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Magnetic quivers have been an instrumental technique for advancing our understanding of Higgs
branches of supersymmetric theories with eight supercharges. In this work, we present the “decay and
fission” algorithm for unitary magnetic quivers. It enables the derivation of the complete phase (Hasse)
diagram and is characterized by the following key attributes: First and foremost, the algorithm is inherently
simple, just relying on convex linear algebra. Second, any magnetic quiver can only undergo decay or
fission processes; these reflect the possible Higgs branch RG flows (Higgsings), and the quivers thereby
generated are the magnetic quivers of the new RG fixed points. Third, the geometry of the decay or fission
transition (i.e., the transverse slice) is simply read off. As a consequence, the algorithm does not rely on a
complete list of minimal transitions, but rather outputs the transverse slice geometry automatically. As a
proof of concept, its efficacy is showcased across various scenarios, encompassing superconformal field
theories from dimensions 3 to 6, instanton moduli spaces, and little string theories.
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I. INTRODUCTION

The Higgs mechanism is a well-known concept in
quantum field theories (QFTs) wherein a scalar field
acquires a vacuum expectation value (VEV) that sub-
sequently breaks the gauge symmetry [1–4]. For example,
the electroweak theory has a SUð2Þ × Uð1Þ gauge sym-
metry, and when the scalar field (Higgs boson) acquires a
nonzero VEV, the symmetry is broken to U(1). Such a
Higgsing also constitutes a phase transition in the theory.
Supersymmetric QFTs with eight supercharges in space-
time dimensions 3–6 generically possess a continuous space
of vacua known as the Higgs branch, denoted H. As the
Higgs branch is parametrized by many scalar fields, the
theory can be Higgsed in multiple ways. This rich structure
can then be encoded in a phase diagram [5].
Phase diagrams are important as they show how various

theories are related to each other through means such as
mass deformations, tuning of gauge couplings, Coulomb
branch deformations, etc. In this paper, we derive phase

diagrams that encode how different theories are related via
the (partial) Higgs mechanism or, to be more precise,
Higgsing along the Higgs branch.1 While performing a
partial Higgs mechanism might not pose significant chal-
lenges for theories with known Lagrangian descriptions, the
realm of superconformal field theories (SCFTs) frequently
lacks such descriptions, particularly in space-time dimen-
sions 4–6. Thus, to investigate characteristics of SCFTs,
such as their Higgs branches, new methods had to be
devised. One particularly powerful technique that allows
one to study the Higgs branches of gauge theories and
SCFTs, regardless of their space-time dimension, and even
little string theories is the “magnetic quiver” [6–36].
Consider a theory T in space-time dimension d ¼ 3, 4,

5, 6 with eight supercharges: the magnetic quiver is a 3D
N ¼ 4 (generalized) quiver gauge theory whose Coulomb
branch is, by construction, the same as the Higgs branch of
T . If the Higgs branch is a union of several hyper-Kähler
cones, then there exist several magnetic quivers, one for each
cone [32,37]. Therefore, studying the magnetic quiver is an
indirect path of studying the Higgs branch of T . We pursue
this indirect route due to the array of recently developed
techniques tailored for the study of the Coulomb branch of
3DN ¼ 4 theories, starting with [38–40]. This transforms a
historically challenging subject into a realm of familiarity
and ease.
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1In the literature, this has also been called “Higgs branch
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In [5], an algorithm, which we henceforth refer to as the
“quiver subtraction” algorithm, was introduced. The algo-
rithm provides the stratification of the Higgs branch of T ,
encoding it in a phase diagram called a (Higgs branch)
“Hasse diagram.” This phase diagram encodes much of the
Higgs branch, including the nature of the transverse space
between Higgsed theories. However, starting from T , this
algorithm is unable to determine the set of possible theories
T i to which T can be Higgsed.
While being a powerful approach that has found wide-

spread application [9,10,13,15,17,18,21,26–28,30,34–
36,41–46], the quiver subtraction algorithm is plagued by
a few shortcomings: First, the algorithm requires a list of all
possible elementary slices. This list is mathematically
complete for the class of nilpotent orbits closures [47–49],
but more general symplectic singularities may include other
minimal slices. Such a new isolated symplectic singularity
has recently been described in [50]. Second, it requires the
knowledge of all possible quiver realization of the elemen-
tary slices. For example, the (closure of the) minimal
nilpotent orbit of E6 has, up to now, four known magnetic
quiver realizations: a unitary affine Dynkin quiver, a unitary
twisted affine Dynkin quiver, an orthosymplectic quiver
[10,12], and a folded orthosymplectic quiver [51]. Third,
quiver subtraction is only partially understood in the case of
repeated identical transitions—leading to “decorated quiv-
ers” [52], which are, for example, relevant for moduli spaces
involvingmultiple instantons.At present, it is unclear how to
define the Coulomb branch of the decorated quiver; how-
ever, the quiver subtraction algorithm supplemented by
decorations passed numerous consistency checks.
This paper serves to fill this gap by expanding and

further developing the decay and fission algorithm [53] for
magnetic quivers, whereby the diagram is generated by
recursively Higgsing, i.e., starting from the bottom leaves.
In a nutshell, the main results of this paper are as follows:

(i) The Higgs branch phase diagram is shown to
coincide with the Hasse diagram of simple objects
in convex linear algebra. It does not require any
a priori knowledge of the list of possible elementary
transitions.

(ii) Elementary slices, which correspond to elementary
Higgsing phase transitions, are associated with one
of two fundamental processes that magnetic quivers
can undergo:
(a) Decay, where the magnetic quiver reduces to one

with smaller rank. There are infinitely many
decay types, which correspond geometrically to
infinitely many elementary slices.

(b) Fission, where the magnetic quiver splits into
two parts, while preserving the total rank. There

are only two fission types and, correspondingly,
two possible elementary slices.

Figure 1 displays a cartoon version of these transitions.
(iii) The decay transitions above can be implemented

practically: upon inspection of balanced subquivers
and overbalanced nodes, decay transitions can be
read off.

The decay and fission algorithm not only reproduces
the results of the standard quiver subtraction, but also
allows one to deduce the daughter theories T i and grand-
daughter theories T 0

i, etc. obtained from partial Higgsing.
Of course, the information within the magnetic quiver does
not comprehensively encode all aspects of T . To be more
accurate, the decay and fission algorithm enables one to
deduce the Higgs branches for T i, T 0

i, and so forth.
Understanding these Higgs branches provides extensive
information that almost always enables one to identify the
theories after Higgsing through existing literature. If not,
the absence of literature suggests a potentially new theory,
where the algorithm predicts its Higgs branch structure.
The true strength of this algorithm lies in its inherent

simplicity. In contrast to standard quiver subtraction,
which needs to introduce additional gauge groups with
successive subtractions, the decay and fission algorithm
never requires new nodes and simplifies the magnetic
quivers with each step. This characteristic not only stream-
lines the process, but also facilitates the creation of a
computer algorithm. Furthermore, when addressing com-
plicated quivers, the full phase or Hasse diagram can often
be exceedingly complex, rendering it less practical for
analysis. The decay and fission algorithm, serving as a
partial Higgsing technique, eliminates the need to con-
struct the entire phase diagram for valuable insights. For
instance, one can halt the procedure as soon as one arrives
at theories that with which one is already familiar.

A. Comparison to other methods of Higgsing

For supersymmetric theories with eight supercharges,
there are many different approaches to Higgsing; for
instance, the Higgsing of class S theories via closing of
partial punctures [54]. However, the shortcomings of this
and most other Higgsing algorithms include the following:
(a) the Higgsing may not be minimal;
(b) the exact nature (e.g., a Kleinian singularity) of the

transverse space is not known; and
(c) it does not contain some of the more unconventional

Higgsings (e.g., transitions that cause the magnetic
quiver to fission).

The decay and fission algorithm addresses all these short-
comings and still remains a very simple and straightforward
algorithm that can be applied to any Supersymmetric theory
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with eight supercharges that has a known unitary magnetic
quiver.

B. Organization of the paper

In this paper, we demonstrate that the infinite richness of
the (generalized) Higgs mechanism in theories with eight
supercharges follows from a unique simple construction,
provided the Higgs branch admits a unitary magnetic
quiver realization. The goal of Sec. II is to spell out this
construction and to provide useful tips to implement it in
practice. Thereafter, Sec. III provides a substantial list of
examples from a large landscape of physical theories in
various space-time dimensions. In Sec. IV, we conclude
and discuss open challenges.

C. Notation

This paper focuses on two diagrammatic techniques:
magnetic quivers and Hasse diagrams. Throughout, the
following conventions are used:

(i) Magnetic quivers: The unframed quiver graph is
composed of nodes and edges. Nodes ○ denote
unitary gauge nodes (a 3D N ¼ 4 vector multiplet)
with the rank indicated next to it. Simply laced edges
○—○ denote bifundamental hypermultiplets. Non-
simply-laced edges are understood as in [39].

The balance for a unitary gauge group UðkÞ is
given by b ¼ P

i xini − 2k where ni is the rank of
the adjacent gauge/flavor nodes that are connected to
UðkÞ with a multiplicity xi edge. We also use black
nodes to denote “overbalanced” nodes (b > 0) and
white nodes for “balanced” nodes (b ¼ 0). The
magnetic quivers are always presented as unframed
(i.e., without flavor nodes), meaning that it is
implied that a Uð1Þdiag is always decoupled.

(ii) Hasse diagrams: This graph, again composed of
vertices and edges, encodes the partially ordered set
of symplectic leaves that constitute the finite strati-
fication of a symplectic singularity. The symplectic
leaves Li are the vertices • of the diagram. Between
any pair ðLi;LjÞ of partially ordered leavesLi < Lj,

meaning Li ⊂ L̄j, there exists a transverse slice Si;j.
Pictorially, the slice is indicated as a line between the
two adjacent vertices. Importantly, for conical sym-
plectic singularities, there is a unique lowest leaf L0

that consists of a single point. The slice S0;i ¼ L̄i is
then the closure of the nontrivial leaf Li.

In this work, the Hasse diagram is oriented with
L0 at the bottom. In terms of the physics of RG
flows, the vertex at the bottom denotes the “mother

FIG. 1. Cartoon of decay and fission of quivers: The circle diameters symbolize the ranks. Upon a decay, one or several circles
decrease in size, while a fission leads to the splitting into two.
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theory” and the other vertices are “daughter/grand-
daughter” theories that can be reached from the
mother theory via the Higgs mechanism. We note
that in some physics literature the mother theory is
placed at the top instead, thus leading to an inverted
picture.

II. DECAY AND FISSION

All the results of this paper rely on one simple idea,
which was presented in essence in the letter [53] and in
much more detail, with important additions, in this section.
To help readers get familiar with this idea, we provide an
intuitive description in Sec. II A. Combined with the
practical realization in Sec. II C, most of the examples in
Sec. III can then be worked out. Section II B gives a precise
(but maybe somewhat indigested) formulation of the fission
and decay algorithm. It can be skipped at first reading, but it
is necessary to grasp fully certain peculiarities discussed in
Sec. III. Finally, an implementation in Mathematica is
provided in [55].

A. Intuitive statement

1. An example with decay only

Consider a good unitary quiver Q, seen as a magnetic
quiver for the Higgs branch of a given theory. For instance,

ð2:1Þ

We say the quiver is good if each node has non-negative
balance.
We then compile the list of all good quivers with the

same shape2 and with ranks on each node smaller or equal
to those in Q—such quivers are said to be smaller or equal
toQ, and this defines a partial order≤. In the example (2.1),
we find exactly eight such quivers, namely,

FIG. 2. Hasse diagram obtained from decays of the quiver (2.1) (left) and example of the subsequent computation of the geometry of
an elementary transverse slice (right).

2As explained in Sec. II B, one needs to remove from this list
the quivers that correspond to moduli spaces of instantons.
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ð2:2Þ

Note that, if we add up any two nonzero quivers in this
list, we end up with a quiver that is not smaller or equal to
Q. This means that the quiver cannot fission (the next
example contains fissions). Therefore, it can only decay,
and the decay products are precisely the eight quivers
above. The partial order between them can be summarized
using a Hasse diagram, obtained by comparing in
all possible ways the eight quivers in (2.2), which gives

25 pairs out of the ð8
2
Þ ¼ 28 possible pairs of distinct

quivers, and deleting a pair Q1 < Q2 if there exists Q3

such thatQ1 < Q3 < Q2. The diagram is shown on the left
of Fig. 2.
We claim this is the Coulomb branch diagram for Q

in (2.1). The nature of the transverse slices can be read out
from the difference of the two quivers at the ends of each
edge. More precisely, align the two quivers, subtract the
smaller one from the larger one, and rebalance3; then the
Coulomb branch of the rebalanced quiver is the transverse
slice. This is illustrated on the right of Fig. 2.
We insist on the fact that the Hasse diagram is obtained

first, and the elementary transitions are computed in a
second step. This is the main difference with the quiver
subtraction algorithm, which is an iterative process in
which elementary transitions are an input. Repeating a
computation similar to the right of Fig. 2 for all elementary
transitions, one obtains the final diagram of Fig. 3.

2. An example with fission

It can also happen that the sum of two or more nonzero
good quivers that are ≤ Q is also ≤ Q. When this is the
case, the quiver (or one of its decay products) can fission
successively into smaller parts, and each part keeps
decaying and fissioning, following the same rules. For
instance, consider the quiver

ð2:3Þ

There are exactly five good lower quivers,

ð2:4Þ

FIG. 3. Diagrams of decays from Fig. 2 with the geometry of
elementary transverse slices.

3Again, the precise way of rebalancing is given in Sec. II B. In
general, it can involve a non-simply-laced edge.
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and, among them, there is a pair of quivers whose sum
gives the original quiver. This means the latter can fission,

ð2:5Þ

The Coulomb branch Hasse diagram of (2.3) is therefore
given in the left part of Fig. 4. The nature of the transverse
slice corresponding to fission is obtained by comparing the
greatest common divisors (gcd’s) of the ranks of the fission
products [for each of the eight quivers in (2.2), this gcd is
equal to 1]. When they are equal, the transverse slice has an
A1 geometry (this is the case here). When they are different,
the geometry is the non-normal slice m [49,56]. In
the present case, the red transition in Fig. 4 corresponds
to A1, while all other transitions are computed using the
rebalancing as in Fig. 2. We finally get the result shown in
the right part of Fig. 4.
Note that prominent examples for fission arise from

k-instanton moduli spaces with k > 1 [39], S-fold theories
[17], magnetic quivers of rank-2 4D SCFTs [21], 6D
N ¼ ð1; 0Þ (higher-rank) E-string theories [7], etc. Even
a simple class S theory such as T6 possesses this feature.
Section III contains a selection of illustrative examples.

B. Formal statement

The previous subsection gave an overview of the
algorithm. We now provide all the technical details,
beginning with introducing the appropriate formalism.
Let Q be a unitary quiver. It is convenient to encode a

quiver using a matrix, which encodes the underlying

graph, and a rank vector, which specifies the ranks of
the unitary groups at each node. This leads us to the
following definitions.

1. Definitions

Let n be a positive integer. We define a partial order on
Zn as follows. We say that K ∈Zn is non-negative, written
K ≥ 0, if all its entries are non-negative, i.e., if K ∈Nn.
Then, given two elements K1; K2 ∈Zn, we say that
K1 ≤ K2 if K2 − K1 ≥ 0.
A quiver Q with n nodes is a pair ðA;KÞ, where A is an

n × n matrix with coefficients in Z and K ∈Nn is the rank
vector, such that

(i) A has diagonal coefficients Ai;i ¼ −2þ 2g where
g∈N.

(ii) The off-diagonal coefficients Ai;j of A are non-
negative integers with either Ai;j ¼ Aj;i ¼ 0 or
Ai;jAj;i ≠ 0, and in this last case, either Ai;jjAj;i

or Aj;ijAi;j.
(iii) The “balance vector” B ≔ AK has non-negative

entries Bi ≥ 0.
When Ai;j ¼ Aj;i, we draw Ai;j links between nodes i and j.

When 0 < Ai;jjAj;i, we draw Ai;j arrows, each of them Aj;i

Ai;j

laced, from node j to node i. The balance b of the ith node
is the ith entry of the balance vector, b ¼ Bi. In some
drawings, when no confusion is possible, only the nodes
with Ki > 0 are represented, with the value Ki indicated
next to the node.
We say that a quiver is “reducible” if it contains a

U(1) node on the long side such that, when this node
is deleted, the quiver breaks into several connected

FIG. 4. Hasse diagram obtained from decays and fissions of the quiver (2.3) (left) and the same diagram after the geometry of the
transverse slices has been computed (right). The red line denotes the only fission transition, all other transitions are decays.
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components. We assume the quiver under consideration is
“not reducible.”4

2. Leaves

Given a quiver, defined by ðA;KÞ, let K0 ∈Zn such that
0 ≤ K0 ≤ K and AK0 ≥ 0. We define the property

P1ðK0Þ ¼ ½ðK0ÞtAðK0Þ ≥ 0 and ðK0ÞtðK0Þ ¼ 1�: ð2:6Þ

This property P1 simply detects the subquivers of the form
U(1) with one or more adjoints. We also define the
property P2ðK0Þ as follows. First, define for 1 ≤ i ≤ n
the vector δðiÞ∈Nn by δðiÞj ¼ δi;j. Then P2ðK0Þ is true if
there exists a “long node” index 1 ≤ i ≤ n such that K0

i >
0 and, defining K00 ¼ K0 − δðiÞ, for all j, ðAK00Þj ×
ðK00Þj ¼ 0 (no sum on j) and gcdðK00Þ ¼ ðK00ÞtAδðiÞ.
This detects the subquivers that correspond to instanton
moduli spaces.5

Consider now the finite set

V ¼ fK0jK0 ∈Nn; K0 ≤ K;AK0 ≥ 0; not P1ðK0Þ;
not P2ðK0Þg; ð2:7Þ

and the set

V0 ¼ fK0 ∈VjK0 ≠ 0g: ð2:8Þ

The elements of V are the possible decay and fission
products. We now just have to assemble them in all possible
ways. We define L0 ¼ f∅g and, for m∈N>0,

Lm ¼ fffK0
1;…; K0

mggj ∀ 1 ≤ j ≤ m;K0
j ∈V0

and K0
1 þ � � � þ K0

m ≤ Kg: ð2:9Þ

Elements of Lm are the multisets6 ofm vectors of V0 whose
sum is ≤ K (repetitions are allowed).7 Finally, we write

L ¼ ∪
m∈N

Lm: ð2:10Þ

This is the set of vertices of the Hasse diagram, which
correspond to the symplectic leaves of the 3D Coulomb
branch of the initial quiver ðA;KÞ. Note that Lm ¼ ∅ for
m ≫ 1, so the above union is finite. For an element l∈L,
there is a unique m∈N such that l∈Lm; we call it the
“length” of l, denoted lengthðlÞ. We also denote by
Σl∈Nn the sum of the elements of l.

3. Partial order

We now have to define a partial order on L. Let
l1;l2 ∈L. We write l1 ⇝ l2 if

jlengthðl1Þ − lengthðl2Þj ≤ 1

and jl1 ∩ l2j ¼ lengthðl1Þ − 1

and Σl1 ≥ Σl2: ð2:11Þ

The relation ⇝ is reflexive and antisymmetric, but not
transitive in general. Let us denote by ≽ its transitive
closure, i.e., l1≽l2 if there exists a chain l1 ⇝ … ⇝ l2.
This is a partial order relation. We claim that ðL;≽Þ
coincides with the partially ordered set (poset) of sym-
plectic leaves in the 3D Coulomb branch of the quiver. This
concludes our construction of the Hasse diagram.

4. Elementary transitions

The last ingredient we need is the geometry of the
transverse slice between two adjacent leaves in the partial
order, which is a minimal degeneration. Let l1≽l2 be two
adjacent leaves, i.e., such that l1 ≠ l2 and there is no leaf
l3 ≠ l1;l2 satisfying l1≽l3≽l2. Since they are adjacent,
they satisfy (2.11). There are three possibilities, depending
on the value of lengthðl1Þ − lengthðl2Þ:

(i) If lengthðl1Þ − lengthðl2Þ ¼ þ1, then l2 ⊂ l1. The
transition corresponds to the Coulomb branch of the
unique element in l1nl2; let μ be its multiplicity in
the multiset l1. This is a “terminal decay”: one
quiver disappears entirely. The geometry of the
transition is simply given by a union of μ copies
of the Coulomb branch of the vanishing quiver.

4When a quiver is reducible, the corresponding theory is a
product, and all its features factorize. Therefore, we focus on
irreducible quivers, and it is always implied that whenever a
reducible quiver is reached in the algorithm, it should be reduced
and each irreducible part should be studied separately.

5We can unpack condition P2ðK0Þ as follows. The idea is that a
quiver corresponds to moduli space of instantons if there is a U(1)
node that is connected to a subquiver by one simply laced edge,
and that subquiver is by itself fully balanced after deletion of the
U(1) node.

6A multiset can be seen as a set where elements can have
multiplicities, i.e., appear more than one time or, equivalently, as
a list up to permutation. We denote multisets with the symbols
ff� � �gg. For instance, ff5; 5; 2gg ¼ ff5; 2; 5gg ≠ ff5; 2gg. The
multiplicity of 5 in ff5; 5; 2gg is 2, and the multiplicity of 2 is 1.

7For our example (2.3), V consists of the five vectors listed
in (2.4), V0 ≃ L1 consists of the four vectors on the right of
(2.4), and L2 has only one element, namely, the pair that
corresponds to (2.5). All Lm>2 are empty.
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(ii) If lengthðl1Þ − lengthðl2Þ ¼ 0, there is a unique
K1 ∈l1nl2 and a unique K2 ∈l2nl1. Let μ be the
multiplicity ofK1 in the multiset l1. The transition is
a nonterminal decay from K1 to K2. Let Q be the
quiver obtained from K1 − K2 by rebalancing using
one additional U(1) node with an adjoint for each
connected component Kα

2 of K2: the rebalancing is
done using gcdðKα

2Þ-laced edges, pointing toward
the new U(1) node. Then the geometry of the
transition is the union of μ copies of the Coulomb
branch of Q.8

(iii) If lengthðl1Þ − lengthðl2Þ ¼ −1, there is a unique
K1 ∈l1nl2 and exactly two vectorsK2; K0

2 ∈l2nl1.
This corresponds to fission. Let μ be the multiplicity
of K1 in the multiset l1. If the quiver contains zero
or one loop, the geometry of the transition is μ · A1

if gcdðK2Þ ¼ gcdðK0
2Þ and μ ·m if gcdðK2Þ ≠

gcdðK0
2Þ. For two loops or higher, a generalization

is needed and is left for future work.9

5. Derivation

We do not have a formal proof that the algorithm
presented here is correct. Rather, we have used a physical,
almost experimental approach, and this should be kept in
mind. We have combined insights from various perspec-
tives in order to infer general rules that we have tested in as
many cases as possible, finding in all cases perfect agree-
ment. Specifically, the algorithm was built from

(i) comparison with the quiver subtraction algorithm
(including decorations, if needed);

(ii) physical intuition coming from 3D mirror symmetry
and brane physics, as reviewed in Sec. III A—for
simple classes of quivers, this constitutes a proof of
the algorithm;

(iii) agreement with the Higgs mechanism when a
weakly coupled description is available, as exem-
plified in Sec. II D (our results are also compatible
with partial results in class S theories, where a subset
of Higgsings can be done via partial closing of
punctures; fissions are precisely the Higgsings of
class S theories that are not given by partially
closing punctures); and

(iv) agreement with results in the mathematical litera-
ture, in particular, for symmetric products and affine
Grassmannian slices.

C. The decay algorithm in practice

We now have described how to compute the Hasse
diagram of the Coulomb branch of any good unitary quiver.
The algorithm is very general and requires no input other

than the initial quiver. However, it can be difficult to
implement without the help of a computer, as the list of
good subquivers to consider to build V [see (2.7)] can be
very large. Geometrically, it boils down to finding integral
points in a convex cone in Rn. In this subsection, we
describe a convenient shortcut that applies to a class of
simple quivers, namely, those for which only decay can
occur, but never fission. This allows one to compute the
diagrams efficiently by hand for these simple quivers.
Consider a quiver with unitary gauge nodes only,

potentially nonsimply laced. Locate all the gauge nodes
that have balance b ¼ 0. These balanced connected sub-
quivers take the form of a union of finite Dynkin dia-
grams.10 Assuming first that the quiver cannot fission into
two good quivers, the decay transitions can, in practice, be
implemented by the following subtractions11:
(1) A-type Kleinian singularity. For an overbalanced

UðkÞ node (b > 0), decay simply turns UðkÞ →
Uðk − 1Þ and the transition is an Abþ1 Kleinian
singularity. This subtraction is only allowed if the
quiver does not have any bad/ugly nodes (b < 0)
after this subtraction.

(2) Closure of minimal g orbit (one instanton). From a
balanced, connected Dynkin-type subquiver, sub-
tract the respective weighted finite Dynkin diagram
of the Lie algebra g, see Table I. The transverse
space of this transition is then the one-g instanton
moduli space, provided there is no enhancement.

(3) hn;k and h̄n;k singularities. Suppose there exists a
linear chain of n − 1 balanced nodes on the short
side of a k-laced edge that is connected to a node on
the long side with balance b.
(a) For b ¼ k − 2, subtract the n node quiver ð1Þ −

ð1Þ − � � � − ð1Þ⇐k ð1Þ with a k-laced edge, such
that the transverse slice is the hn;k singularity, see
Table II.

(b) For b ¼ k − 1, subtract the n node quiver ð1Þ −
ð1Þ − � � � − ð1Þ⇐k ð1Þ with a k-laced edge such
that the transverse slice is the h̄n;k singularity, see
Table II.

Note that not all the transverse slices obtained from decay
that appear in this paper are of the types in (1)–(3).
However, the algorithm is still sensitive to these other
slices. If one performs the algorithm (1)–(3) and ends up
with an ugly quiver, which contains a decoupled free
hypermultiplet(s), the free hypermultiplet(s) enhance the
transverse slice, for instance, into one of the more exotic
slices in Table III.

8Several examples of such nontrivial rebalancings are shown in
Sec. III D 3.

9A reasonable guess, based on the first line of Table III, is that
μ · A1 should be extended to μ ·Dgþ1 for a genus g ≥ 2 quiver.

10One can prove, by arguments similar to [57], that balanced
(sub)quivers with unitary gauge groups need to take the shape of
a finite Dynkin diagram.

11In some talks given by Z. Z., this was previously called the
“inverted quiver subtraction” algorithm.
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The rules above provide a full list of decay products. One
can then work out the possible fissions from there, by
combining these decay products in all possible ways
compatible with the original quiver.

D. A complete example

Now it is time to showcase the algorithm in an example
that contains fission and decay, allows for a partial
Higgsing interpretation, and can be compared to standard
quiver subtraction (with all its subtleties).
As an example, consider the (electric) SU(5) gauge

theory12 with Nf ¼ 4 hypermultiplets in the fundamental
representation and NΛ2 ¼ 2 hypermultiplets in the trace-
less second rank antisymmetric representation. Its mag-
netic quiver is given by13

ð2:12Þ

As a first step, the decay and fission algorithm is applied
to (2.12), which outputs the Hasse diagram in Fig. 5(a),
which was displayed in the introductory cartoon of Fig. 1.
The next step is to run the standard quiver subtraction
algorithm on (2.12), which then results in the Hasse
diagram in Fig. 5(b). As claimed above, the two Hasse
diagrams agree, i.e., the same number of leaves and the
same minimal transverse slices in between them.
Moreover, the drastic difference in magnetic quivers
obtained by the two algorithms becomes apparent.
Fission and decay keeps the shape and reduces ranks at
each step. In contrast, quiver subtraction forces us to
include additional nodes due to rebalancing, requires
decoration (here in green), or requires non-simply-
laced edges.
The advantage of this example is that one can analyze

branching rules for the SU(5) gauge theory and directly
follow the partial Higgs mechanism. Let us focus on the
two transitions that the SU(5) theory can undergo. There
exists a partial Higgs mechanism

0
B@

SUð5Þ
Nf ¼ 4

NΛ2 ¼ 2

1
CA ⟶

0
B@

SUð4Þ
Nf ¼ 4

NΛ2 ¼ 2

1
CA; ð2:13Þ

which is straightforward in terms of branching rules
SUð5Þ → SUð4Þ,

½1; 0; 0; 0� → ½1; 0; 0� þ ½0; 0; 0� ð2:14aÞ

TABLE I. Dynkin diagrams of classical and exceptional Lie algebras. The numbers at the nodes are the dual
Coxeter labels.

Classical algebras Exceptional algebras

An E6

Bn

E7

Cn

E8

Dn

F4

G2

TABLE II. For both cases, the non-simply-laced quiver con-
tains nU(1) nodes, from which the first n − 1 are balanced and on
the short side of the k-laced edge. The long U(1) node has balance
b ¼ k − 2 and k − 1 for hn;k and h̄n;k, respectively.

hn;k and h̄n;k

12For concreteness, consider this as a 3D N ¼ 4 theory.
13In spirit, this example is a truncated version of the magnetic

quiver for the little string theory with an effective description
given by an suð5Þ gauge algebra supported on a curve of self-
intersection 0, see [35]. In this example, the number of flavors is
reduced to 4, which is well defined as 3D N ¼ 4 theory.
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½0; 1; 0; 0� → ½0; 1; 0� þ ½1; 0; 0� ð2:14bÞ

½1; 0; 0; 1� → ½1; 0; 1� þ ½1; 0; 0� þ ½0; 0; 1� þ ½0; 0; 0�;
ð2:14cÞ

where irreducible representations (IRs) are labeled by their
Dynkin labels. This Higgsing is a decay in terms of the
magnetic quiver (2.12) and is shown as the a3 transition
of (2.12) in Fig. 5(a). The “decay product” is, in fact, the
magnetic quiver for the SU(4) gauge theory.
Additionally, there exists a partial Higgs mechanism of

the form

0
BB@

SUð5Þ
Nf ¼ 4

NΛ2 ¼ 2

1
CCA ⟶

�
SUð3Þ
Nf ¼ 6

�
⊗

�
SUð2Þ
Nf ¼ 4

�
; ð2:15Þ

which can be verified by inspecting branching rules
SUð5Þ → SUð3Þ × SUð2Þ,

½1; 0; 0; 0� → ½1� ⊗ ½0; 0� þ ½0� ⊗ ½1; 0� ð2:16aÞ

½0; 1; 0; 0� → ½0� ⊗ ½0; 0� þ ½0� ⊗ ½0; 1� þ ½1� ⊗ ½1; 0�
ð2:16bÞ

½1; 0; 0; 1� → ½0� ⊗ ½0; 0� þ ½2� ⊗ ½0; 0� þ ½0� ⊗ ½1; 1�
þ ½1� ⊗ ½1; 0� þ ½1� ⊗ ½0; 1�: ð2:16cÞ

TABLE III. Complete list of good unitary quivers with three nodes or less whose Coulomb branch is an ICSS. The first column gives
the raw results from the systematic search; the quivers are unframed and depend on a number of parameters, some of which may be
redundant from the geometric perspective. The second column gives the framed version, which is not redundant. The geometry is given
in the fourth column, and the way it is identified in the fifth. Dynkin diagram, DD. The second row from the bottom corresponds to a new
singularity, discussed in the text.

Unframed Framed Condition Geometry Comments

U(2) with g adjoints � � � g ≥ 2 Dgþ1 [58]

n ≥ 2;l ≥ 1 An−1 SQED quiver

� � � l ≥ 4 YðlÞ [29,50,59]

l1;l2 ≥ 1 h̄2;l2 [60]

l1 ≥ 2;l2 ≥ 1 h2;l1 [60]

l ≥ 1 g2 Affine DD

� � � � � � d3 Twisted affine DD

� � � � � � J 2;3 [29]

� � � � � � J 3;3 [29]

� � � � � � a4 Twisted affine DD

� � � � � � ? See text

� � � � � � d4 Twisted affine DD
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(a
)

(b
)

(c
)

FIG. 5. Contrasting (a) decay and fission, (b) quiver subtraction, and (c) partial Higgs mechanism in the case of an SU(5) theory and its
magnetic quiver. Here, 2d4 ¼ d4 ∪ d4 denotes a union, and in (b) green denotes “decoration.”
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The reason why the SU(5) theory splits into a direct product
is that the IRs ½1� ⊗ ½1; 0� þ ½1� ⊗ ½0; 1�, charged under
both gauge group factors, precisely cancel between the
decomposition of the adjoint and the second antisymmetric
(and its complex conjugate). From the magnetic quiver
perspective, this Higgsing is the A1 fission of (2.12) in
Fig. 5(a). The two “fission fragments” are indeed the
magnetic quivers for the SU(3) and SU(2) gauge theory,
respectively.
Continuing this branching analysis yields the Higgs

branch Hasse diagram in Fig. 5(c). Comparing to Fig. 5(a)
demonstrates that all quivers obtained via the decay and
fission algorithm are the magnetic quivers for the (electric)
theories obtained from the partial Higgs mechanism. In
the next section, a host of examples is detailed. For most
of them, one does not have a weakly coupled description
such that Higgs branch RG flows are substantially more
involved than a vanilla partial Higgs mechanism. The
decay and fission algorithm then offers a unique approach
to analyze the possible Higgs branch RG flows in a
systematic way.

E. Classification of isolated singularities

The algorithm presented in Sec. II C can be used to
identify quivers whose Coulomb branch is an isolated
conical symplectic singularity (ICSS). In practice, this
amounts to classifying pairs ðA;KÞ such that the set of
leaves (2.10) contains exactly two elements (the trivial leaf,
i.e., the singularity, and the nontrivial leaf). This is a well-
defined mathematical question, which can presumably be
addressed abstractly, thereby providing a full classification.
We postpone this for future work, but we present here a first
step in that direction, by using a brute force approach that is
applicable to quivers with a small number of nodes.
Specifically, we focus on quivers with n ¼ 1, 2, 3 nodes.

The case n ¼ 1 is essentially trivial: the matrix A reduces
to an even integer A ≥ −2. If A ¼ −2, no good quiver can
be constructed. If A ≥ 0, every quiver with K ≥ 2 gives a
nontrivial singularity, and whenever K ≥ 3, the quiver can
fission or decay. Therefore, the n ¼ 1 case corresponds to
the family of quivers ðA;KÞ ¼ ð2g; 2Þ, or in other words,
U(2) with g − 1 adjoint hypermultiplets.
Let us move on to n ¼ 2. We can restrict to the case

where there are no loops, i.e., A1;1 ¼ A2;2 ¼ −2. By
symmetry, we can parametrize the quivers as

ðA;KÞ ¼
��−2 a

ab −2

�
; ðk1; k2Þ

�
ð2:17Þ

with k1; k2; a; b∈Z>0. The conditions P1 and P2 are never
satisfied by (2.17), so the set V is defined as the set of pairs
ðk01; k02Þ∈N2 such that k01 ≤ k1, k02 ≤ k2 and

−2k01 þ ak02 ≥ 0; abk01 − 2k02 ≥ 0: ð2:18Þ

For there to be a solution, it is necessary that a2b ≥ 4. This
leads to two types of solutions, as illustrated in Fig. 6:

(i) a ≥ 2 and b ≥ 1. In this case, ðk01; k02Þ ¼ ð1; 1Þ
satisfies (2.18) and is minimal, which gives the
quiver

ð2:19Þ

This corresponds to the Aa−1 singularity.
(ii) a ¼ 1 and b ≥ 4. Now ðk01; k02Þ ¼ ð1; 2Þ satisfies

(2.18) and is minimal, which gives the quiver

FIG. 6. Left: shape of the allowed ðk01; k02Þ region in a situation where a ≥ 2 and b ≥ 1 (here a ¼ 3 and b ¼ 2).
Right: shape of the allowed ðk01; k02Þ region in a situation where a ¼ 1 and b ≥ 4 (here b ¼ 6). In both cases, the unique minimal
nonzero quiver is the red dot.
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ð2:20Þ

This corresponds to the YðbÞ singularities.
Finally, we can similarly analyze the n ¼ 3 case, using

similar—but much longer—arguments. All in all, we
finally obtain the list shown in Table III. It is interesting

to note that almost all the quivers that emerge from this
study have been studied in the literature, although very
recently for some of them, see the comment column in
Table III. However, we find one outlier (the shaded row in
the table) for which we believe the geometry has not been
studied. It has isometry spð2Þ and the Coulomb branch
Hilbert series (HS) reads

HSðtÞ ¼ 1þ 4t2 þ 31t4 − 7t6 þ 22t8 − 102t10 þ 22t12 − 7t14 þ 31t16 þ 4t18 þ t20

ð−1þ t2Þ8ð1þ t2Þ2ð−1þ t4Þ2
¼ 1þ 10t2 þ 80t4 þ 359t6 þ 1295t8 þ 3751t10 þ 9560t12 þ 21675t14 þ 45313t16 þOðt18Þ: ð2:21Þ

The highest weight generating function reads [in conventions where α1 is the short simple root and α2 is the long simple root
of spð2Þ]

PE½μ21t2 þ ð1þ μ22 þ μ32Þt4 þ μ32t
6 − μ62t

12� ¼ 1þ μ21t
2 þ ðμ41 þ μ32 þ μ22 þ 1Þt4

þ ðμ61 þ μ32μ
2
1 þ μ22μ

2
1 þ μ21 þ μ32Þt6 þOðt7Þ: ð2:22Þ

where PE is Plethystic Exponential.

Two natural questions then arise from this study: First,
can this new quiver be obtained from a brane construction
or geometric engineering in string theory? And second, can
one generalize this search to arbitrary number of nodes? We
leave these fundamental challenges for future work and turn
now to applications of our algorithm to various physical
situations.

III. DECAY AND FISSION IN ACTION: SELECTED
EXAMPLES

We now apply the decay and fission algorithm on
selected examples in space-time dimensions d ¼ 3, 4, 5,
6. This case study illuminates and demonstrates the arising
Higgsing pattern between different theories.

A. 3D N = 4 theories

1. Intuition via mirror symmetry

In this subsection, we consider a class of 3D N ¼ 4
theories for which one can directly use 3Dmirror symmetry
in order to prove the validity of the decay algorithm (no
fission occurs here). In this specific framework, there is a
duality between decay and the quiver subtraction of [5]:
one corresponds to moving on the Higgs branch, while the
other corresponds to moving on the Coulomb branch.
Higgs and Coulomb branch Higgsing. Consider a

Lagrangian gauge theory, with some scalars transforming
in a representation R of the gauge groupG. The scalars may
acquire nontrivial VEVs, which breaks the gauge group to a
subgroup H. Depending on the type of the residual gauge

group, the phases in a given vacuum carry different names.
For example, for R the fundamental representation H is a
subgroup of G with reduced rank—these are called Higgs
vacua, in analogy to the Standard Model. On the other
hand, for R the adjoint representation H is a subgroup of G
with the same rank (adjoint Higgsing)—these are called
Coulomb vacua, because H, in general, contains U(1)
factors.
A large class of 3D N ¼ 4 theories have two maximal

branches of the moduli spaces of supersymmetric vacua:
the Higgs and Coulomb branches, which are parametrized
by VEVs of scalar fields in hypermultiplet and vector
multiplets, respectively. Consequently, there are two types
of Higgs mechanisms: one triggered by a VEV for a
hypermultiplet scalar and the other triggered by a VEV for
a vector multiplet scalar—in short, a Higgs or Coulomb
branch Higgs mechanism, respectively.
To gain intuition, consider the linear quiver gauge

theories Tσ
ρ½SUðNÞ�. Higgs branch (HB) Higgsing can be

effectively realized on the quiver theory by the following:
(HB1) Mesons of a single gauge: subtracting the super-

symmetric QED (SQED) with N flavors quiver
ð1Þ − ½N� from the gauge node. Here, the single
gauge node UðkÞ → Uðk − 1Þ is partially broken.

(HB2) Gauge invariant spanning several gauge nodes:
subtracting the linear quiver ½1� − ð1Þ − � � � −
ð1Þ − ½1� between two flavor nodes. Here, a
whole sequence of gauge group factors UðkiÞ →
Uðki − 1Þ is partially broken.

To illustrate, consider the partial Higgs mechanisms along
the Higgs branch in Fig. 7(a). Note, in particular, that the
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FIG. 7. (a) Partial Higgs mechanism of a theory T ¼ Tσ
ρ½SUð10Þ� with ρ ¼ ð4; 22; 12Þ, σ ¼ ð3; 23; 1Þ and (b) its mirror

T ∨ ¼ Tρ
σ ½SUð15Þ�. The red colored flavor nodes indicated non-Abelian global symmetries that trigger minimal Higgs branch

transitions. On the mirror, this translates to the set of balanced nodes indicated by green. At each step, mirror symmetry is manifest via
exchanging ρ ↔ σ.
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balance of the gauge nodes is preserved during Higgs
branch Higgsing, which is evident from the D3-D5-NS5–
brane configurations [61]. In terms of quiver subtraction,
this is known as the rebalancing condition after the
subtraction and leads, in general, to a change of flavor
nodes. On a related note, there exists an algorithm in the
mathematics literature [62–64] that produces these quivers
for the Higgs branch Higgsing. Related to decay via 3D
mirror dual, this algorithm also shares a remarkable feature
in that it defines a quiver via the adjacency matrix A and a
rank vector K, and subsequently generates quivers for each
leaf of the Higgs branch.
On the mirror side (or in terms of magnetic quivers),

these Higgs branch transitions are partial Higgs mecha-
nisms along the Coulomb branch. Since the flavor nodes
have been the indicator for the Higgs branch transitions
(because Higgs branch gauge invariant operators need to
start and end at flavor nodes), the topological symmetry
(i.e., the balance of the gauge nodes) is the smoking gun for
Coulomb branch Higgs transitions. Again, this is particu-
larly transparent in the brane realization. On the level of the
quiver theory, Coulomb branch (CB) Higgsing has equally
straightforward implementation [65]:
(CB1) For a connected set of balanced gauge nodes,

Coulomb branch Higgsing breaks all nodes par-
tially: UðkiÞ → Uðki − 1Þ, but the flavor nodes are
not affected. This can be realized by subtracting
the finite weighted A-type Dynkin quiver
ð1Þ − ð1Þ − � � � − ð1Þ.

(CB2) For an overbalanced node, not connected to any
balanced nodes, Coulomb branch Higgsing only
breaks this gauge group factor via UðkÞ →
Uðk − 1Þ. On the quiver, one simply subtracts
a (1) node.

This is exemplified in Fig. 7(b). In contrast to Higgs branch
transitions, the partial Higgs mechanisms CB1 and CB2 do
not preserve the balance of the gauge nodes.
The point to appreciate is the following: given a theory T

that admits a Higgs branch transition HB1 or HB2 to T 1,
then, assuming that the mirror theory of T is T ∨, the mirror
of T 1 is simply obtained from T ∨ by either CB1 or CB2.
It is a simple exercise to generalize the rule CB1 for

Coulomb branch Higgsing to other unitary quiver theories,
such as BCD-type Dynkin quivers, see [65]. Using, for
instance, O5 or ON planes, one deduces that also weighted
finite Dynkin diagrams of type BCD can be subtracted. As
a result, CB1 and CB2 motivate the practical implementa-
tion (1 and 2), which in turn can be interpreted in terms of
decays.
Magnetic quivers and decay transitions. As an example,

consider the theory T ¼ Tσ
ρ½SUð10Þ� with ρ ¼ ð4; 22; 12Þ,

σ ¼ ð3; 23; 1Þ. The Higgsings on the Higgs and Coulomb
branches are shown in Fig. 7. The quiver subtraction
algorithm generates magnetic quivers QLi for the closure

of each leaf L̄i in the stratification of the Higgs branch of
T . However, none of theseQLi are the magnetic quiver for
any of the theories T can be Higgsed to, i.e., the quivers in
Fig. 7(a). In contrast, directly utilizing the decay algorithm
[Fig. 8(a)] generates a different set of quivers QLi

. These
are the magnetic quivers for the different theories T i that
can be obtained from T via partial Higgsing along
the Higgs branch [Fig. 7(a)]. The special feature in 3D
N ¼ 4 is

QLi
¼ ðT iÞ∨; ð3:1Þ

meaning that the magnetic quivers QLi
obtained from the

decay and fission algorithm are, in fact, the mirror theories
of the T i themselves. This is evident from our example in
Figs. 7(b) and 8(a).
Framed vs unframed quivers. A magnetic quiver is

typically represented as an unframed quiver (without flavor
nodes). In cases where all the gauge groups are unitary
(which is always the case in this paper), this implies that
there is an overall U(1) that decouples from the theory.
Choosing to decouple this U(1) from a U(1) gauge group
creates flavor nodes, thereby framing the quiver. In
instances like the Tσ

ρ½SUðNÞ� family, applying the decay
and fission algorithm to either the unframed (Fig. 8) or
framed version (Fig. 7) of the magnetic quivers yields the
same result. However, this is not generally the case, and
only by considering unframed magnetic quivers can we
capture all the Higgsings without missing any.14

2. Mixed U/SU quivers

Figures 7(b) and 8(a) illustrate the application of the
decay and fission algorithm on a pair of quivers belonging
to the Tσ

ρ½SUðNÞ� family. This family, a broad spectrum of
quiver theories, was initially introduced in [66] and is
characterized by the mirror pairs being linear quivers with
unitary gauge groups. The Tσ

ρ½SUðNÞ� family was further
generalized in [67] to accommodate linear quivers with an
assortment of both unitary and special unitary gauge groups.
This expansion significantly broadened the repertoire of
recognized 3D mirror pairs. Regarding these U/SU quivers,
which we represent as Tσ

ρ½SUðNÞ�U=SU, the 3D mirrors
continue to consist solely of unitary gauge groups.
However, it should be noted that the mirrors no longer
conform to the linear quiver structure. The Tσ

ρ½SUðNÞ�U=SU

represents a Lagrangian theory where Higgsings can be
conducted utilizing group theoretic analysis, as outlined
in [5]. However, due to the incorporation of special unitary

14It is possible to only work with framed quivers, one just
needs to consider all the different choices of U(1) decoupling
when performing the subtraction.
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(b
)

FIG. 8. Comparison of (a) the decay algorithm and (b) quiver subtraction. White nodes are balanced, black nodes are overbalanced.
Note that, for 3D N ¼ 4 gauge theories, Coulomb branch Higgsing on a framed quiver Q is identical to the decay (and fission)
algorithm on the unframed version of Q. In other words, compare Figs. 7(b) and 8(a).
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gauge groups, this procedure becomes significantly more
complex, as evidenced by the intricate Hasse diagrams
detailed in [67]. Despite these complexities, the 3D mirror
of the Tσ

ρ½SUðNÞ�U=SU consists entirely of unitary quivers,
thus allowing us to once again implement the decay and
fission algorithm. The quivers, after decays, can be mapped
back to members of the Tσ

ρ½SUðNÞ�U=SU theories, using the
algorithms provided in [67], giving us the Higgsing tree.
A proof of concept is given in Fig. 9.

3. Fission

To illustrate all aspects of decay and fission, and to
motivate the introduction of the condition P2 in (2.7),
consider the following quiver:

ð3:2Þ

for which the decay and fission algorithm produces the
Hasse diagram shown in Fig. 10(a). For comparison, the
Hasse diagram obtained via quiver subtraction is compiled
in Fig. 10(b). A visual inspection confirms two facts: First,
the transverse slice geometries associated with minimal
transitions are identical in both algorithms. Second, the
magnetic quivers obtain in both algorithms are substantially
different. Let us now comment on the phenomena in more
detail.
In the decay algorithm, the general idea is to list all

quivers of the same shape, but with smaller rank vector.
However, in certain specific cases, such a quiver can still
contain free hypermultiplets. The most well-known exam-
ple is a U(1) attached to an n-stacked affine Dynkin
diagram of algebra g, such as (3.2). The resulting moduli
space is the n − g instanton moduli space, plus a free
hypermultiplet. However, rather than decaying to a theory
with a decoupled free hypermultiplet, we expect the free
hypermultiplet to enhance (or possibly fibrate) the trans-
verse slice in between instead. This is the essence of
condition P2 in (2.7).
Returning to (3.2) and recalling the practical implemen-

tation (1–3), the two decays are the a2 coming from the left
two balanced nodes and the a2 from the right two balanced
nodes. However, the naive a2 decay in the left nodes would
lead to the quiver of the three-SU(3) instantons on C2. This
contains a free H factor and is excluded in the decay
algorithm, as discussed above. Thus, the complete algo-
rithm step is simply

ð3:3Þ

and the transverse slice is obtained as described in Sec. II B.
One finds

ð3:4Þ

which yields a g2 slice due to the non-simply-laced
rebalancing with gcd ¼ 3.

B. 4D N = 2 theories

The landscape of 4D N ¼ 2 theories accommodates a
host of non-Lagrangian theories; see [68–74] and sub-
sequent works. For those, the partial Higgs mechanisms (or
Higgs branch RG flows) are far from obvious and we
demonstrate that the decay and fission algorithm is a
powerful technique to trace out the entire Higgs branch
Hasse diagram.

1. Class S theories

A large class of 4DN ¼ 2 SCFTs is generated using the
class S framework. In this case, the decay and fission
algorithm reproduces the Higgsing from one theory to the
next by partially closing punctures. Let us consider as a
simple example the T4 theory. It can be constructed as a
class S theory labeled by a punctured Riemann surface
[66] with three maximal punctures. Its magnetic quiver
reads [75]

ð3:5Þ
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FIG. 9. Example for a mixed U/SU quiver. (a) Displays the partial Higgsing pattern of the (electric) U/SU quiver with Uð2Þ × SUð2Þ
gauge group. (b) Derives the Higgsing pattern from the decay and fission algorithm starting from the magnetic quiver. (c) Provides a
comparison with quiver subtraction.
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and applying the decay and fission algorithm results in the
Hasse diagram shown in Fig. 11(a). For comparison, the
quiver subtraction result is shown in Fig. 11(b).
As advertised in the Introduction, the algorithm

indeed generalizes the closing of punctures in the class
S language; to see this, it is useful to translate Fig. 11
into a Higgsing pattern of 4D SCFTs, shown in Fig. 12.

The a3 decay transition partially closes a regular puncture
ð14Þ → ð2; 12Þ and realizes the Higgsing of T4 → R0;4.
Similarly, the subsequent a1 decay is the further closure
of the puncture ð2; 12Þ → ð22Þ and realizes the R0;4 →
MNE7 Higgsing. However, the Higgsing R0;4 → MNE6

involves changing the rank of class S theory from A3 to A2

which is more involved than just partially closing a

(a) (b)

FIG. 10. Hasse diagram of the magnetic quiver (3.2). (a) Via decay and fission algorithm. (b) Via quiver subtraction, wherein green
indicates decoration. Note that fission reproduces all the transverse slices that are unions, e.g., 3a2 ¼ a2 ∪ a2 ∪ a2.
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puncture.15 Furthermore, fission is not covered by closing
partial punctures; this is particularly evident when the
quiver contains stacks of affine Dynkin subquivers. We
conclude that, even for class S theories, the closing of a
partial puncture does not realize all possible Higgsings.

2. Argyres-Douglas theories

One can also consider Argyres-Douglas (AD) theories
[70], which are constructed in class S making use of
irregular punctures [76]. The magnetic quivers of these

FIG. 12. Higgsing pattern relating 4D N ¼ 2 theories starting
from T4. E6, E7 denote the Minahan-Nemeschansky (MN)
theories. Note that, in contrast to Fig. 11, the equivalent
transitions are not displayed, due to symmetry.

(a)

(b)

FIG. 11. The (a) decay algorithms and (b) quiver subtraction for the T4 magnetic quiver generate two sets of quivers. The Coulomb
branches of these quivers are equivalent to the transverse spaces between the symplectic leaves (dots) indicated by the brackets in the
Hasse diagram.

15This Higgsing can be done as follows. First, partially closing
one of the punctures leads to a magnetic quiver where one of the
gauge nodes has balance −1. This means the quiver contains
some free hypermultiplets that need to be removed. One then
needs to do a set of Seiberg dualities to ensure all the nodes have
positive balance. The resulting quiver is the magnetic quiver of
the Higgsed theory, which can then be mapped back to the
MNE6. In general, this step of performing Seiberg dualities on all
the nodes makes the Higgsing procedure much more inefficient
and can often lead to a nonminimal Higgsing.
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theories are known [77–79] and the irregular puncture contributes a complete graph to the magnetic quiver. We see below
that the Higgsing pattern associated with irregular punctures is encapsulated in fission transitions.
Let us, for example, consider the ðA2; A5Þ½16� AD theory and its magnetic quiver, which was studied in [78] and denoted

as D9SUð6Þ½16� therein. Here, the label ðA2; A5Þ denotes the nature of the irregular puncture, whereas ½16� is the partition
that defines the regular puncture. The AD theory in class S notation and its magnetic quiver are

ð3:6Þ

FIG. 13. Higgsings of the D9SUð6Þ½16� AD theory. For readability, equivalent transitions are not depicted and fissions are highlighted
in red. The f1g here refers to the Higgs branch of AD theory being trivial as it is possible that the SCFT is not completely Higgsable.
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16Naturally, there are three equivalent A7 or A9 decays and we only wrote down one of them to prevent cluttering the diagram.

The pattern of partial Higgsing of the D9SUð6Þ½16� theory
obtained from the decay and fission algorithm is summa-
rized in Fig. 13.
To begin with, let us analyze the decays. The Higgsings

for ðA2; A5Þ½ρ�, with ρ a partition of 6, can be understood
as closing the regular puncture, which changes the
partitions and, in turn, shortens the tail of the magnetic
quiver. However, the transitions like the A7 or A9 decay are
achieved by removing one of the overbalanced U(1)
gauge nodes in the complete graph.16 This decay can
be interpreted as Higgsing the irregular puncture which
changes its nature from ðA2; A5Þ to ðA1; A3Þ. The resulting
AD theories are ðA1; A3Þ½14� and ðA1; A3Þ½22�, respectively.
Thus, we see from the decay point of view that the
Higgsing of the irregular puncture is naturally captured
as well.
Crucially, the irregular puncture also triggers fissions,

due to the presence of highly overbalanced nodes in the
complete graph. These transitions are depicted in red
in Fig. 13.
For AD theories with more than one regular puncture,

e.g., [77], the same Higgsing process can be done as long as
the magnetic quiver is made of only unitary gauge groups.
For some 4D SCFTs, it is well known that they may not be
completely Higgsable. Therefore, in such cases, the top of
the Higgsing diagram where we denote the theory with f1g
really refers to an SCFT with a trivial Higgs branch rather
than a trivial theory.

3. SCFTs with non-simply-laced magnetic quivers

As shown, for example, in the exhaustive lists of [11,21],
magnetic quivers for 4D N ¼ 2 SCFTs are often non-
simply laced, and the decay and fission algorithm applies in

this case as well. For instance, consider the following
quiver:

ð3:7Þ

which is the magnetic quiver [11] of a rank-2 4D N ¼ 2

SCFT introduced in [80], labeled as Q2
A3
, as it is part of the

Qn
A3

family of SCFTs, or labeled suð5Þ16 in [21,42]. Using
the decay and fission algorithm, the arising Higgsing
pattern between 4D N ¼ 2 SCFTs can be summarized
as in Fig. 14.
Applying the decay and fission algorithm to the rank 3

SCFTQ3
A3
in the same family, one obtains Fig. 15(a), which

translates into a Higgsing pattern between 4D SCFTs as
shown in Fig. 15(b).

4. An S-fold theory: Multiple affine Dynkin diagrams

Consider the theory T̊ r¼3
A2;2 introduced in [17]. This theory

is an orbifold of S-fold theories with the following
magnetic quiver:

ð3:8Þ

One observes a stack of three a2 affine Dynkin diagrams.
This signals the possibility of fission. The full diagram can
be obtained by running the algorithm; we do not present it
here, but focus on the bottom part, which shows four
possible Higgsing transitions as follows:

ð3:9Þ

This analysis shows that the magnetic quiver (3.8) admits two decay and two fission transitions; hence, the S-fold theory
T̊ r¼3

A2;2 should admit four distinct Higgs branch RG flows,
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ð3:10Þ

(a) (b)

FIG. 14. (a) Magnetic quivers from the decay algorithm. (b) Higgsing pattern of the Q2
A3

SCFT. Here, Q1
A3

labels an

N ¼ 2 SCFT with Higgs branch global symmetry A3 [11] and Dð1Þ
4 is a 4D SCFT with Higgs branch being the one-SO(8) instanton

moduli space.

(a) (b)

FIG. 15. (a) Decay and fission algorithm on the magnetic quiver ofQ3
A3
. (b) The Higgsings between 4D SCFTs. HereQ2

g2A1
is a rank-2

SCFT introduced in [81]; its Higgs branch global symmetry is g2 × suð2Þ. The transition Qg2A1
→ Dð1Þ

4 ⊗ Dð1Þ
4 was conjectured in [17]

to be k3. However, we conjecture that k3 is not an elementary transition, but rather composed of two consecutive A1 transitions. The

fissionDð2Þ
4 → Dð1Þ

4 ⊗ Dð1Þ
4 is analogous to the example in Sec. II A; whereDð2Þ

4 is the rank-2 SCFTwith Higgs branch being the two-SO
(8) instanton moduli space. The second magnetic quiver from the bottom in 15(a) has not yet been matched with a 4D theory. This is
likely because the theory is a rank-3 4D theory, which is not yet classified. The candidate 4D theory has suð4Þ × suð2Þ global symmetry
and is labeled as Q0;3.
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which completes the preliminary results of Fig. 12 in [17].
The S̊r

G;l theories are another type of S-fold theories, and
IrG denotes the r G instanton theories. Working out the
entire Hasse diagram produces 21 symplectic leaves in
total. This is straightforward, and they are not detailed here.

C. 5D N = 1 theories

In this section, we consider partial Higgsing of 5D SCFTs
which can be deformed to supersymmetric QCD theories
with SUðNcÞjkj with Nf fundamental flavors, NΛ2

antisymmetrics, and Chern-Simons levels k. The magnetic
quivers of these theories have been studied in [6,15,18].

1. Union of two cones

A common feature of 5D N ¼ 1 SCFTs is that their
Higgs branch can be the union of several hyper-Kähler
cones. For example, consider SUð6Þ2 with Nf ¼ 8 funda-
mental flavors and Chern-Simons (CS) level 2. The SCFT
Higgs branch is composed of two cones, each associated
with a magnetic quiver (Table 7 in [6])

ð3:11Þ

The set of balanced nodes indicates two possible Higgsings: an a7 and a1 transition. Since the two cones intersect
nontrivially, one should also inspect the magnetic quiver for the intersection between the two cones,

ð3:12Þ

From the intersection quiver, one observes that the a7 and a1 transitions are indeed common to both quivers. This means that
the a7 and a1 ≅ A1 transition are part of the intersection of the two cones.
Performing the a7 Higgsing via the decay algorithm results in

ð3:13Þ

and the 5DN ¼ 1 SCFTwhose Higgs branch is given by this set of magnetic quivers is SUð5Þ2 with Nf ¼ 6 fundamental
hypermultiplets, see Table 7 in [6].
Alternatively, the a1 transition leads to

ð3:14Þ
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which corresponds to the conformal fixed point of 5D
N ¼ 1 SUð5Þ5

2
with Nf ¼ 7 fundamental flavors, as

follows from comparing the magnetic quivers (Table 2
in [6]). Repeating the decay and fission algorithm reveals
the partial Higgsing pattern between 5D SCFTs as depicted
in Fig. 16.

In addition to the transitions that are at the intersection of
both cones, there exists, in general, a transition g that is
allowed in one of the magnetic quivers, but not in the other.
This is observed in the upper part of Fig. 16 both at
SUð3Þ5

2
; Nf ¼ 3 and at SUð3Þ2; Nf ¼ 2. For instance, with

SUð3Þ5
2
; Nf ¼ 3, the magnetic quivers are the following:

ð3:15Þ

Here, the A2 transition is only applicable to the left
magnetic quiver. Naively, after performing this Higgsing,
one of the cones gets Higgsed into a smaller cone, while the
other remains the same. We argue against such process.
One argument is that the remaining magnetic quiver on the
right is not a known magnetic quiver of 5D SCFT, which is
fully classified for lower-rank theories.17 Therefore, what
we expect happens is that, once such an asymmetric
Higgsing occurs, the cone not involved in the Higgsing
disappears entirely. In other words, the hypermultiplets that
generate the other cone become free fields.

2. Higgsing between 5D SCFTs

The Higgsings of 5DN ¼ 1 SCFTs is a fairly nontrivial
process since the UV theories do not admit a Lagrangian
description. Furthermore, massless instantons contribute to
the Higgs branch as well, so apart from Higgsings where
VEVs are given to hypermultiplets, there are also
Higgsings where VEVs are given to the massless instan-
tons. In Fig. 17, we predict via decay and fission a single
Higgsing tree where many families of 5D SCFTs, whose
magnetic quivers are detailed in [6,15,18], are shown to be
Higgsed into each other.

D. 6D N = ð1;0Þ theories
The existence of 6D supersymmetric theories (e.g.,

superconformal and little string theories) have revolution-
ized the understanding of quantum field theories. Again,
such theories are inherently strongly coupled and the
systematic analysis of the Higgs branch RG flows is

FIG. 16. Higgsing between 5D SCFTs starting from 5DN ¼ 1
SUð6Þ2 with eight fundamental hypermultiplets. Furthermore,
there could be discrete “fat points” in the moduli space as in [82]
that are not sensitive in the magnetic quiver and hence the
procedure here.

17An even more concrete example is to take the E3 theory of
SU(2) with two flavors in 5D. This theory’s Higgs branch is a
union of two cones that intersect trivially. One of the cones is
C2=Z2, whereas the other is the one-suð3Þ instanton moduli
space. If doing the A1 transition, thus Higgsing away one cone,
does not affect the other cone, this means that the remaining 5D
SCFT is a rank-1 or rank-0 theory with one-suð3Þ instanton
moduli space as its Higgs branch. Such a theory does not exist in
the literature and we do not expect it to. This is also observed in
the 5-brane web, Higgsing in one direction implies that two
maximal decompositions no longer exist. Hence, there are no
more two cones.
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FIG. 17. Pattern of minimal Higgs transitions between 5D N ¼ 1 SCFTs as predicted by the decay and fission algorithm. The 5D
gauge theory descriptions are single SUðNÞ gauge groups, Nf fundamental hypermultiplets (the square box), NΛ2 ¼ 1 antisymmetric
hypermultiplets (the loops), and a CS level. The algorithm utilizes magnetic quivers found in [6,18]. The black transitions are non-
Abelian, whereas the pink, green, and red transitions are all Kleinian-Ak ¼ C2=Zkþ1 type. The reason for using green, red, and pink
colored transitions is to improve readability. Despite the drawing, the Higgsing pattern is more apparent when more members of each
family are drawn.
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challenging, but of utmost importance. Some earlier works
include [26,28,30,83–88].

1. SU(6) with Nf = 14 fundamentals
and one antisymmetric

We consider an example of 6D N ¼ ð1; 0Þ SCFTs,

½Spð1Þ� 1
suð6Þ

½SUð14Þ�; ð3:16Þ

with a deformation to SU(6) gauge theory with Nf ¼ 14

fundamentals and one antisymmetric. For this theory, there
is a known superconformal fixed point at the origin of the
tensor branch and the magnetic quiver is given by [7,89]

ð3:17Þ

Applying the decay and fission algorithm leads to the
Higgsing pattern between 6D N ¼ ð1; 0Þ SCFTs depicted
in Fig. 18. This diagram neatly ties together two features:
First, the partial Higgsing pattern of the two families 6D
SCFTs defined on a single −1 curve (Fig. 5 in [90]), which
have known magnetic quivers. Second, the geometric data
reproduce the conjectured Hasse diagram of Fig. 18 in [5].

2. Orbi-instanton and higher-rank E-string theory

Consider the 6D N ¼ ð1; 0Þ theories originating from
M5-branes on an A-type asymptotically locally Euclidean
(ALE) space near an M9 plane. Specifically, consider 4
M5-branes, the C2=Z3 ALE space, and choose the trivial

(a) (b)

FIG. 18. The Higgsing pattern between 6D SCFTs starting from SU(6) with 14 fundamental hypermultiplets and one antisymmetric

hypermultiplet. (a) The SCFTs are labeled by their 6D generalized quiver description n
g

½Gf �
, with gauge algebra g and flavor symmetry Gf.

For example, the theory 1
½E8�

, i.e., the E-string theory, gives rise to the one-E8 instanton moduli space in the tensionless limit. (b) The

Higgsing pattern derived via the decay algorithm (no fission occurs here).
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embedding Z3 ↪ E8,

½SUð3Þ� 2
suð3Þ

½Nf¼1�
− 2

suð2Þ
− 2

suð1Þ
− 1

½E8�

≅ 2
suð3Þ

½SUð4Þ�
− 2

suð2Þ
− 2

suð1Þ
− 1

½E8�
; ð3:18Þ

wherein the last description keeps the flavor symmetries
manifest. The magnetic quiver is readily available [7,89]
and serves as starting point for the decay and fission
algorithm. The result is the Higgsing pattern of Fig. 19,
which can be translated to the Higgs mechanism of the 6D
theory shown in Fig. 20.
A few comments are in order. First, the 6D theory

2
suð1Þ

− 2
suð2Þ

½SUð3Þ�
− 2

suð1Þ
− 1

½E8�
ð3:19Þ

admits an RG flow to the rank-4 E-string theory

2 − 2 − 2 − 1
½E8�

; ð3:20Þ

i.e., four M5-branes near an M9 plane. The transition type
is deduced as follows:

ð3:21Þ

which is, in fact, the twisted affine a2 Dynkin quiver.
Next, in Fig. 20 there are two 6D theories with a G2

global symmetry factor that can flow to the rank-2 E-string
theory. To begin with, consider

2
suð2Þ

½G2�
− 2

suð1Þ
− 1

½E8�
ð3:22Þ

and the g2 Higgs branch flow is deduced via

ð3:23Þ

which produced the affine G2 Dynkin diagram due to
gcd ¼ 3 of the decay product. The other 6D theory is

2
suð1Þ

− 2
suð2Þ

½G2�
− 1

½E7�
ð3:24Þ

and the transverse geometry of the RG flow is seen via

ð3:25Þ

which again results in the affine G2 Dynkin quiver.
Via similar arguments, one deduces that the transition

geometries for the RG flows

2
suð1Þ

½SOð7Þ�
− 1

spð1Þ

½SOð16Þ�
⟶
b9

2 − 1
½E8�

ð3:26Þ

2
suð2Þ

½SOð7Þ�
− 1

½E7�
⟶
b3

2 − 1
½E8�

ð3:27Þ

ending in the rank-2 E-string theory.
In addition to the decays there are also fissions. A natural

fission occurs for the orbi-instanton theory of N M5-branes
on C2=Zk with trivial homomorphism ½1k�∶Zk ↪ E8

(assuming N − 1 ≥ k),

2
suðkÞ

½SUðkÞ�
− 2

suðkÞ
− � � � − 2

suðkÞ
− 2

suðkÞ

½Nf¼1�
− 2

suðk−1Þ
− � � � − 2

suð2Þ
− 2

suð1Þ
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{N−1 curves of self-intersection−2

− 1
½E8�

⟶ 2
suðkÞ

½SUðkÞ�
− � � � − 2

suðkÞ
− 2

suðkÞ

½Nf¼1�
− 2

suðk−1Þ
− � � � − 2

suð2Þ
− 2

suð1Þ
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{N−2 curves of self-intersection−2

− 1
½E8�

⊔ 1
½E8�

ð3:28Þ

into the orbi-instanton theory with N − 1 M5-branes and a single E-string theory, provided N − 2 ≥ k. In the limiting case
N − 1 ¼ k, no fission occurs, as removing an M5 renders it impossible to realize the trivial boundary conditions ½1k� in a
supersymmetry preserving way. That is the reason why the initial theory (3.18) cannot fission, while its daughter theory
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FIG. 19. Decay and fission algorithm applied to the magnetic quiver of the orbi-instanton theory (3.18). The right-hand column
focuses on the decays that encode the change of homomorphisms Zk ↪ E8 for the M9 wall. The left-hand parts detail the physics of E8

instantons.
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FIG. 20. Higgs branch RG flows between between the descendants of the orbi-instanton theory (3.18). The right-hand column shows
flows that change of homomorphisms Zk ↪ E8. The left-hand parts detail the physics of E8 instantons: four M5-branes in an M9 wall.
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2
suð2Þ

½SUð2Þ�
− 2

suð2Þ

½Nf¼1�
− 2

suð1Þ
− 1

½E8�
⟶ 2

suð2Þ

½G2�
− 2

suð1Þ
− 1

½E8�
⊔ 1
½E8�

ð3:29Þ

can. Analogous arguments hold for fissions of orbi-instanton theories with different homomorphisms Zk ↪ E8, as
exemplified in Fig. 20.
From the magnetic quiver perspective, the starting point for the fission (3.28) is

ð3:30Þ

which shows that for N − 1 > k both the UðkÞ and UðNÞ
nodes are overbalanced. Therefore, the removal of an M5,
given by N → N − 1, leads to another good magnetic
quiver for the orbi-instanton fission product. For
N − 1 ¼ k, however, the UðkÞ nodes are balanced, which
implies that the hypothetical fission step N → N − 1 yields
a bad magnetic quiver.
Finally, the fission of stacks of affineE8 Dynkin diagrams

has a natural 6Dmanifestation: a stack of k affineE8 Dynkin
diagrams describes the rank-k E-string theory.18 The split-
ting k → lþ ðk − lÞ is then the fission of the rank-k
E-string into the rank-l E-string theory and the rank-ðk −
lÞ E-string theory, which is indicated by the ⊔. This is a
known Higgs branch RG flow [83,91]; in M-theory lan-
guage: the stack of kM5-branes is separated into a stack ofl
M5s and a stack of ðk − lÞ M5-branes along a direction
parallel to theM9 plane. As a consequence, the subset of RG
flows belonging to the E-string theories display the physics
of k M5-branes within an M9—giving rise to SymnðC2Þ.

Specifically, the splitting of the rank-4 E-string into product
theory of rank-ni E-string theories with fnig an integer
partition of 4 gives rise to the Hasse diagram of Sym4ðC2Þ,
see Eq. (B.21) in [52] and Fig. 2 in [29] for a corrected
version. The complete Hasse diagram of the RG flows of the
higher-rank E-string theories is then a special case of an
instanton moduli space [52], as recently reviewed in [34]. It
is, however, crucial to remark that the decay and fission
algorithm captures all these subtleties (e.g., transitions that
are unions, like 2A1 ¼ A1 ∪ A1) without prior input and
solely from the initial quiver.

3. Higgs branches of little string theories

The decay and fission algorithm can also be applied to
magnetic quivers of little string theories (LSTs), which
have recently been proposed [33–35]. Here, a proof of
concept is provided by focusing on simple examples [33]:
the ðe0Þ LST of type A with G ¼ SUð2Þ and two choices
ð½ρL�; ½ρR�Þ of Z2 → E8 embeddings.
A first example. The simplest case preserves ðE7×

SUð2ÞÞ × ðSUð2Þ × E7Þ, i.e., embedding ([2], [2]) [92],

FIG. 21. Exemplary Hasse diagram for the LST (3.31), the decay algorithm.

18The Higgs branch of the rank-k E-string theory is the moduli
space of k E8 instantons [91].
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ð3:31Þ

and already provides an intricate pattern of Higgs branch RG flows predicted by the decay and fission algorithm. The
starting point is the magnetic quiver [33]

ð3:32Þ

for which the decay process traces out the Hasse diagram shown in Fig. 21.
Here, a new phenomenon appears: the magnetic quiver after the d4 transitions is reducible, see Sec. II B. Therefore,

deriving the geometry of the slice requires a rebalancing node for each irreducible component. In detail,

ð3:33Þ

so that the transition is identified as d4. The reducibility can
be understood from the physical system: one starts from
(3.31) and ends with a curve configuration that does not
support any gauge algebras. The M-theory picture is that of
two M9 walls on a finite interval with one M5-brane inside
each E8 wall. Each of them yields an affine E8 Dynkin
quiver for its magnetic degrees of freedom (i.e., Higgs
branch moduli).

The magnetic quivers in Fig. 21 can be identified with
descendants of the little string theory (3.31) and the predicted
Higgs branch RG-flow pattern is summarized in Fig. 22.
Note that the initial LST curve configuration 1 − 2 − 1

can reach the LST defined on a curve 0 of vanishing self-
intersection by collapsing each of the initial −1 curves. The
Higgs branch RG flows of these 0 curve models have been
analyzed in [35].

FIG. 22. Higgsing pattern of LST (3.31).

BOURGET, SPERLING, and ZHONG PHYS. REV. D 109, 126013 (2024)

126013-32



A second example. A more elaborate example is given by the choice of ð½12�; ½12�Þ embeddings [92]

ð3:34Þ

which preserves the full E8 × E8 symmetry. Starting again from the magnetic quiver [33]

ð3:35Þ

one can apply the decay and fission algorithm to trace out the Hasse diagram, shown in Fig. 23.
This already contains some more new features that deserve to be commented on. First, the bottom a3 transition again

leads to a reducible quiver

ð3:36Þ

and the geometry of the slice is deduced again by a
rebalancing node for each reducible component. In addi-
tion, each reducible component has gcd ¼ 2, such that non-
simply-laced edges are required. As a result, the slice is
read off to be a3. Physically, this transition takes the curve
configuration (3.34) with nontrivial gauge algebras to the
same curve configuration, but with trivial gauge algebras.
The reason why this yields two reducible magnetic quivers

is understood from the M-theory picture: twoM9 walls on a
finite interval with two M5-branes inside each M9. This
setting also illuminates the subsequent diamond of A1

fissions: each stack of two M5s can fission independently.
The M5 that is moved off along the, here right-hand side,
M9 leads to the LST 1 − 1½E8�.
Similarly, the b3 transition in Fig. 23 is the result of a

reducible quiver after a decay transition,

ð3:37Þ

such that the slice is read off by introducing two rebalancing nodes. Here, the two irreducible quivers have gcd ¼ 2 and 1,
respectively. The geometry is identified as b3. Again, the transition starts from the curve configuration 1 − 2 − 2 − 1 with
nontrivial gauge algebras and ends up with trivial gauge algebras. Thus, the reducible magnetic quiver is clear from the
M-theory picture: one M9 wall hosts two M5-branes, while the other holds only one. As a result, there exists a subsequent
A1 fission of the stack of two M5s.
Likewise, the b9 transition in Fig. 23 stems from a nontrivial gcd of the decay product,

ð3:38Þ
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FIG. 23. Exemplary Hasse diagram for the LST (3.34). In addition to decays, there are fissions present. These originate from the fact
that the system has M-theory description of two M9 walls at the ends of the interval S1=Z2 with two M5-branes on each wall. Then, the
stacks of M5 can undergo fission. Note also that the Hasse diagram of Fig. 21 is clearly contained as a subdiagram.
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such that the magnetic quiver for the slice has a non-simply-
laced edge. As with the other two examples, the starting
point is a 1 − 2 − 1 curve configuration with gauge algebras
that become trivial during the decay. The decay product
originates from the M-theory setting of two M9 walls on a
finite interval and one wall contains a stack of two
M5-branes. Again, this opens up the possibility of a
subsequent fission into 1 − 1½E8�⊔1 − 1½E8�, i.e., two LSTs.

IV. DISCUSSION, CONCLUSIONS,
AND OPEN QUESTIONS

Magnetic quivers have proven to be immensely useful
for both providing insights in Higgs branches of strongly
coupled supersymmetric theories and revealing geometric
features. Particularly important are algorithms of quiver
operations. In this work, we introduced the decay and
fission algorithm, which at its core only relies on linear
algebra. Beyond the simplicity, this algorithm allows us to
determine precisely the phase diagram of the theory with
the Higgs branch of the Higgsed theories identified along
with the transverse slices that underline the geometric
structure of the vacuum. The former allowed us to find
the Higgsing diagram of SCFTs and gauge theories with
eight supercharges in dimensions 3–6 of which a plethora
of examples are shown in the text.

A. Comparison with standard quiver subtraction

We now see how the decay and fission algorithm
distinguishes from another similar but fundamentally dif-
ferent quiver operation: quiver subtraction [5]. It is
insightful to compare the two methods and analyze the
different quivers that arise. It is insightful to compare the

two methods and analyze the different quivers that arise,
see Fig. 24. In several examples, both techniques have been
applied and presented: e.g., Figs. 5 and 8–11. An imme-
diate observation is that the decay and fission algorithm
keeps the shape of the quiver similar after subtraction,
whereas quiver subtraction drastically changes the shape
due to rebalancing gauge nodes. Here, the aim is to discuss
the geometric meaning behind the two different sets of
magnetic quivers.
Upon Higgsing a theory T to a theory T 0, the Higgs

branch geometry changes: a coarse signature of this change
is the fact that dimHðT 0Þ < dimHðT Þ. A finer relation is
the fact thatHðT Þ is a conical symplectic singularity with a
(finite) stratification into symplectic leaves, and HðT 0Þ
appears as a transverse slice in HðT Þ to a certain leaf.
Because of these restrictions, it is often possible to turn the
logic around and to identify, for each transverse slice in
HðT Þ, which theory T 0 possesses this slice as its Higgs
branch. Therefore, understanding the geometry of trans-
verse slices in HðT Þ is often sufficient to identify the
possible Higgsings of a given theory T .
The decay and fission algorithm introduced in this work

achieves precisely this goal, in cases where HðT Þ admits a
“unitary magnetic quiver,” i.e., when there is a quiver Q
with unitary gauge nodes such that C3DN¼4ðQÞ ¼ HðT Þ.
Specifically, the decay and fission algorithm produces

(i) the poset of symplectic leaves and elementary
degenerations between adjacent leaves; and

(ii) for each leaf L in HðT Þ a magnetic quiver QLðT Þ
for the transverse slice to this leaf.

It is then often possible to identify, using techniques
developed elsewhere, theories T L with Higgs branch
admitting magnetic quivers QLðT Þ. Combined with output

FIG. 24. Higgs branch Hasse diagram of a theory T with eight supercharges in d ¼ 3, 4, 5, 6. A theory with this Higgsing pattern is,
for example, the 6DN ¼ ð1; 0Þ SU(4) theory with Nf ¼ 12 and NΛ2 ¼ 1, see Figs. 6–9 in [5]. Both decay and fission, as well as quiver
subtraction, produce magnetic quivers that capture certain transverse slices. Denote X ¼ HðT Þ ¼ CðQÞ the entire symplectic
singularity. Also, label the leaves Li with the theories T i at the end of the Higgs branch RG flow: i.e., Li ≡ LðT → T iÞ. Then the slice
SðLi; XÞ ¼ HðT iÞ is the Higgs branch of the Higgsed theory T i and equals the Coulomb branch CðQLi

Þ of the quiver QLi
. These are

results obtained from the decay and fission algorithm, introduced in this work. In contrast, the slices SðL0;LiÞ ¼ L̄i ¼ CðQLiÞ are
described by the quivers QLi obtained from the standard quiver subtraction.
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(i), this then produces the complete Higgsing graph for T .
Multiple examples have been detailed in Sec. III. Note that
a primitive version of the decay and fission algorithm was
applied to height 2 nilpotent orbits in [40]. There are also
quiver algorithms that achieve this to some level of success
in [26,30,65].
Before this, it is important to mention that (i) can also be

obtained from the previously introduced quiver subtraction
algorithm [5], which produces

(i) the poset of symplectic leaves and elementary
degenerations between adjacent leaves; and

(ii′) for each leaf L in HðT Þ a magnetic quiver QLðT Þ
for the closure of this leaf.

Here the poset is obtained inductively beginning from the
higher-dimensional leaves.
We note that both algorithms output the poset (i):

this should be seen as an internal consistency check of the
validity of thewhole procedure. But themagnetic quivers are
definitely not the same and reflect distinct physical phenom-
ena, see Figs. 5 and 8–11. In terms ofHiggsing T , thismeans
that the quiver subtraction algorithm can at best provide the
Higgs branch dimension ofT 0which is unlikely to be enough
information to determine the theory T 0. On the other hand,
the decay and fission tells everything about the Higgs branch
ofT 0, a substantial amount of information that allows an easy
identification of T 0.
Finally, the two algorithms are conceptually different:

while quiver subtraction is an iterative process relying in an
input list of minimal degenerations, in contrast, decay and
fission is “holistic” in nature. More concretely, the latter
takes the magnetic quiver and outputs the entire Hasse
diagram solely from the shape the quiver data ðA;KÞ, see
Sec. II C. The appearing minimal degenerations are then
by-products of the first step. For instance, more compli-
cated quivers such as non-simply-laced quivers with
lengths greater than 2 or with gauged groups having more
than one adjoint hypermultiplet, the list of minimal
degenerations is likely incomplete. This makes it challeng-
ing for the quiver subtraction algorithm, but the decay and
fission algorithm, which only relies on the balance of the
gauge groups and their relative position in the quiver,
generates the phase diagram without difficulty.
The standard quiver subtraction algorithm [5] had under-

gone several improvements [17,29,52] to handle quivers
with more unique features (such as gauge nodes with
adjoint hypermultiplets, non-simply-laced edges, and
stacks of affine Dynkin quivers). The decay and fission
algorithm now incorporates all these features as well.
However, in the future, it is possible that both algorithms
will require further refinements as we explore the quiver
landscape further; see below for open questions.

B. Further applications and future directions

The decay and fission algorithm has other interesting
applications beyond just Higgsing theories.

1. Identifying any transverse slice

The standard quiver subtraction introduced in [5] and the
decay and fission algorithm, introduced in this paper, can
be combined to generate 3D N ¼ 4 quivers whose
Coulomb branch describes any transverse slices between
two symplectic leaves in a Hasse diagram. This is clear
since combining (ii) in decay and fission and (ii0) in quiver
subtraction allows one to obtain magnetic quivers QL0

L for
the transverse slice to L into L0 for any L < L0.
However, before enthusiastically using this method to

find quivers whose Coulomb branch corresponds to more
exotic slices such as the one-dimensional non-normal slice
denoted as m, it is important to note that the procedure may
not apply to quivers with decorations. These appear during
standard subtraction on quivers containing multiple affine
Dynkin diagrams or quivers containing gauge nodes with
adjoint hypermultiplets [52]. We leave such possibilities for
the future when decorated quivers are better understood.
A final remark concerns appearing product theories after

fissions. Recalling the introductory cartoon in Fig. 1 and its
detailed version in Fig. 5, one observes leaves with product
theories, but the Hasse diagram does not contain the
product of the Hasse diagram as subgraph. This is a
manifestation of the known fact (Fig. 3 in [29]) that the
Hasse diagram of a transverse slice does not have to be a
subdiagram of the Hasse diagram of the full theory.

2. Identifying elementary slices

Classifying all elementary slices (to be precise, these are
isolated symplectic singularities [50,93]) has long been an
intriguing goal in the mathematics community. Recently
[29,60], many new quivers that correspond to elementary
slices have been discovered and added to the dictionary. An
interesting application of the decay and fission algorithm is
that it can assist in this search, as explained in Sec. II E. An
obvious extension of the results obtained in that section, in
which we restricted ourselves to quivers with three nodes or
less, is the classification of isolated singularities corre-
sponding to unitary quivers with arbitrarily many nodes.

3. Finding new SCFTs

The classification of SCFTs with eight supercharges in
various dimensions has long been an interesting goal of the
community. The decay and fission algorithm acting as a
Higgsing algorithm can help find missing SCFTs. If, for
example, a complete classification up to rank-r 4D N ¼ 2
SCFT is made, then given a rank-r SCFT T , all the theories
T 0 it can Higgs to as indicated by our algorithm must
appear in the classification as well.

4. Orthosymplectic quivers

The decay and fission algorithm applies to a large, but
still restricted set of (magnetic) quivers. Given the wealth of
known magnetic quivers, the decay and fission algorithm
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needs to be extended to accommodate further quiver
theories, for instance, orthosymplectic quivers. For those
theories, even standard quiver subtraction is still under
development.
Moreover, for all examples considered here, the practical

implementation (1)–(3) is equivalent to the decay algorithm,
provided no fission can appear. It might, however, be that
some new minimal transitions are found. These would not
be covered by (1)–(3), but the decay and fission algorithm is
fully capable to detect them. This is because the decay and
fission algorithm does not rely on a list of known minimal
transition (which is necessarily incomplete).
In the case of orthosymplectic quivers, one thing that

prevents us from constructing the standard quiver subtrac-
tion is that we do not know all orthosymplectic quivers that
correspond to minimal transitions. The number of inequi-
valent orthosymplectic quivers that leads to the same moduli
space seems more diverse than unitary quivers (see, e.g.,
orthosymplectic quivers of one-E6 instanton moduli space
in [10,12,51]). On the other hand, the decay and fission
algorithm, as mentioned above, does not require obtaining a
list of minimal transitions. So finding all possible daughter/
granddaughter orthosymplectic quivers that it can decay to
should be a much simpler task.

5. Higgs branch RG flows

One application of Higgs branch RG flows between
SCFTs already seen in the literature is to prove certain
maximization theorems, for instance, the “a theorem” that a
anomaly decreases under RG flows in 6D SCFTs in [36],
the “c theorem” for c anomaly in [84], and also other
quantities such as the F theorem for 5D N ¼ 1 SCFTs that
the free energy decreases under Higgs branch RG flows
in [94]. With the decay and fission algorithm, we now have
all possible minimal Higgsings for these SCFTs, which can

be easily missed in the literature and can give a more
complete proof of these theorems.
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