared deformed (SSD) Hamiltonians in 2D CFTs [30–46]
and explore the utility of these quenches in vacuum
state preparation. The densities of these inhomogeneous
Hamiltonians are modulated by envelope functions that vary
in space. In addition, these inhomogeneous Hamiltonians
can be thought of as the Hamiltonians of systems that exist
on a curved spacetime described by a metric whose time
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component is determined by the envelope function.
Originally, the modulation of energy density was used to
remove the effect of the boundaries of spin systems with
finite size [47–49]. Subsequently, these inhomogeneous
deformations were generalized to 2D CFTs [50–56].
These inhomogeneous Hamiltonians were used in the
implementation of 2D Floquet CFTs [35,36,40,41,57,58].
In addition, they have also been used to explore a variety
of nonequilibrium phenomena and quantum information-
theoretic aspects of 2D CFTs [59–64] and non CFTs [65].
In [32], the authors found that the time evolution induced

by the SSD Hamiltonian can be used to approximately
prepare the vacuum state. In the setup considered in [32], the
system begins in the thermal state and subsequently under-
goes time evolution with the SSD Hamiltonian which has a
spatial point where the envelope function vanishes. If the
subsystem does not include this point, the entanglement
entropy associated with this subsystem evolves to that of the
vacuumstate. Regardless of the spatial location and the size of
subsystems, the mutual information evolves into the mutual
information for the vacuum state. In [66], this setup is gen-
eralized to a Floquet time evolution, and the authors consider
the cooling effect of the inhomogeneous Hamiltonian.
In previous studies, the SSD time evolution was found to

deform the entanglement structure of the long-range
entangled state, where the entanglement entropy is propor-
tional to the subsystem size, so that the resulting reduced
density matrix is approximately given by that of the vacuum
state. In this paper, we will explore whether this vacuum
entanglement structure emerges during time evolution with
the SSD Hamiltonian, starting from a short-range entangled
state. The short-range entangled state considered in this paper
is the regularized boundary state [67,68]. Since short-range
entangled states are easily prepared in the laboratory, this
studymay pave theway for creating low entropy states using
quantum quenches.

A. Summary

In this paper, starting from a short-range entangled state
which we take to be the regulated boundary state, we
evolve the system with Möbius/SSD Hamiltonians in 2D
CFTs. The major difference from previous studies [8,9] is
that we aim to explore whether vacuum states occur in
CFTs with differing ability to scramble information which
may determine the speed of information processing [69].
Our findings are as follows: Entanglement entropy: During
Möbius time evolution, the time dependence of entangle-
ment entropy exhibits a periodic behavior in time called
quantum revival. During the SSD time evolution, when the
edges of subsystems are not located at the origin, regardless
of the spatial location of the subsystems, at sufficiently late
times, the entanglement entropies are approximated by that
of the vacuum state. As we will see, during the SSD time
evolution, a local operator placed at the origin does not
move, but local operators placed away from the origin will

move away from it. Hence, the origin is a fixed point under
SSD time evolution. If the subsystem size, lA, is much
smaller than the system size, L, the time regime for the
entanglement entropy for the single intervals to cool down
to the vacuum one is t1 ≫ t� ≈OðL ffiffiffiffiffiffiffiffiffi

lA=ϵ
p Þ, where t1 and ϵ

are time and the parameter determining the short-range
entanglement of the initial state. We argue that t� character-
izes the time for the subsystem to cool down to the vacuum
one for the SSD time evolution. In addition, when the edges
of subsystems are located at the origin, for sufficiently large
times, the entanglement entropy logarithmically grows with
time in the holographic CFTs while it approaches the
saturation value with a power law in the free fermion CFTs.
Mutual information: During the SSD time evolution, in the
large time regime, mutual information eventually saturates
to that of the vacuum one for both the free fermion CFTand
the holographic CFTs while it goes to zero in the quasi-
particle picture. This indicates that nonlocal correlations
emerge under time evolution by these inhomogeneous
Hamiltonians. The time dependence of entanglement
entropy and mutual information suggests that the SSD
time evolution prepares the state with the entanglement
structure and nonlocal correlations possessed by the vac-
uum state. Gravity dual: We propose the gravity dual of the
system considered and also generalize it. In particular, the
end of the world brane approaches the asymptotic boundary
and eventually collides with the cutoff surface. We argue
that this is a timescale over which holographic calculations
become unreliable. Furthermore, we discuss an interpreta-
tion of the Möbius/SSD time evolution as a type of tensor
network called the continuous multiscale entanglement
renormalization ansatz (cMERA).

B. Organization of this paper

In Sec. II, we will describe the details of the inhomo-
geneous quench, how to compute entanglement entropy in
the twist operator formalism, and the evolution of local
operators induced by the Möbius/SSD Hamiltonians. In
Sec. III, we will present the time evolution of entanglement
entropy in the 2DDirac fermion CFTand in the quasiparticle
picture that captures the dynamics of entanglement in the
Dirac fermion CFT, as well as the entanglement entropy for
the single interval in the 2Dholographic CFTswhich possess
a gravitational dual. In Sec. IV, wewill report the time evolu-
tion of mutual information in 2D CFTs considered in this
paper. In Sec. V, we will present the gravity dual of the
systems considered and give an interpretation of the quenches
as a cMERA tensor network. In Sec. VI, we discuss the
relation between the inhomogeneous quenches and renorm-
alization group, and comment on future directions.

II. INHOMOGENEOUS QUENCHES
FROM THE BOUNDARY STATE

Here, we will describe the inhomogeneous quenches
considered in this paper. Suppose that we prepare the
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system in the boundary state with a proper regularization,
e−ϵHjΨ0i, [67] and then evolve it with inhomogeneous
Hamiltonian HInho:

jΨðtÞi ¼ N e−itHInhoe−ϵHjΨ0i; ð2:1Þ

whereN 2 is the normalization constant that guarantees that
hΨðtÞjΨðtÞi ¼ 1. The operator H is the homogeneous
Hamiltonian defined as H ¼ R L0 dxhðxÞ, where hðxÞ is
Hamiltonian density and L is the system size. One of the
inhomogeneous Hamiltonians considered in this paper is
the Möbius Hamiltonian defined as [36,57,58,70,71],

HMöbius ¼
Z

L

0

dx

�
1 − tanh ð2θÞ cos

�
2πx
L

��
hðxÞ; ð2:2Þ

where θ is a real parameter. The system considered
in this paper is on the spatial circle with the circumference
L. For ∞ > θ > 0, HInho ¼ HMöbius is called Möbius
Hamiltonian, and in the SSD limit where θ → ∞, it reduces
to so-called sine-squared deformed Hamiltonian (SSD
Hamiltonian) defined as

HSSD ¼
Z

L

0

dx 2sin2
�
πx
L

�
hðxÞ: ð2:3Þ

On the other hand, when θ ¼ 0, HMöbius reduces to the
homogeneous Hamiltonian. In this paper, by using the
time dependence of entanglement entropy and mutual
information during the evolution induced by the Möbius/
SSD Hamiltonian in the two-dimensional conformal field
theories (2D CFTs), we will explore the entanglement
structure of the state. The entanglement entropy and mutual
information are defined as the von Neumann entropy for the
reduced density matrix and a linear combination of the
entanglement entropies respectively. Denote the density
matrix of the state as ρðtÞ ¼ jΨðtÞihΨðtÞj. Divide the
Hilbert space into A and its complement Ā, and define the
reduced density matrix associated to A as ρAðtÞ ¼ trĀρðtÞ.
The entanglement entropy for A is defined as the von
Neumann entropy of ρAðtÞ,

SAðtÞ ¼ −trAρAðtÞ log ρAðtÞ: ð2:4Þ

Let us now turn to the detailed definition of mutual
information. Divide the Hilbert space into A ∪ B and
A ∪ B, define the entanglement entropies associated with
A, B, and A ∪ B, and define the mutual information as the

linear combination of these entanglement entropies,

IA;B ¼ SA þ SB − SA∪B; ð2:5Þ

where SA, SB, and SA∪B are the entanglement entropies
associated with A, B and A ∪ B.
The parameter region considered in this paper The

parameter regime where we explore the inhomogeneous
nonequilibrium process in this paper is

L ≫ lV ; t1 ≫ ϵ ≫ 1; ð2:6Þ

where lV denotes the size of the subsystem V and t1 is the
time associated with the Möbius/SSD Hamiltonian.

A. Entanglement entropy in the twist
operator formalism

To employ the Euclidean path-integral formalism suit-
able to the analytical computation of the entanglement
entropy in 2D CFTs, we define the Euclidean density
operator as

ρE ¼ N 2e−τ1HInhoe−ϵHjΨ0ihΨ0je−ϵHeτ1HInho ; ð2:7Þ

where ϵ is a regularization parameter, and τ1 is a real
Euclidean time. The normalization parameterN guarantees
that trρE ¼ 1, and it satisfies N −2 ¼ hΨ0je−2ϵHjΨ0i.
Divide the Hilbert space into V and V̄, the complement

space to V, and then define a reduced Euclidean density
matrix associated with V as ρE;V ¼ trV̄ρE. Subsequently,
define Euclidean entanglement entropy of V as the von
Neumann entropy of ρE;V :

SE;V ¼ lim
n→1

SðnÞE;V ¼ lim
n→1

1

1 − n
log ½trVρnE;V �

¼ −trV ½ρE;V log ρE;V �; ð2:8Þ

where we call SðnÞE;V the nth Rényi entanglement entropy.
In the path-integral formalism, nth Rényi entanglement
entropy is given by trVρnE;V which is the partition function
on a n-sheeted geometry where each of sheets is a finite
cylinder.
Let us assume that V is a single interval. In the twist

operator formalism, trVρnE;V is given by the two-point
function of the twist and antitwist operators. As a conse-
quence, the nth Rényi entanglement entropy is given by

SðnÞE;V ¼ 1

1 − n
log

�hΨ0je−ϵHeτ1HInhoT nðv1Þe−τ1HInhoeτ1HInho T̄ nðv2Þe−τ1HInhoe−ϵHjΨ0i
hΨ0je−2ϵHjΨ0i

�
; ð2:9Þ
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wherev1 andv2 denote the edges ofV, respectively.Here,T n

and T̄ n are the primary operators called the twist and anti-
twist operators. Their conformal dimensions are ðhn; h̄nÞ ¼
ð c
24
ðn − 1

nÞ; c
24
ðn − 1

nÞÞ. Here,we assume thatL>v1>v2>0.
As in [32], the evolution of the primary operator Oðw; w̄Þ
induced by Möbius/SSD Hamiltonian is given by

eτ1HInhoOðw;w̄Þe−τ1HInho ¼
�
dwNew;α¼0;1

dw

�
hn
�
dw̄New;α¼0;1

dw̄

�
hn

×OðwNew;α¼0;1;w̄New;α¼0;1Þ;
ð2:10Þ

where ðwNew;α¼0;1; w̄New;α¼0;1Þ is the location of the
operator during the Euclidean time evolution induced
by the Möbius (α ¼ 1) and SSD (α ¼ 0) Hamiltonians,
respectively. The details of the operator trajectory and the
operator position ðwNew;α; w̄New;αÞ are reported in
Appendices A 1 and A 2. The Euclidean Rényi entangle-
ment entropy is given by the “free energy” of the two
point function on the finite cylinder where the length
along Euclidean time is 2ϵ, and the circumference of the
spatial circle is L,

SðnÞE;V ¼ hn
1 − n

log

�Y
i¼1;2

�
dwNew;α

vi

dwvi

��
dw̄New;α

vi

dw̄vi

��

þ 1

ð1 − nÞ log
�hΨ0je−2ϵHT nðwNew;α

v1 þ ϵ; w̄New;α
v1 þ ϵÞT̄ nðwNew;α

v2 þ ϵ; w̄New;α
v2 þ ϵÞjΨ0i

hΨ0je−2ϵHjΨ0i
�
: ð2:11Þ

In the von Neumann limit where n → 1, the Euclidean Rényi entanglement entropy reduces to the Euclidean entanglement
entropy,

SE;V ¼ −
c
12

log

�Y
i¼1;2

�
dwNew;α

vi

dwvi

��
dw̄New;α

vi

dw̄vi

��

þ lim
n→1

1

ð1 − nÞ log
�hΨ0je−2ϵHT nðwNew;α

v1 þ ϵ; w̄New;α
v1 þ ϵÞT̄ nðwNew;α

v2 þ ϵ; w̄New;α
v2 þ ϵÞjΨ0i

hΨ0je−2ϵHjΨ0i
�
: ð2:12Þ

In this paper, we will explore the time dependence of the
entanglement entropy for the single interval in 2D massless
free fermion and holographic CFTs. To make it easier to
grasp the key points of the analysis, the details of the
calculation of the entanglement entropy for a single interval
are postponed to Appendix B.

B. The trajectory of the local operator during
the time evolution induced
by SSD/Möbius evolution

After performing the analytic continuation, τ1 ¼ it1, we
consider the trajectory of the twist and antitwist operators
during the time evolution induced by the SSD/Möbius

FIG. 1. The evolution of operators during the evolution induced by SSD/Möbius Hamiltonian. The black dots illustrate the fixed point
of HSSD. The green (purple) dot illustrates the operator that is initially inserted at L=2 > x > 0 (L > x > L=2) and t1 ¼ 0, and its
trajectory during the time evolution is illustrated by the green (purple) curve. In (a), we show the evolution of operators during the
Möbius time evolution. In (b), we show the evolution of operators during the SSD time evolution.
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Hamiltonian. Define the spatial position of these operators
in the Heisenberg picture as

XNew;α
vi ¼ wNew;α

vi − w̄New;α
vi

2i
; ð2:13Þ

where vi is the insertion point of these operators in the
Schrödinger picture. If these operators are inserted at
vi ¼ 0; L=2, then during the SSD time evolution, XNew;α

vi
does not vary in time. Therefore, call them fixed points, and
let X1

f and X2
f denote 0 and L

2
, respectively. During the

Möbius evolution, these operators in the Heisenberg picture
periodically move in time between X1

f and X2
f (see (a) of

Fig. 1), while during the SSD evolution, those move to X2
f

and accumulate around that spatial point (see (b)
of Fig. 1). Consequently, if the subsystem is a single
interval including X1

f, then during the SSD evolution, the
effective subsystem size in the Heisenberg picture defined
as Veff ¼ XNew;α

v1 − XNew;α
v2 , monotonically grows with

time. If the subsystem is a single interval excluding X1
f,

then during the SSD evolution, Veff ¼ XNew;α
v1 − XNew;α

v2
eventually shrinks with time.

III. THE TIME DEPENDENCE
OF ENTANGLEMENT ENTROPY

IN 2D CFTS

In this section, we will report the time dependence of
entanglement entropy in 2D CFTs.

A. The time evolution of entanglement entropy
in 2D free fermion

As examples of nonchaotic dynamics, we compare the
Rényi entropy of a single interval in the free fermionic
CFT as well as in the quasiparticle picture which will
be discussed later in Sec. III B. The plots for different
subsystems centered at different points along the spatial
circle are shown in Fig. 2. Let us just summarize the salient
points of these plots. First, the CFT result and the
quasiparticle entanglement agree to the leading order in
1
ϵ. The subleading difference is most apparent when the
Rényi entropy after a SSD quench decays to the vacuum
value for the CFT when the subsystem does not end on X1

f

but it decays to zero for the quasiparticles since the left and
right moving quasiparticles will accumulate on opposite
sides of the fixed point X1

f at late times and hence the
entanglement entropy will asymptotically decay to zero.
The behavior of these free theories during Möbius evolu-
tion is very similar to that for the holographic CFTs except
for the fact that the entanglement entropy of quasiparticles
drops down to zero at integer multiples of L

2
cosh 2θ and the

entanglement entropy of the free fermion CFT similarly
drop downs to a small value. The entanglement entropy of

quasiparticles must decay back to zero at integer multiples
of L cosh 2θ because the quasiparticles return to their initial
positions at those times. At half-integer multiples of
L
2
cosh 2θ, the left and right moving partners of each

Bell pair meet up and so give no contribution to the
entanglement entropy. Secondly, the plots for both boun-
dary conditions for the free fermion CFT appear to be
identical. The boundary condition dependent terms in the
free fermion CFT Rényi entropy are either zero or tiny
compared to the total entropy in most cases except for the
case where the interval ends exactly on the fixed point X1

f in
which case the boundary condition-dependent component
is actually larger than the boundary condition-independent
part for the larger values of θ. In any case, the upshot is that
the plots appear identical for both boundary conditions in
the free fermion CFTand hence do not appear to depend on
the boundary condition imposed on the Dirac fermions.
Just as in the holographic case, to obtain a nonzero

value of the entanglement entropy for the quasiparticles and
free fermion CFTs at late times, place the interval so
that one of the endpoints sits exactly on the SSD fixed point
X1
f so that exactly one member of each Bell pair in the

quasiparticle picture is contained inside the subsystem at
late enough times.

B. Quasiparticle picture

The quasiparticle picture for the uniform global quench
[72–74] can be extended to the inhomogeneous case
by assuming that the quasiparticle is not moving with
uniform speed but instead with a speed that is determined
by the inhomogeneous envelope function that appears in
the inhomogeneous Hamiltonian. This might be due to the
fact that the CFTs considered in this paper are defined on
curved backgrounds where the time component of the
metric, which determines the speed of moving objects, is
given by the inhomogeneous envelope function. During the
Möbius evolution, a quasiparticle that begins at position x0
at time t0 is located at x at time t1 which is given by

πðt1 − t0Þ
L cosh 2θ

¼ �
�
tan−1

�
e2θ tan

πx
L

�
− tan−1

�
e2θ tan

πx0
L

��
ð3:1Þ

where the þð−Þ sign correspond to right(left) moving
quasiparticles. For simplicity, set the initial time t0 ¼ 0.
For a subsystem A, which could generally be a union of

intervals, the entanglement entropy as predicted by the
quasiparticle picture is given by the number of Bell pairs
shared between A and its complement. Let x0;iðx; t1Þ be
the initial position of a quasiparticle situated at position x at
time t1, where i ¼ R;L denotes the chirality of the quasi-
particles. For additional details, see Ref. [32]. Assuming
that the quasiparticles are conserved, the right-moving and
left-moving quasiparticles that are inside A at a given time
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t1 are therefore initially situated inside x0;RðA; t1Þ and
x0;LðA; t1Þ at t ¼ 0, respectively. A simple example for
the uniform Hamiltonian is depicted in Fig. 3. Similarly, the
left and right moving quasiparticles that end up in the

complement of A, Ā, initially began in the subsystems
x0;LðĀ; t1Þ and x0;RðĀ; t1Þ, respectively.
While the distribution of quasiparticles after a time

evolution with an inhomogeneous Hamiltonian is

FIG. 2. Plots of the second Rényi entropy for the 2d free fermion CFT as well as the quasiparticle picture for a total system size of
L ¼ 100000, ϵ ¼ 10 and a subsystem size of lA ¼ 6000 with a center Pc located at various positions.

FIG. 3. For a given interval A, x0;RðA; t1Þ and x0;LðA; t1Þ are the intervals that will move respectively to the right and left and will
coincide with A at time t1. Shown here is the simplest case where the Hamiltonian is uniform so the intervals are translated with
unit speed.
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complicated [32], the quasiparticles are initially distributed
uniformly. Since the entanglement entropy of A is given by
the Bell pairs that it shares with its complement, the
entanglement entropy can simply be written as

SðnÞA ðt1Þ ¼ ρðnÞ0 ½length of x0;LðĀ; t1Þ ∩ x0;RðA; t1Þ
þ length of x0;RðĀ; t1Þ ∩ x0;LðA; t1Þ� ð3:2Þ

where ρðnÞ0 ¼ nþ1
n

πc
48ϵ can be fixed by equating the saturation

value of SðnÞA for the uniform Hamiltonian for a single finite
interval on the real line with the known CFT result [72] to
leading order in 1

ϵ and using the fact that for the uniform
Hamiltonian, x0;RðA; t1Þ and x0;LðA; t1Þ are entirely con-
tained inside x0;LðĀ; t1Þ and x0;RðĀ; t1Þ respectively at
sufficiently late times.
The quasiparticle picture entanglement entropy appears

to vanish when the time t1 is a multiple of L
2
cosh 2θ. This is

obvious when t1 is a multiple of L cosh 2θ since all the
quasiparticles would have returned to their original position
so the entanglement entropy reverts back to its original
value of 0. When t1 is a half-integer multiple of L cosh 2θ,
the quasiparticle entanglement entropy vanishes not
because the quasiparticles have returned to their initial
positions but because the left and right moving partners of
each Bell pair have met up after traversing the spatial circle
on opposite directions.
We can also compute the mutual information as pre-

dicted by the quasiparticle picture. The mutual information
between two subsystems A and B is given by twice the
number of Bell pairs that have one partner in each system

since these Bell pairs contribute to both SðnÞA and SðnÞB but not

to SðnÞAB. Therefore,

IðnÞA;Bðt1Þ ¼ 2ρðnÞ0 ½length of x0;LðA; t1Þ ∩ x0;RðB; t1Þ
þ length of x0;RðA; t1Þ ∩ x0;LðB; t1Þ�: ð3:3Þ

1. Late time behavior of free theories
when the interval ends on X1

f

The Rényi entropy for a subsystem that ends on the fixed
point X1

f, ½0; X1�, in the quasiparticle picture is

SðnÞA ≈
t1≫L nþ 1

48n
πcL
ϵ

�
1 −

L
π2t1

�
: ð3:4Þ

In the late time regime of interest t1 ≫ L ≫ ϵ, the
boundary condition-dependent terms in the free fermion
CFT entanglement entropy are exponentially suppressed
and the late time entanglement entropy of a single interval
that ends on the fixed point when either boundary state is
quenched by the SSD Hamiltonian is

SðnÞ½0;X1�ðt1Þ ≈
nþ 1

6n
log

�
L
π
sin

πX1

L

�
þ nþ 1

48n
πL
ϵ

�
1−

2L
π2t1

�
;

t1 ≫ L≫ ϵ;
t1
L
≫

L
ϵ
: ð3:5Þ

This is very similar to the late-time behavior of the
entanglement entropy of a single interval that ends on
the fixed point X1

f for the quasiparticles undergoing a SSD
quench. The only difference is the additional factor of 2 in
the power law 1

t1
decay to the saturation value which is

subleading in L
ϵ. The saturation value also has the additional

vacuum Rényi entropy which is zero in the quasiparticle
case as discussed earlier.
The discrepancy between the quasiparticle entanglement

entropy and the CFT Rényi entropy can be attributed to the
order of the limits taken. The term that gives rise to late
time saturation is

SðnÞ½0;X1�ðt1Þ ¼
nþ 1

12n
log θ1

�
wNew;α
X1

þ w̄New;α
X1

4ϵ

����i L4ϵ
�
þ � � �

≈
t1≫L≫ϵ nþ 1

12n
πL
4ϵ

�
1 −

L
π2t1

�

þ nþ 1

12n
log ð1þ e−

L2
2ϵπt1Þ þ � � � : ð3:6Þ

If we first send L
ϵ → ∞ in (3.6)

SðnÞ½0;X1�ðt1Þ ≈
nþ 1

48n
πL
ϵ

�
1 −

L
π2t1

�
þ � � � : ð3:7Þ

This is the same answer as for the quasiparticles (3.4). On
the other hand, if we first send t1

L → ∞ in (3.6), we get

SðnÞ½0;X1�ðt1Þ ≈
nþ 1

48n
πL
ϵ

�
1 −

2L
π2t1

�
þ � � � : ð3:8Þ

which corresponds to the asymptotic expression we found
earlier. Therefore, we see that the discrepancy comes from
the fact that the quasiparticles correspond to taking the
ϵ → 0 limit of the CFT first and so would not truly capture
the t1 → ∞ behavior of the CFT.

C. The time evolution of entanglement entropy
in 2D holographic CFT

We focus on the analysis of the time dependence
of entanglement entropy and mutual information in 2D
holographic CFTs.

1. The analysis of nonuniversal piece

Now, we perform the analytic continuation to real time,
τ1 ¼ it1, and report the time dependence of the nonuni-
versal piece of entanglement entropy in 2D holographic
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CFTs. As explained in Sec. B 2, the time dependence of the
nonuniversal piece is determined by that of the geodesic
length on the BTZ black hole geometry. The t1-dependence
of SV;con is determined by the length of the geodesic
connecting the points at the different Euclidean time slices
in the method of image. Without employing the method of
the image, the t1-dependence of this geodesic length should
be equal to that of the geodesic length ending at the end of
the world brane (EoW) via the AdS/BCFT correspondence1

[75,76]. In the high temperature regime, the location of
EoW in the radial direction is near the boundary. In the
parameter regime, where v1 − v2 ≫ ϵ, the geodesic length
is given by the one ending at the EoW brane. Consequently,
in the small time region, tP > t1 > 0, the t1-dependence of
the nonuniversal piece of SA is determined by the motion of
the EoW. Here, we define tP as the time when SV;dis
exchanges the dominance with SV;con. We will present the
detailed motion of the EoW in Sec. V. We divide the system
into A and Ā, the complement to A, let Xi¼1;2 denote the
edges of A, and assume L > X1 > X2 ≥ 0. We will report
on the time dependence of entanglement entropy during the
Möbius/SSD time evolution in the four cases: (1) X1

f ∈A;
(2) L=2 > X1 > X2 > 0; (3) X2

f ∈A; (4) X2 ¼ X1
f. In the

cases considered in this paper, SV;con monotonically grows
in time according to the motion of EoW [59]. For the large
t1-regime, t1 > tP, the t1-dependence of the nonuniversal
piece is determined by the trajectory of twist and antitwist
operators during the time evolution induced by the inho-
mogeneous Hamiltonians. As a simple example, let us
consider the t1-dependence of the nonuniversal piece for
the reduced density matrix associated with the subsystem
including X1

f during the evolution induced by HSSD. In
tP > t1 > 0, the t1-dependence of the nonuniversal piece is
determined by that of SV;con. In t1 > tP, the t1-dependence
of the nonuniversal piece is determined by the smaller one
of SV;dis;1 and SV;dis;2. We define an effective subsystem size
in the Heisenberg picture as

Veff ¼
(
L − ðXNew;α

v1 − XNew;α
v2 Þ for X1

f ∉ V

XNew;α
v1 − XNew;α

v2 for X1
f ∈V

: ð3:9Þ

In the time-regime where L=2 > Veff ., the nonuniversal
piece is given by SV;dis;1, while in Veff > L=2, it is
determined by SV;dis;2.

2. During the Möbius/SSD time evolution

Now, let us present the time dependence of SA during the
Möbius/SSD time evolution. For all the cases considered,

SA;con monotonically grows with time during the Möbius/
SSD evolution (see Appendix C). The exchanging time
t1 ¼ tP should be determined by

wNew;α
X1

þ w̄New;α
X2

¼ iL For Scon ¼ Sdis;1ð< Sdis;2Þ;
w̄New;α
X1

þ wNew;α
X2

¼ 0 For Scon ¼ Sdis;2ð< Sdis;1Þ: ð3:10Þ
After t1 ¼ tP, the nonuniversal piece of SA is determined
by Sdis;i.
We depict SA in cases (1), (2), and (3) as a function of t1

in Fig. 4. During the Möbius evolution in the cases (1), (2),
and (3), the time-dependence of SA exhibits the two time
regimes: a heating one for 0 < t < tP, and an oscillating one
of tP < t. In the heating regime, the growth of SA depends on
the inhomogeneous parameter θ, the subsystem size lA, and
the system size L. Regardless of time evolution considered,
in the limit where πðwNew;α

Xi
þ w̄New;α

Xi
Þ=4iϵ ≫ 1, the early

time behavior of SA should be determined by the nonuni-
versal piece of SA,

SA ≈ SA;Nonuni ≈
cL
24ϵ

×
X
i¼1;2

½φXi;τ1;α þ φ̄Xi;τ1;α�; ð3:11Þ

where the details of φ and φ̄ are reported in Appendix A 2.
During the Möbius time evolution, φX1;τ1;1 þ φ̄X1;τ1;1

monotonically grows with time. In the time interval,
1 ≫ φXi;τ1;0 þ φ̄Xi;τ1;0 ≫

4πϵ
L , the early-time growth of SA

is approximated by

SA ≈
cπt1
12ϵ

X
i¼1;2

�
1 − tanh 2θ cos

�
2πxi
L

��
: ð3:12Þ

Thus, in this time interval, SA linearly grows with t1 as in the
homogeneous quench [74,77]. However, the coefficient of
the linear growth is given by multiplying that of the
homogeneous quench by an additional factor of the envelope
function, 1 − tanh 2θ cosð2πXi

L Þ. In the oscillating regime, SA
periodically behaves in time with the period L cosh 2θ.
During the evolution induced by the SSD Hamiltonian
(α ¼ 0), the time dependence of SA exhibits the two time-
regimes: a heating one for 0 < t < tP, and a cooling one for
tP < t. As in the case of the time evolution in cases (1), (2),
and (3), SA in the heating regime monotonically grows
with t1. In the limit where πðwNew;0

Xi
þ w̄New;0

Xi
Þ=4iϵ ≫ 1,

the early time behavior of SA is given by (3.11) for
α ¼ 0. During the SSD time evolution, φXi;τ1;0 þ φ̄Xi;τ1;0

monotonically increases with t1. In the time interval,
1 ≫ φXi;τ1;0 þ φ̄Xi;τ1;0 ≫

4πϵ
L , the early-time growth of SA

is approximated by

SA ≈
cπt1
6ϵ

X
i¼1;2

sin2
�
πXi

L

�
: ð3:13Þ

Thus, in this time interval, SA linearly grows with t1. The
coefficient of the linear growth is given by multiplying that

1We postpone detailed discussion of the AdS/BCFT corre-
spondence until Sec. VA, but we will use both equivalent
interpretations in this section as well. Readers unfamiliar with
the AdS/BCFT correspondence may refer to the first part of
Sec. VA in advance.
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for homogeneous quench by the envelope function,
2 sin2ðπXi

L Þ. In the cooling regime, the universal and nonuni-
versal pieces of SA are asymptotically given by

SA;Uni ≈
c
3
log

"
2πt1 sin

�πX1

L

	
L

#
þ c
3
log

"
2πt1 sin

�πX2

L

	
L

#
;

SA;Nonuni ≈ Sdis;2 ≈
c
3
log

2
64L
π
·

L2

4π2t21
·

sin
h
πðX1−X2Þ

L

i
sin
h
πX1

L

i
sin
h
πX2

L

i
3
75:
ð3:14Þ

Thus, the universal and nonuniversal pieces logarithmically
grow and decreasewith t1, respectively. Since the logarithmic
growth cancels with the logarithmic decrease, SA for large t1
becomes independent of t1.As a consequence,SA for the large
t1 is approximated by the vacuum entanglement entropy,

SA ¼ SA;Uni þ SA;Nonuni ≈
c
3
log

�
L
π
sin

�
πðX1 − X2Þ

L

��
:

ð3:15Þ

Unlike the case of the thermal state in [32], even if the
subsystem includes x ¼ X1

f, the entanglement entropy satu-
rates to that for the vacuum one, not the thermal one.

3. Thermal configuration

As in cases (1)-(3), if the edge of A is not at x ¼ X1
f, then

SA is asymptotically approximated by the vacuum entan-
glement entropy. Now, we consider the case (4), the case
where the edge of A is at x ¼ X1

f. During the Möbius
evolution, the t1-dependence of SA is similar to the one in
the cases (1)-(3). During the SSD evolution, that of SA in
case (4) is different from that in (1)-(3). In the SSD limit
where θ → ∞, SA monotonically grows with t1, and then it
is, for large t1, approximated by

SA ≈
c
6
logðt1Þ þ

cπL
24ϵ

þ c
6
log

�
8ϵ

L
·

���� sin
�
πX1

L

�����2
�
; ð3:16Þ

where the first term is the logarithmic function of t1, while
the second term is the entanglement entropy of thermal
entropy with 4ϵ for the half space. Thus, in case (4), SA is

FIG. 4. The t1-dependence of SA during the evolution induced by the Möbius and SSD Hamiltonians. The panels, [a], [b], and [c],
correspond to cases (1), (2), and (3). Here, Pc denotes the center of A. For simplicity, in [a], [b], and [c], Pc is taken to be Pc ¼ X1

f; L=4,
and X2

f , respectively. The black dashed line illustrates the entanglement entropy of the thermal state with 4ϵ, the inverse temperature, for
half of the total space. The gray and pink dashed lines illustrate SA of this thermal state and the vacuum state.
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not asymptotically approximated by the vacuum entangle-
ment entropy. In Fig. 5, we depict SA as a function of t1.

2

D. Cooling time

We close this section by defining the cooling time that
describes how fast the subsystem evolves to the vacuum
state during the SSD time evolution. In 2D holographic
CFT, except for case (4), the entanglement entropy for the
single intervals, A, is approximated by the vacuum one in
the late time regime that is defined by

t ≫ t� ¼
L
4π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L
ϵ
·

sin
�πðX1−X2Þ

L

	
sin
�πX1

L

	
sin
�πX2

L

	
vuut

≈
L≫X1−X2

L
4π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
πlA

ϵ sin
�πX1

L

	
sin
�πX2

L

	
s

; ð3:17Þ

where lA denotes the size of the subsystem, A. Thus, we call
t� the cooling time. In this late time regime, t ≫ t�, the
quasiparticle picture does not work well because the
entanglement entropy following this picture is smaller than
Oð1Þ. This suggests that even during the SSD time
evolution of 2D free fermion, t� characterizes the time
for the subsystem to cool down to the vacuum state.
Incidentally, this is also the timescale it takes for the

quasiparticle Rényi entropy to decay to an Oð1Þ value. For
intervals that are located away from the origin X1

f so that
0 < X2 < X1 < L, at late times, when t1 ≫ L, the Rényi
entropy of the quasiparticles are approximately given by

SðnÞA ðtÞ ≈ nþ 1

n
cL
24ϵ

�
L

2πt1

�
2 sin πðX1−X2Þ

L

sin πX1

L sin πX2

L

: ð3:18Þ

For a subsystem that is much smaller than the total system,
the quasiparticle Rényi entropy becomes Oð1Þ when t ∼ t�
as defined in (3.17).

IV. THE TIME EVOLUTION OF MUTUAL
INFORMATION IN 2D CFTS

Now, we consider the time dependence of mutual
information during the SSD/Möbius evolution to see if
the nonlocal correlation measured by the mutual informa-
tion is also asymptotically approximated by that of the
vacuum state. Divide the system into the subsystems, A and
B, and A ∪ B, the compliment to the union of A and B, and
then define the mutual information as the linear combina-
tion of entanglement entropies,

IA;B ¼ SA þ SB − SA∪B; ð4:1Þ

where SV¼A;B;A∪B denotes the entanglement entropies for
the reduced density matrix associated with V ¼ A; B;
A ∪ B, respectively. Let X1 and X2 denote the edges of
A, and let Y1 and Y2 denote the edges of B. Here, we
assume that L > Y1 > Y2 > X1 > X2 > 0 or L > X1 >
Y1 > Y2 > X2 > 0, and A does not overlap with B. In this
case, only the nonuniversal pieces of SV contribute to the
mutual information because the universal pieces cancel out
with each other.

A. Time dependence of IA;B in 2D free fermion

Consider the mutual information of the boundary state
under these inhomogeneous quenches. The quasiparticle
picture describes the second Rényi mutual information of
the free Dirac CFT well as seen in Fig. 6. Just as for the
second Rényi entropy, the second Rényi mutual informa-
tion does not depend on the boundary condition. The
mutual information also shows the periodicity of L cosh 2θ

FIG. 5. The t1-dependence of SA during the evolution induced by the Möbius and SSD Hamiltonians. In this figure, we take X2 to be
X1
f. The black dashed line illustrates the entanglement entropy for half of the total space of the thermal state with 4ϵ, the inverse

temperature. The gray and pink dashed lines illustrate SA of this thermal state and the vacuum state.

2One may worry that the entanglement entropy of a finite-size
subsystem grows forever with time. However, there is a timescale
over which holographic calculations become unreliable. This
scale is determined by the time when the EoW brane collides with
the cutoff surface. In particular, it is given by a polynomial in L,
not an exponent in L. For more details, see Sec. VA.
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which goes to infinity in the SSD limit. For the setups
shown in Fig. 6, the late time second Rényi mutual
information of the free fermion boundary states after the
SSD quench is given by the second Rényi mutual infor-
mation for the vacuum state which is similar to the SSD
quench of the spatially uniform thermal state [32].
When both subsystems are symmetrically placed away

from the fixed point Xf
1 as seen in the first plot [a], the

uniform quench produces nonzero mutual information
when the Bell pairs that are initially nearly equidistant
from both subsystems enter these subsystems. As these
quasiparticles and their partners make their way around the
spatial circle, they pass through both subsystems giving rise
to two peaks in the first period. The quasiparticles that
begin at around L=2 and Xf

1 reach both subsystems at about
the same time which is no longer the case for Möbius
quenches where the Bell pairs that begin at L=2 reach the
subsystems earlier than those that begin near Xf

1, leading to
a small second peak. The members of the quasiparticle
pairs that begin near Xf

1 then go on to enter their second
subsystem, leading to a third small peak. Finally, when the
members of the quasiparticles that begin near L=2 enter
their second subsystem, we see a fourth peak in the first
period. In the SSD limit, we only observe a single peak

since the quasiparticles are not able to go past the fixed
point X1

f. For both Möbius and SSD quenches, as the
deformation parameter θ is increased, the speed of the
quasiparticles near L=2 is greater so the first peak occurs
earlier. The mutual information for the other two setups has
peaks that are less symmetric but are nevertheless well-
described by the quasiparticle picture.

B. Time dependence of IA;B in 2D holographic CFT

Now, we focus on the nonuniversal piece of SA∪B in
2D holographic CFT. We begin by computing the nonuni-
versal piece of SA∪B in the Euclidean space. In AdS/CFT
correspondence, SA∪B is determined by the minimal geo-
desic length [78,79]:

SA∪B;Nonuni ≈
2c
3
log
�
4ϵ

π

�
þ c
12

Min½LA∪B;con;LA∪B;dis�;

ð4:2Þ

where LA∪B;con is the length of geodesic ending at the EoW
brane, while LA∪B;dis is that of geodesic connecting two
points at the same Euclidean time slice.
These nonuniversal pieces, LA∪B;con and LA∪B;dis, are

given by

FIG. 6. Plots of the second Rényi mutual information for the free Diract fermion as well as the quasiparticles for different placements
of the subsystems of equal size 2X. The total system size is fixed at L ¼ 100000 while the regulator is set at ϵ ¼ 10. The subsystems are
of size 2X with X ¼ 3000. The continuous curves correspond to the CFT result while the dashed plots are the quasiparticle plots.
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LA∪B;con ¼ 2 ×

"X
i¼1;2

log

(
cos

 
πðwNew;α

Xi
þ w̄New;α

Xi
Þ

4ϵ

!
cos

 
πðwNew;α

Yi
þ w̄New;α

Yi
Þ

4ϵ

!)#

LA∪B;dis ¼ Min½LA;dis;1 þ LB;dis;1;LA;dis;2 þ LB;dis;2�; ð4:3Þ

whereLA;dis;i¼1;2 andLB;dis;i¼1;2 are defined in Appendix D.
After performing the analytic continuation, τ1 ¼ it1, the
minimal geodesic length determines the time dependence
of IA;B. In the early time regime where the nonuniversal
pieces of SV¼A;B;A∪B are determined by SV;con, SA∪B cancels
out with SA þ SB. Consequently, in this early time-regime,
IA;B is zero. For the late time-regime where the nonuni-
versal pieces of SV are determined by SV;dis, the time-
evolution of IA;B is determined by

IA;B≈
X
V¼A;B

Min½SV;dis;1;SV;dis;2�−
c
12

Min½LA∪B;con;LA∪B;dis�:

ð4:4Þ

For the large t1-regime in the SSD limit, IA;B asymptoti-
cally reduces to the mutual information for the vacuum
state,

IA;B ≈

8>>><
>>>:

Max

�
0; c

3
log



sin½πðX1−X2ÞL � sin½πðY1−Y2ÞL �
sin½πðY1−X2ÞL � sin½πðY2−X1ÞL �

��
for X1

f ∉ A

Max

�
0; c

3
log



sin½πðX1−X2ÞL � sin½πðY1−Y2ÞL �
sin½πðX1−Y1ÞL � sin½πðY2−X2ÞL �

��
for X1

f∈A

:

ð4:5Þ

When the endpoint of A or B is at x ¼ X1
f, IA;B is given by

(4.5) for X1
f ∉ A. In conclusion, when starting from a

boundary state and time-evolving it with the SSD Ham-
iltonian, the entanglement entropy does not strictly ap-
proach that of the vacuum state. However, during the
SSD time evolution, the mutual information may exactly
approach that of the vacuum state. Furthermore, unless
x ¼ X1

f at the edges of A and B, the reduced density
matrices for V ¼ A;B; A ∪ B are asymptotically approxi-
mated by the vacuum reduce density matrices

ρV¼A;B;A∪Bðt ≫ 1Þ ≈ ρVacuumV¼A;B;A∪B; ð4:6Þ

where ρVacuumV is the vacuum reduced density matrices
associated to V.

V. GRAVITATIONAL DESCRIPTION
AND CMERA INTERPRETATION

In this section, we will report on the gravity dual of the
system considered in this paper. In addition, we will discuss
an interpretation of the SSD time evolution operator as a

continuous multiscale entanglement normalization ansatz
(cMERA) [80–82].

A. Gravitational description

The early-time dependence of SA is determined by that of
geodesic ending at the end of the world (EoW) brane. Here,
we discuss the gravity dual of the deformed boundary state,
especially the trajectory of the EoW brane. In the AdS/
BCFT correspondence [75,76], the boundary effects we
have discussed are explained by the insertion of the EoW
brane into the bulk spacetime. The EoW brane is charac-
terized by the brane tension T, which determines the
boundary entropy in the calculation of the holographic
entanglement entropy.
We consider three-dimensional Einstein gravity on

asymptotically AdS space M with the dynamical brane
located on Q,

S ¼ 1

16πGN

Z
M

ffiffiffiffiffiffi
−g

p ðRþ 2Þ þ 1

8πGN

Z
∂M

ffiffiffiffiffiffi
−h

p
K

þ 1

8πGN

Z
Q

ffiffiffiffiffiffi
−h

p
ðK − TÞ; ð5:1Þ

where we fixed the AdS radius to be unity, and GN is
Newton’s constant. On the one hand, we impose the
Dirichlet boundary conditions on the metric at the asymp-
totic boundary ∂M. On the other hand, we impose the
Neumann boundary condition on Q which is necessary to
consider the dynamical brane. Note that we have already
fixed the matter profile on Q, characterized by the constant
brane tension T, so that the boundary conformal symmetry
is preserved.
As a solution of Einstein’s equation, we obtain the BTZ

black hole metric

ds2 ¼ ðr2 − r2þÞdτ2 þ
dr2

r2 − r2þ
þ r2dx2 ð5:2Þ

with the EoW brane, whose (Euclidean) trajectory is
given by

rðτÞ ¼ rþffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − T2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2tan2ðrþτÞ þ 1

q
; ð5:3Þ

where −1 < T < 1. Throughout this subsection, we
assume the length of circumference is 2π. In the CFT
part, we have discussed only the case T ¼ 0, while here we
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will discuss the more general value of T. For positive
tension T > 0, the EoW brane is located on the other
asymptotic boundary of a maximally extended solution. On
the other hand, for negative tension T < 0, the EoW brane
is outside of the horizon. In both cases, the brane eliminates
the spacetime behind it, as the name suggests. In what
follows, we mainly focus on the point of view of the
boundary observer. Therefore, we shall discuss nonpositive
tension brane.
Let us describe the trajectory of EoW brane on the

deformed black hole geometry. To this end, we follow
the prescription discussed in [32]. Namely, we rescale the
radial coordinate r by the conformal factor and use the
wNew coordinates discussed in Appendix A 2. After this
replacement, we perform the analytic continuation to the
Lorentzian time t1. Consequently, the t1-dependence of
radial location is determined by

rðτÞ → r0ðt1; xÞ ¼ rðτNewðt1; xÞÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
dwNew;α

x

dwx

��
dw̄New;α

x

dw̄x

�s
;

ð5:4Þ

where τNewðt1; xÞ ¼ ðwNew;α
x þ w̄New;α

x Þ=2. Note that since
the new coordinates depend on both t1 and x, the brane
trajectory also acquires the spatial inhomogeneity. See
Fig. 7 for a schematic picture of the motion of the EoW
brane from the outside observer. In Figs. 8 and 9, we plot
the spatial and time dependence of brane trajectories
determined by (5.4) in SSD limit (α ¼ 0, see Fig. 8) and
Möbius Hamiltonian (α ¼ 1, see Fig. 9) with small θ. It is
worth noting that for sufficiently large θ, the time depend-
ence reduces to the one in the SSD limit.
The existence of EoW brane becomes clear when we

discuss holographic entanglement entropy with a large
subsystem compared with the inverse temperature β ¼ 2π=
rþð¼ 4ϵÞ. In this case, the holographic entanglement
entropy is calculated from the phase where the minimal
surfaces end on the EoW brane.
As a reference, we also plot the geodesic distance

between the location of the EoW brane with negative
tension and horizon as Lbh, although our true geometry
ends at the EoW brane. See Fig. 10. These figures suggest
that the size of the domain eliminated by the EoW brane
comes to depend on the location. In particular, such regions
are more likely to be eliminated in the early time.

FIG. 7. A schematic view of motion of EoW brane under the SSD evolution (α ¼ 0) with nonpositive brane tension T ≤ 0. In this
picture, time flows from the left panel to the right panel. The reduced density matrix in the red region is approximated by that for the
vacuum state. The size of the red region grows with time following the deformation of the EoW brane.

FIG. 8. (a) Time-dependence of brane trajectory in SSD limit with T ¼ �0.4. (b) Time-dependence of brane trajectory in SSD limit
with x ¼ �π=8. Here, we set rþ ¼ 1.
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1. Comments on cutoff surface

As we have seen so far, the EoW brane approaches the
asymptotic boundary. At sufficiently late time, t ≫ L, the
location of the horizon’s peak grows linearly in time [32],

r0horizon ¼
rþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2 þ π2t2

p

L
≃
πrþt
L

: ð5:5Þ

This is also the case for the brane because the distance
between the brane and horizon becomes a constant value at
the late time.
On the other hand, we should introduce a cutoff surface on

a certain radial scale r0 ¼ r∞ that determines the UV cutoff
for the dual CFT. It means that the EoW will eventually
collidewith the cutoff surface at some time.We interpret this
as the timescale on which the holographic calculation in
Sec. III C 3 becomes unreliable.3More concretely, we cannot

trust our calculation after t ∼ L=rþϵUV. Here we introduced
the cutoff length scale in the dual CFT ϵUV such
that r∞ ¼ 1=ϵUV.

B. cMERA interpretation

Here, we discuss an interpretation of the Möbius/SSD
time evolution operator as a continuous multiscale entan-
glement normalization ansatz (cMERA).

1. A brief review of MERA and cMERA

In this section, we begin by reviewing the MERA
shortly, and subsequently review the cMERA. The
MERA is the scheme of the renormalization group in
terms of a tensor network constructed of the two kinds of
tensors [85–87]. This is suitable for the (numerical)
computation in the discrete system at the critical point.
The tensor network in the MERA has a discrete layered
structure where we have the discrete energy scale direction
perpendicular to the space-time direction. We label this
discrete energy scale direction by u, and we assume that
u ¼ 0;−1;…;−∞. On each layer at u, the tensor network
is constructed of two types of tensors, called isometry and
(dis-)entangler. Let L and K denote the isometry and
entangler. The isometry is a linear map where two nearest
spins at u reduce to a single spin at u − 1. Since this
resembles the coarse-graining or the scale transformation,
the isometry is considered as these operations in MERA. If
the dimension of Hilbert space at u ¼ 0 is 2L, where L is
the system size, then the one at u is estimated with 22

uL.
The entangler is the unitary operator acting the two nearest
spins at u. This tensor endows the state with short-range
entanglement. We start from an unentangled state jΩi that
is invariant under the scale transformation generator L,

LjΩi ¼ 0; ð5:6Þ

and then nonunitarily evolve the system from u ¼ −∞ to
u ¼ 0 with the circuit constructed of the isometries and
entanglers. We call jΩi the reference state, while we call the
state at u ¼ 0 the target state. We tune the parameters of

FIG. 9. (a) Time-dependence of brane trajectory with θ ¼ 0.1 and T ¼ �0.4. (b) Time-dependence of brane trajectory with θ ¼ 0.1
and x ¼ �π=8. Here we set rþ ¼ 1.

FIG. 10. Geodesic distance between EoWwith negative tension
(T ¼ −0.4) and black hole horizon for the original geometry.
Here we show the case of SSD limit.

3If the cutoff surface is defined globally, as it is in much of
the literature, this collision problem should occur in all holo-
graphic calculations. Nevertheless, for all holographic calcula-
tions except Sec. III C 3, any immediate problems do not occur as
we have seen. This observation suggests that we have to define
the cutoff surface locally around the entangling surface. Note that
this is a natural prescription from the CFT side [83] and its gravity
dual [84].
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isometries and entanglers so that the target state is the state
of interest.
Let us begin the review of cMERA. The cMERA is

designed to be suitable for the (numerical) computation in
the quantum field theories at the critical point. Define the
state at u ¼ −∞ as

LjΩi ¼ 0; ð5:7Þ

where L is the scale transformation generator as in the
MERA. However, in the cMERA, the isometry is replaced
with a unitary operator. Since the isometry and entangler
preserve the dimension of Hilbert space at each step u, the
tensor network in the cMERA is a unitary evolution
operator. We assume that the energy scale is labeled by
the continuous parameter u. Consequently, under the
cMERA, the system unitarily evolves with the unitary
evolution operator to the target state,

jΨð0Þi ¼ Uð0;−∞ÞjΩi ¼ Pe−i
R

0

−∞
duðKðuÞþLÞjΩi; ð5:8Þ

where P is defined as the path-ordering operator arranging
the operators in order of increasing u from right to left.
The symbols, KðuÞ and L, are defined as the integrals of
entangler and isometry densities along the spatial direc-
tions, respectively.
Furthermore, define the state and entangler in the

interaction picture, jΨIðuÞi and K̂ðuÞ, as

jΨIðuÞi ¼ eiLujΨðuÞi; K̂ðuÞ ¼ eiLuKðuÞe−iLu: ð5:9Þ

Consequently, the target state in the interaction picture is
given by

jΨIð0Þi ¼ jΨð0Þi ¼ Pe−i
R

0

−∞
duK̂ðuÞjΩi: ð5:10Þ

Thus, jΨIð0Þi does not depend on the definition of L.

2. A cMERA interpretation on the Möbius/SSD
time evolution

Now, we turn to the quenches induced by Möbius/SSD
Hamiltonians, and discuss the interpretation for these
quenches as the cMERA. As in [68], we employ the
boundary state with the proper regularization as the
reference state,

jΩi ¼ e−ϵHjΨ0i; ð5:11Þ

where the HamiltonianH is defined asH¼ð2πðL0þ L̄0ÞÞ=
L−ðcπÞ=6L, where Ln and L̄n are chiral and antichiral
Virasoro generators. In addition to them, the boundary state
is defined as

ðLn − L̄nÞjΨ0i ¼ 0: ð5:12Þ

In this paper, unlike the common procedure in cMERA, we
define the operator that keeps the reference state invariant
as L. We utilize the spin operator ð2πðL0 − L̄0ÞÞ=L as L.
Subsequently, we consider t1 during the time evolution

as the energy scale u in the tensor network as in [88,89].
We start from the boundary state jΩi at t1 ¼ −UIR and
evolve the system up to t1 ¼ 0. This is equivalent to the
time evolution from t1 ¼ 0 to t ¼ UIR as considered in
Secs. III A and III C. The depth of the time evolution and
tensor network in cMERA is determined by UIR.
Möbius/SSD time evolutionWe begin by considering the

quantum quench induced by the Möbius Hamiltonian.
Divide the Möbius Hamiltonian into the entangler KðθÞ
and the isometry L,

HMöbius ¼ KðθÞ þL;

KðθÞ ¼ 2π

L

�
L0 þ L̄0

−
tanh 2θ

2
ðL1 þ L−1 þ L̄1 þ L̄−1Þ− ðL0 − L̄0Þ

�
;

L ¼ 2π

L
ðL0 − L̄0Þ; ð5:13Þ

where we express HMöbius, KðθÞ, and L in terms of
Virasoro generators. In the interaction picture, jΨIð0Þi is
given by

jΨIð0Þi ¼ jΨð0Þi ¼ T e
−i
R

0

−UIR
dt1K̂ðθ;t1ÞjΩi; ð5:14Þ

where T is defined as the time-ordering operator arrang-
ing the operators in order of increasing t1 from right to
left, and K̂ðθ; t1Þ is defined by K̂ðθ; t1Þ ¼ eiLt1KðθÞe−iLt1.
Thus, jΨIð0Þi does not depend on the definition of L.
The entangler in the interaction picture is explicitly
given by

K̂ðθ; t1Þ ¼ H0 − Lþ i sin

�
2πt1
L

�
H̃ðθÞ

þ cos

�
2πt1
L

�
ðHMöbius −H0Þ ð5:15Þ

where H0 and H̃ðθÞ are defined by

H0 ¼
2π

L
ðL0 þ L̄0Þ;

H̃ðθÞ ¼ tanh 2θ
2

�
2π

L

�
ðL1 − L−1 − L̄1 þ L̄−1Þ: ð5:16Þ

This entangler in the interaction picture possesses the
periodicity with t1,

K̂ðθ; t1 þ LÞ ¼ K̂ðθ; t1Þ: ð5:17Þ
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This period is independent of the parameter θ. In the SSD
limit where θ → ∞, K̂ðθÞ reduces to K̃,

K̃ ¼ 2π

L

�
L0 þ L̄0 −

1

2
ðL1 þL−1 þ L̄1 þ L̄−1Þ− ðL0 − L̄0Þ

�
:

ð5:18Þ
Consequently, the entangler in the interaction picture is
given by replacing HMöbius in (5.15) with HSSD.
Expression in terms of spin variables We will rewrite

the entanglers in the interaction picture in terms of spin
variables that suit experimental research.
As explained in [90], these Virasoro generators can be

realized in certain spin chains with N sites governed by a
Hamiltonian that can be expressed as a sum of Temperley-
Lieb generators ei,

H ¼ −
XN−1

i¼1

ei: ð5:19Þ

The generators ei satisfy the Temperley-Lieb algebra
whose exact form is not necessary for our purposes. For
a spin-1

2
chain, one possible representation of this algebra is

given by

ei ¼
qþ q−1

4
−
1

2

�
XiXiþ1 þ YiYiþ1 þ

qþ q−1

2
ZiZiþ1

�

−
q − q−1

4
ðZi − Ziþ1Þ; ð5:20Þ

where Xi, Yi, and Zi are Pauli matrices acting on site i and q
is an arbitrary complex parameter although the physically
interesting cases are obtained when q is a root of unity.
With this representation of the Temperley-Lieb algebra, the
Hamiltonian (5.19) is, up to an inconsequential constant,
the XXZ Hamiltonian that contains some additional boun-
dary terms

H ¼ 1

2

XN−1

i¼1

�
XiXiþ1 þ YiYiþ1 þ

qþ q−1

2
ZiZiþ1

�

þ q − q−1

4
ðZ1 − ZNÞ: ð5:21Þ

The standard Heisenberg spin chain can be obtained by
simply setting q ¼ 1. It is conjectured, with substantial
evidence, that the lattice operators

LðNÞ
n ¼ N

π

�
−

1

vF

XN−1

k¼1

ðek − e∞Þ cos
�
nkπ
N

�

þ 1

v2F

XN−2

k¼1

½ek; ekþ1� sin
�
nkπ
N

��
þ c
24

δn;0 ð5:22Þ

approaches the Virasoro generators Ln in the N → ∞
continuum limit. Here, vF ¼ π sin γ

γ is the Fermi velocity
and is determined by the q parameter via 2 cos γ ¼
qþ q−1. For treatments of the Ising model and the XX
spin chain, see Refs. [91] and [92] respectively.

VI. DISCUSSION AND FUTURE DIRECTIONS

We will discuss the relation between the gravity dual in
the Heisenberg picture and the renomalization group, and
comment on future directions.

A. Renormalization group and SSD evolution

In Sec. VA, we discussed the gravity dual in Schrödinger
picture. In this picture, the EoW brane moves and is
deformed during the Möbius/SSD time evolution. We
can instead consider the gravity dual in the Heisenberg
picture. In this picture, the location of EoW is pinned at
the horizon of the BTZ black hole, while the location
of the surface (UV surface) where CFT lives moves and is
deformed in time. Let rUV denote the radial location of this
UV surface at t1 ¼ 0. The trajectory of rUV during the
Möbius/SSD time evolution is determined by

rBTZUV ðx; t1Þ ¼
rUVffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�

dwNew
x

dwx

dw̄New
x

dw̄x

r : ð6:1Þ

Thus, the location of the UV surface depends on ðx; t1Þ.
In the AdS/CFT correspondence, the radial direction in

the gravity dual is considered as the energy scale in the 2D
CFT. In the coordinate considered in this paper, the larger r
becomes, the larger the energy scale becomes. The spatial
and temporal dependence of the rUV suggests that the
energy scale in 2D CFT depends on ðx; t1Þ. Except for the
case discussed in Sec. III C 3, during SSD time evolution,
SA is eventually approximated by the vacuum entanglement
entropy. This suggests that for the large t1, the location of
the UV surface is further from the EoW than at t1 ¼ 0. In
other words, in the large time regime, the energy scale is
larger than the initial one. The location of the UV surface
near x ¼ X2

f gets further from the EoW faster. We can see
from the spatial and time dependence of the UV surface that
the reverse of SSD time evolution considered in this paper
may be used as the renormalization group where the energy
scale depends on the spatial location.

B. Future direction

We close this section with comments on the entangle-
ment entropy for the large time regime. In this paper
and [32], we propose the quasiparticle picture, an effective
picture, describing the time dependence of entanglement
entropy at Oð1ϵÞ. However, this does not describe the late-
time entanglement entropy, the vacuum entanglement
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entropy, because the vacuum one is atOð1Þ. The findings in
the inhomogeneous quench show that inhomogeneous
evolution may endow the states with two types of entan-
glement structure: One of them is a dynamical entangle-
ment structure that can be described by the propagation of
quasiparticles, while the other is a static entanglement
structure that remains after quasiparticles pass away [93].
Studying the static entanglement structure may lead to a
deeper understanding of entanglement dynamics. We leave
this as a future problem.
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APPENDIX A: THE LOCATION OF EVOLVED
OPERATORS

The time evolution of local operator coordinates under
Möbius/SSD evolution is explained in [57]. In order to
keep this paper self-contained, we shall summarize the
details here.

1. Operator trajectory

In order to derive the transformation of the primary
operator under Euclidean time evolution, let us begin by
expressing the Möbius Hamiltonian HMöbius in terms of the
complex coordinates ðw; w̄Þ,

HMöbius ¼
1

2iπ

I
dw

�
TðwÞ− tanh2θ

2
ðe2πw

L þ e
−2πw
L ÞTðwÞ

�

þ 1

2iπ

I
dw̄

�
T̄ðw̄Þ− tanh2θ

2
ðe2πw̄

L þ e
−2πw̄
L ÞT̄ðw̄Þ

�
:

ðA1Þ

Under a conformal transformation from ðw; w̄Þ to ðz; z̄Þ,
this Hamiltonian is expressed as

HMöbius ¼
�
2π

L

�
×

1

2iπ

I
dz

�
zTðzÞ − tanh 2θ

2
ðz2 þ 1ÞTðzÞ

�

þ
�
2π

L

�
×

1

2iπ

I
dz̄

�
z̄ T̄ðz̄Þ − tanh 2θ

2
ðz̄2 þ 1ÞT̄ðz̄Þ

�
−

c
12

×

�
2π

L

�
: ðA2Þ

Next, perform a second conformal transformation from ðz; z̄Þ to ðz̃; ¯̃zÞ ¼ ð− cosh θzþsinh θ
− cosh θþsinh θz ;

− cosh θz̄þsinh θ
− cosh θþsinh θz̄Þ. In these new

coordinates, the Möbius Hamiltonian takes the simple form,

HMöbius ¼
�
2π

L

�
×

1

2iπ

�I
dz̃ z̃ Tðz̃Þ þ

I
d ¯̃z ¯̃z T̄ð ¯̃zÞ

�
−

c
12

×

�
2π

L

�

¼
�
2π

Leff

�
×

�
Lz̃
0 þ L ¯̃z

0 −
c
12

�
; ðA3Þ

where the Virasoro generators in the ðz̃; ¯̃zÞ coordinates are
written in terms of the stress energy tensor as

Lz̃
n ¼

1

2iπ

I
dz̃z̃nþ1Tðz̃Þ; L̄ ¯̃z

n ¼
1

2iπ

I
d ¯̃z ¯̃znþ1T̄ð ¯̃zÞ:

ðA4Þ

In the ðz̃; ¯̃zÞ coordinates, the Möbius Hamiltonian is the
usual uniform Hamiltonian which is the generator of
dilatations on the complex plane, so a primary operator
in the ðz̃; ¯̃zÞ coordinates transforms in a simple manner
under the Möbius Hamiltonian as

OHðz̃; ¯̃z;aÞ≔eaHMöbiusOðz̃; ¯̃zÞe−aHMöbius ¼ λ2hOeff Oðλeff z̃;λeff ¯̃zÞ;
ðA5Þ

where the scaling factor λeff is related to θ as well as a by

λeff ≔ e
2πa

L cosh 2θ: ðA6Þ
Define a final set of complex coordinates
ðwNew

a;Möbius; w̄
New
a;MöbiusÞ as�
e
2πwNew

a;Möbius
L ; e

2πw̄New
a;Möbius
L

�
≔ ðλeff z̃; λeff ¯̃zÞ: ðA7Þ
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Putting it all together, we arrive at the conformal trans-
formation for a primary operator under a Möbius evolution

eaHMöbiusOðw; w̄Þe−aHMöbius

¼
���� dwNew

a;Möbius

dw

����2hOOðwNew
a;Möbius; w̄

New
a;MöbiusÞ ðA8Þ

This is one of the key identities used in this paper. The
conformal transformation of primary operators under an
SSD evolution is obtained by taking the θ → ∞ limit of the
conformal transformation produced by the corresponding
Möbius evolution. Let us also check if the local primary
operators obey the Ward-Takahashi identity. The Schrö-
dinger equation of a local primary operator with a time
coordinate a in the ðz̃; ¯̃zÞ complex coordinates is

dOHðz̃; ¯̃z; aÞ
da

¼ 2π

Leff
½2hOOHðz̃; ¯̃z; aÞ þ z̃∂z̃OHðz̃; ¯̃z; aÞ

þ ¯̃z∂ ¯̃zOHðz̃; ¯̃z; aÞ�: ðA9Þ

This is also the transformation of OHðz̃; ¯̃z; aÞ generated by
the Möbius Hamiltonian

dOHðz̃; ¯̃z; aÞ
da

¼ ½HMöbius;OHðz̃; ¯̃z; aÞ�

¼
��

2π

Leff

�
·

�
Lz̃
0 þ L ¯̃z

0 −
c
12

�
;OHðz̃; ¯̃z; aÞ

�
:

ðA10Þ

Expanding the Möbius Hamiltonian in terms of Virasoro
generators in the ðz; z̄Þ coordinates,

HMöbius ¼
2π

L

�
Lz
0 þ L̄z̄

0 −
tanh2θ

2
ðLz

1 þLz
−1 þ L̄z̄

1 þ L̄z̄
−1Þ
�
;

ðA11Þ

and substituting this into the Schrödinger equation in the
complex coordinates, ðz; z̄Þ, we obtain

dOHðz; z̄; aÞ
da

¼ ½HMöbius;OHðz; z̄; aÞ� ¼
2π

L

�
Lz
0 þ L̄z̄

0 −
tanh 2θ

2
ðLz

1 þ Lz
−1 þ L̄z̄

1 þ L̄z̄
−1Þ;OHðz; z̄; aÞ

�

¼ 2π

Leff

�
hOðcosh 2θ − z sinh 2θÞOHðz; z̄; aÞ þ

�
z cosh 2θ −

sinh 2θ
2

ð1þ z2Þ
�
∂zOHðz; z̄; aÞ

�

þ 2π

Leff

�
hOðcosh 2θ − z̄ sinh 2θÞOHðz; z̄; aÞ þ

�
z cosh 2θ −

sinh 2θ
2

ð1þ z̄2Þ
�
∂z̄OHðz; z̄; aÞ

�
: ðA12Þ

This equation (A12) can also be obtained from (A10) by performing a change of coordinates from ðz̃; ¯̃zÞ to ðz; z̄Þ. Hence,
both equations (A12) and (A10) are consistent with each other.

2. Before the analytic continuation

In terms of τ1 and x, wNew;α
x and w̄New;α

x are given by

wNew;α
x þ ϵ ¼ τx;τ1;α þ i

Lφx;τ1;α

2π
; w̄New;α

x þ ϵ ¼ τx;τ1;α þ i
Lφ̄x;τ1;α

2π
;

τx;τ1;0 ¼ ϵ − log

�
2ðπτ1Þ2

�
1 − cos

�
2πx
L

��
þ L2 − 2πτ1L

�
1 − cos

�
2πx
L

���
þ L
2π

log rx;τ1;0;

rx;τ1;0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
2ðπτ1Þ2

�
1 − cos

�
2πx
L

��
þ L2 cos

�
2πx
L

��
2

þ
�
L2 sin

�
2πx
L

��
2

s
;

cosφx;τ1;0 ¼ cos φ̄x;τ1;0 ¼
2ðπτ1Þ2ð1 − cosð2πxL ÞÞ þ L2 cosð2πxL Þ

rx;τ1;0
;

sinφx;τ1;0 ¼ − sin φ̄x;τ1;0 ¼
L2 sinð2πxL Þ

rx;τ1;0
:

τx;τ1;1 ¼ ϵþ L
2π

log rx;τ1;1 − log

�
ð1 − λ1Þ2sinh2ð2θÞ þ ððλ1 − 1Þ cosh 2θ − ðλ1 þ 1ÞÞ2

þ 2ð1 − λ1Þ sinh ð2θÞððλ1 − 1Þ cosh 2θ − ðλ1 þ 1ÞÞ cos
�
2πx
L

��
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rx;τ1;1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
ð1 − λ1Þ2 sinh 4θ þ ð−ð1 − λ1Þ2 cosh 4θ þ ð1þ λ1Þ2Þ cos

�
2πx
L

��
2

þ 16λ21sin
2

�
2πx
L

�s
;

cosφx;τ1;1 ¼ cos φ̄x;τ1;1 ¼
ð1 − λ1Þ2 sinh 4θ þ ð−ð1 − λ1Þ2 cosh 4θ þ ð1þ λ1Þ2Þ cosð2πxL Þ

rx;τ1;1
;

sinφx;τ1;1 ¼ − sin φ̄x;τ1;1 ¼
4λ1 sinð2πxL Þ

rx;τ1;1
; λ1 ¼ e

2πτ1
L cosh 2θ; ðA13Þ

Thus, the location in Euclidean time direction of twist and
antitwist operator is τ ¼ τx;τ1;α.

a. Analytic continuation

We finally perform the analytic continuation to the real
time:

τ1 ¼ it1: ðA14Þ

APPENDIX B: ENTANGLEMENT ENTROPY
FOR THE SINGLE INTERVAL IN 2D MASSLESS
FREE FERMION AND HOLOGRAPHIC CFTS

In this paper, we will describe the details of the
computation of the entanglement entropy for the single
interval in 2Dmassless free fermion and holographic CFTs.

1. Entanglement entropy for the single interval
in 2D massless free fermion

The entanglement entropy of the free Dirac fermion after
an inhomogeneous quench of a boundary state can be

computed using bosonization similar to that in [94,95] but
with the time evolution Hamiltonian replaced with the
Möbius Hamiltonian. The nth moment of the reduced
density matrix for a single interval is

hΨ0je−2ϵHT nðwi; w̄iÞT̄ nðwj; w̄jÞjΨ0iCylinder

¼
�
2π

L

�
4hn Yn−12

a¼−n−1
2

hΨ0je−2ϵHT ðaÞðyi; ȳiÞT ð−aÞðyj; ȳjÞjΨ0i
hΨ0je−2ϵHjΨ0i

ðB1Þ

where jΨ0i is the boundary state that lives on the ends of
the cylinder and there is a conformal factor that comes from
rescaling the correlation function so that the spatial
coordinate has a periodicity of L instead of 2π. Let y ¼
τ − iσ where 0 ≤ τ ≤ 2ϵ and 0 ≤ σ ≤ 2π be the holomor-
phic coordinate on this rescaled cylinder. Applying the
bosonization dictionary, the twist operators can be written
as twisted vertex operators that depend on the boundary
condition,

T ðaÞðy; ȳÞ ¼
(
T ðaÞ

1 ðy; ȳÞ ¼ Vðan;−a
nÞðy; ȳÞ ¼ ei

a
nðXLðyÞ−XRðȳÞÞ NeumannB:C:

T ðaÞ
2 ðy; ȳÞ ¼ Vðan;anÞðy; ȳÞ ¼ ei

a
nðXLðyÞþXRðȳÞÞ Dirichlet B:C:

: ðB2Þ

The correlation function of vertex operators in the boundary state can be computed by writing the vertex operators and the
boundary state in terms of the bosonic modes and by repeatedly applying the bosonic commutation and the Baker-
Campbell-Haursdorff relations [94]. The denominator is the partition function for the finite cylinder with boundary states
jΨ0i on both ends as is given by

hΨ0je−2ϵHjΨ0i ¼

8>><
>>:

θ3ð0ji4ϵL Þþθ2ð0ji4ϵL Þ
ηði4ϵL Þ

; NeumannB:C:

θ3ð0ji4ϵL Þ
ηði4ϵL Þ

; Dirichlet B:C:
ðB3Þ

where θνðzjτÞ and ηðτÞ are the Jacobi theta functions and the Dedekind eta function which are described in some detail
in [96]. Therefore, the correctly normalized Euclidean Rényi entanglement entropy to leading order in L

ϵ is
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SðnÞV ¼ −
c
24

nþ 1

n
log

����Y
i¼1;2

�
dwNew;α

vi

dwvi

��
dw̄New;α

vi

dw̄vi

�����
þ nþ 1

12n
log

�
L
2π

�
2
����
�
θ1

�
i
wNew;α
v2 − wNew;α

v1

L

���� 4iϵL
�
θ1

�
i
w̄New;α
v2 − w̄New;α

v1

L

���� 4iϵL
�

× θ1

�
i
wNew;α
v1 þ w̄New;α

v1

L

���� 4iϵL
�
θ1

�
i
wNew;α
v2 þ w̄New;α

v2

L

���� 4iϵL
����

η

�
i
4ϵ

L

�
6

× θ1

�
i
wNew;α
v1 þ w̄New;α

v2

L

����i 4ϵL
�
θ1

�
i
wNew;α
v2 þ w̄New;α

v1

L

����i 4ϵL
������

þ

8>>>>>>>><
>>>>>>>>:

1
1−n
Pn−1

2

a¼−n−1
2

log

����
�
θ2

�
i
a
�
wNew;α
v1

−wNew;α
v2

þw̄New;α
v1

−w̄New;α
v2

	
Ln

���� i4ϵL
�

þθ3

�
i
a
�
wNew;α
v1

−wNew;α
v2

þw̄New;α
v1

−w̄New;α
v2

	
Ln

�� 4iϵ
L

����
θ2
�
0
��� 4iϵL þ θ3

�
0
��� i4ϵL 

����� Neumann

1
1−n
Pn−1

2

a¼−n−1
2

log

����θ3
�
i
a
�
wNew;α
v1

−wNew;α
v2

þw̄New;α
v1

−w̄New;α
v2

	
Ln

���� 4iϵL
��

θ3

�
0

���� 4iϵL
����� Dirichlet

ðB4Þ

In this expression, as well as the subsequent expressions for
Euclidean Rényi entropy and mutual information, the coor-
dinates wNew;α

vi and w̄New;α
vi are analytically continued to real

time, τ1 → it1. In the uniform θ ¼ 0 case with spatial
periodicity L ¼ 2π, we recover the corresponding expres-
sions in [94,95]. The entanglement entropy for a boundary
state at the initial time t ¼ 0 for a subsystem of size jVj ≫
ϵ → v1 − v2 ≫ ϵ in the limit where L ≫ ϵ is given by

SðnÞV ðt ¼ 0Þ ¼ nþ 1

6n
log

4ϵ

π
ðB5Þ

which does not depend on the total system and subsystem
sizes since the boundary state possesses a low amount of

entanglement [68]. To compute the entanglement entropy of
two intervals, the four-point function of the vertex operators
is required. The calculation is a generalization of that in [94]
and can be found in Appendix E.
If we have two intervals A ¼ ½v2; v1� and B ¼ ½v4; v3�,

then repeating the same calculation as for the single interval
case gives

SðnÞA∪B ¼ SðnÞA∪B;univ þ SðnÞA∪B;nonuniv ðB6Þ

where the universal part that does not depend on the
boundary condition is

SðnÞA∪B;univ ¼ −
c
24

nþ 1

n
log
Y4
i¼1

���� dwNew;α
vi

dwvi

dw̄New;α
vi

dw̄vi

����þ nþ 1

12n
log

������
�
L
2π

�
4

×
θ1
�
i
wNew;α
v4

−wNew;α
v3

L j 4iϵL

θ1
�
i
wNew;α
v4

−wNew;α
v1

L

��� 4iϵL θ1�i wNew;α
v3

−wNew;α
v2

L

��� 4iϵL θ1�i wNew;α
v2

−wNew;α
v1

L

��� 4iϵL 
η
�
4iϵ
L


12
θ1
�
i
wNew;α
v4

−wNew;α
v2

L

��� 4iϵL θ1�i wNew;α
v3

−wNew;α
v1

L

��� 4iϵL 

×
θ1
�
i
w̄New;α
v4

−w̄New;α
v3

L

��� 4iϵL θ1�i w̄New;α
v4

−w̄New;α
v1

L

��� 4iϵL θ1�i w̄New;α
v3

−w̄New;α
v2

L

��� 4iϵL θ1�i w̄new;α
v2

−w̄New;α
v1

L

��� 4iϵL 
θ1
�
i
w̄New;α
v4

−w̄New;α
v2

L

��� 4iϵL θ1�i w̄New;α
v3

−w̄New;α
v1

L

��� 4iϵL 

×
θ1
�
i
wNew;α
v1

þw̄New;α
v1

L

��� 4iϵL θ1�i wNew;α
v1

þw̄New;α
v3

L

��� 4iϵL 
θ1
�
i
wNew;α
v1

þw̄New;α
v2

L

��� 4iϵL θ1�i wNew;α
v1

þw̄New;α
v4

L

��� 4iϵL 
θ1
�
i
wNew;α
v2

þw̄New;α
v2

L

��� 4iϵL θ1�i wNew;α
v2

þw̄New;α
v4

L

��� 4iϵL 
θ1
�
i
wNew;α
v2

þw̄New;α
v1

L

��� 4iϵL θ1�i wNew;α
v2

þw̄New;α
v3

L

��� 4iϵL 

×
θ1
�
i
wNew;α
v3

þw̄New;α
v1

L

��� 4iϵL θ1�i wNew;α
v3

þw̄New;α
v3

L

��� 4iϵL 
θ1
�
i
wNew;α
v3

þw̄New;α
v2

L

��� 4iϵL θ1�i wNew;α
v3

þw̄New;α
v4

L

��� 4iϵL 
θ1
�
i
wNew;α
v4

þw̄New;α
v2

L

��� 4iϵL θ1�i wNew;α
v4

þw̄New;α
v4

L

��� 4iϵL 
θ1
�
i
wNew;α
v4

þw̄New;α
v1

L

��� 4iϵL θ1�i wNew;α
v4

þw̄New;α
v3

L

��� 4iϵL 
������ ðB7Þ
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and the nonuniversal part that depends on the boundary condition is

SðnÞA∪B;nonuniv ¼

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

1
1−n
Pn−1

2

a¼−n−1
2

log

����
�
θ2

�
i an

wNew;α
v1

−wNew;α
v2

þwNew;α
v3

−wNew;α
v4

þw̄New;α
v1

−w̄New;α
v2

þw̄New;α
v3

−w̄New;α
v4

L

���� 4iϵL
�

þθ3

�
i an

wNew;α
v1

−wNew;α
v2

þwNew;α
v3

−wNew;α
v4

þw̄New;α
v1

−w̄New;α
v2

þw̄New;α
v3

−w̄New;α
v4

L

���� 4iϵL
��

�h
θ2
�
4iϵ
L

	þ θ3
�
4iϵ
L

	i���; N

1
1−n
Pn−1

2

a¼−n−1
2

log

������
θ3

�
ian
wNew;αv1

−wNew;αv2
þwNew;αv3

−wNew;αv4
þw̄New;αv1

−w̄New;αv2
þw̄New;αv3

−w̄New;αv4
L

���4iϵL
θ3ð4iϵL Þ

������; D

ðB8Þ

where N and D stand for the Neumann and Dirichlet
boundary conditions, respectively.

2. Entanglement entropy for the single interval
in 2D holographic CFT

Now, we turn to the details of the computation on
entanglement entropy for the single interval in 2D holo-
graphic CFT.

a. Method of image

In this paper, we employ themethod of images to compute
the Euclidean Rényi entanglement entropy for the holo-
graphic CFTs, and then analytically continue to real time.
Consider (2.11) for the single interval in this method. In this
method, the two point function for the boundary state is given
by the four point function of the original operators and their
images. In the von Neumann limit, n → 1, the Euclidean
entanglement entropy is given by

SE;V ¼ lim
n→1

hn
1 − n

log

��
dwNew;α

v1

dwv1

��
dw̄New;α

v1

dw̄v1

��
dwNew;α

v2

dwv2

��
dw̄New;α

v2

dw̄v2

��

þ lim
n→1

1

2ð1 − nÞ log
��

T̄ n

�
4ϵ − τv1;τ1;α þ i

Lφv1;τ1;α

2π
; 4ϵ − τv1;τ1;α þ i

Lφ̄v1;τ1;α

2π

�

× T n

�
4ϵ − τv2;τ1;α þ i

Lφv2;τ1;α

2π
; 4ϵ − τv2;τ1;α þ i

Lφ̄v2;τ1;α

2π

�

× T n

�
τv1;τ1 þ i

Lφv1;τ1

2π
; τv1;τ1;α þ i

Lφ̄v1;τ1;α

2π

�
T̄ n

�
τv2;τ1;α þ i

Lφv2;τ1;α

2π
; τv2;τ1;α þ i

Lφ̄v2;τ1;α

2π

��
Torus

�
;

¼ −
c
12

log

��
dwNew;α

v1

dwv1

��
dw̄New;α

v1

dw̄v1

��
dwNew;α

v2

dwv2

��
dw̄New;α

v2

dw̄v2

��

þ lim
n→1

1

2ð1 − nÞ log½hT̄ nð3ϵ − w̄New;α
v1 ; 3ϵ − wNew;α

v1 ÞT nð3ϵ − w̄New;α
v2 ; 3ϵ − wNew;α

v2 Þ

× T nðϵþ wNew;α
v1 ; ϵþ w̄New;α

v1 ÞT̄ nðϵþ wNew;α
v2 ; ϵþ w̄New;α

v2 ÞiTorus�; ðB9Þ

where the length of the thermal cycle is 4ϵ, and the mirrors
are located at τ ¼ 0 and τ ¼ 2ϵ. Here, τvi;τ1;α denotes the

real part of wNew;α
vi and w̄New;α

vi , while
Lφvi;τ1 ;α

2π and
Lφ̄vi;τ1 ;α

2π
denote the imaginary parts, respectively. In the method of
images, the geometry where the n-point functions are
defined is a torus with thermal and spatial periods 4ϵ
and L respectively. Here, n is an even integer. The first term
in the last equation of (B9) is independent of the details of
2D CFTs, while the second term depends on those. We call
the first and second terms the universal and nonuniversal

pieces, respectively. In 2D holographic CFTs, the nonuni-
versal piece is determined by the geodesic length in on the
background dual of the system considered.

b. Nonuniversal piece in 2D holographic CFT

Now, we focus on the nonuniversal piece of the
entanglement entropy in 2D holographic CFT. By employ-
ing the method of images, the system is equivalent to that
on a spatial circle with circumference L in the thermal state
with the inverse temperature 4ϵð≪ LÞ. In other words, the
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geometry where 2D CFTs live is the torus with 4ϵ and L.
As explored in [97], in 2D holographic CFTs, the gravity
dual of this system in the high temperature region, ϵ ≪ L,
is given by the BTZ black hole, while that in the low
temperature region, ϵ ≫ L, is given by the thermal AdS3.
Therefore, the nonuniversal piece in the high temperature
region is given by the minimal length of geodesics in the
BTZ black hole geometry [79,98]:

SV;Nonuni ¼ Min½SV;con; SV;dis�; ðB10Þ

where Scon is the length of geodesics connecting the points
on the different Euclidean time slices, while Sdis is the
length of geodesics connecting the points on the same
Euclidean time slice. We present the details of Scon and Sdis,
and they are given by

SV;con ≈
c
3
log

�
4ϵ

π

�
þ c
6
×

�X
i¼1;2

log

�
cos

�
π

4ϵ
ðwNew;α

vi þ w̄New;α
vi Þ

���
;

SV;dis ≈
c
3
log

�
4ϵ

π

�
þMin½SV;dis;1; SV;dis;2�;

SV;dis;1 ¼
c
12

log

���� sin
�
π

4ϵ
ðwNew;α

v1 − wNew;α
v2 � iLÞ

�����2 þ c
12

log

���� sin
�
π

4ϵ
ðw̄New;α

v1 − w̄New;α
v2 ∓ iLÞ

�����2;
SV;dis;2 ¼

c
12

log

���� sin
�
π

4ϵ
ðwNew;α

v1 − wNew;α
v2 Þ

�����2
�
þ c
12

log

���� sin
�
π

4ϵ
ðw̄New;α

v1 − w̄New;α
v2 Þ

�����2: ðB11Þ

APPENDIX C: EARLY-TIME EVOLUTION OF ENTANGLEMENT ENTROPY DURING
THE MÖBIUS AND SSD EVOLUTION

We depict the early-time behavior of SA as a function of t1 in Fig. 11.

FIG. 11. The t1-dependence of SA during the evolution induced by the Möbius and SSD Hamiltonians. The panels, [a], [b], [c], and [d]
correspond to cases (1), (2), (3), and (4). Here, Pc denotes the center of A. For simplicity, in [a], [b], and [c], Pc is taken to be
Pc ¼ X1

f; L=4, and X2
f , respectively. The blue, green, and purple curves illustrate the early time behavior of SA during the Möbius

evolution, while the gray line illustrates the early time behavior of SA during the Möbius evolution. The brown and pink dashed lines
illustrate SA of the thermal state with 4ϵ, inverse temperature, and the vacuum state.
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APPENDIX D: THE DEFINITION OF LA;dis;i = 1;2 AND LB;dis;i= 1;2

We report on the definition of LA;dis;i¼1;2 and LB;dis;i¼1;2, here. They are defined as

LA;dis;i ¼ Min½Lð1Þ
A;dis;i;L

ð2Þ
A;dis;i�;LB;dis;i ¼ Min½Lð1Þ

B;dis;i;L
ð2Þ
B;dis;i�; ðD1Þ

where if x ¼ X1
f is nether in A nor B, Lði¼1;2Þ

V¼A;B;dis;j¼1;2 are respectively given by
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If x ¼ X1
f is in A, Lði¼1;2Þ

V¼A;B;dis;j¼1 is the same as (D2), and Lði¼1;2Þ
V¼A;B;dis;j¼2 are given by
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APPENDIX E: VERTEX OPERATOR FOUR-POINT FUNCTION
IN FREE DIRAC FERMION BOUNDARY STATE

In this section, we generalize the computation of the vertex operator two-point function in [94] to the four-point function
that we use to compute the mutual information.

hBje−2ϵHVkL;kRðy1; ȳ1ÞÞVlL;lRðy2; ȳ2ÞÞVrL;rRðy3; ȳ3ÞÞVqL;qRðy4; ȳ4ÞÞjBi ðE1Þ

We normal order the vertex operator in the same way as in [94] with the position and momenta of the zero mode in the same
exponent,

VkL;kRðy; ȳÞ ¼ eikLðxLþisLpLyÞþikRðxRþisRpRȳÞ
Y
m>0

ðekLα−mm emyþkR
α̃−m
m emȳÞ

Y
m>0

ðe−kLαmm e−my−kR
α̃m
m e−mȳÞ: ðE2Þ
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The zero mode is ordered differently from [96] where
the position and momentum coordinates are split between
different exponentials. For Neumann boundary conditions,
kL ¼ −kR ¼ a

N, while kL ¼ kR ¼ a
N for Dirichlet boundary

conditions. The symbols, sL and sR, are arbitrary signs that
wehave introduced in front of the zeromodemomentumsuch
that under a spatial translation σ → σ þ 2π, if sL ¼ sR ¼ s,
the boson winds around the target manifold as Xðσ þ 2πÞ ¼
XðσÞ þ 2sπwR so that s ¼ 1 has the same periodicity as
in [99]. This is equivalent to flipping the sign of the zeromode
in the Laurent expansion of the current i∂X which is an
equally legitimate Laurent expansion. Following [94], we

also do not include any cocycle factors as explained in [99].
Since these cocycle factors do not depend on the coordinates
y; ȳ, commuting them past the position operators can only
give phases that are independent of the spacetime coordinate.
Furthermore, as explained in [99], the cocycle factors only
affect the relative signs of certain amplitudes but we are only
considering a single correlation function.
Set sL ¼ sR ¼ 1. For Neumann boundary conditions, set

μ¼−1, kL¼−kR¼k¼−lL¼ lR¼ rL¼−rR¼−qL¼qR.
For Dirichlet boundary conditions, set kL ¼ kR ¼ k ¼
−lL ¼ −lR ¼ rL ¼ rR ¼ −qL ¼ −qR. A calculation sim-
ilar to the one in [94] gives

hBje−2ϵHVkL;kRðy1; ȳ1ÞÞVlL;lRðy2; ȳ2ÞÞVrL;rRðy3; ȳ3ÞÞVqL;qRðy4; ȳ4ÞÞjBi

¼ 1

ηð2iϵπ Þ

"
ηð2iϵπ Þ12θ1ðy4−y22πi j 2iϵπ Þθ1ðy3−y12πi j 2iϵπ Þ

θ1ðy4−y32πi j 2iϵπ Þθ1ðy4−y12πi j 2iϵπ Þθ1ðy3−y22πi j 2iϵπ Þθ1ðy2−y12πi j 2iϵπ Þ

×
θ1ðȳ4−ȳ22πi j 2iϵπ Þθ1ðȳ3−ȳ12πi j 2iϵπ Þ

θ1ðȳ4−ȳ32πi j 2iϵπ Þθ1ðȳ4−ȳ12πi j 2iϵπ Þθ1ðȳ3−ȳ22πi j 2iϵπ Þθ1ðȳ2−ȳ12πi j 2iϵπ Þ

×
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2πi j 2iϵπ Þθ1ðy1þȳ4
2πi j 2iϵπ Þθ1ðy2þȳ1

2πi j 2iϵπ Þθ1ðy2þȳ3
2πi j 2iϵπ Þ
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×
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×
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