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In the framework of the holographic principle, focusing on a central concept, conditional mutual
information, we construct a class of coarse-grained states, which are intuitively connected to a family of
thread configurations. These coarse-grained states characterize the entanglement structure of holographic
systems at a coarse-grained level. Importantly, these coarse-grained states can be used to further reveal
nontrivial requirements for the holographic entanglement structure. Specifically, we employ these coarse-
grained states to probe the entanglement entropies of disconnected regions and the entanglement wedge
cross section dual to the inherent correlation in a bipartite mixed state. The investigations demonstrate the
necessity of perfect tensor state entanglement. Moreover, in a certain sense, our work establishes the
equivalence between the holographic entanglement of purification and the holographic balanced partial
entropy. We also construct a thread configuration with the multiscale entanglement renormalization ansatz
(MERA) structure, reexamining the connection between the MERA structure and kinematic space.
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I. INTRODUCTION

In the framework of holographic duality [1–3], the Ryu-
Takayanagi (RT) formula [4–6] for holographic entangle-
ment entropy suggests a profound connection between
gravity and quantum entanglement. The formula states that
the entanglement entropy SðAÞ of a subsystem A in the
holographic quantum system can be precisely calculated by
the area of a minimal extremal surface γA in the dual higher-
dimensional spacetime,

SA ¼ AreaðγAÞ
4GN

; ð1Þ

where γA is homologous to A and completely separating A
from B.
Following this clue, tensor networks have proven useful

for studying the entanglement structure in holographic
gravity [7–24].1 This tool was initially employed in the
intersection of condensed matter physics and quantum

information theory to characterize a series of states (espe-
cially ground states) of quantum many-body systems.
Essentially, they describe a class of states that can be
represented as a contraction of many small tensors. Each
small tensor is graphically represented as a subdiagram
with legs extending from a vertex, while tensor contractions
are represented by connections between legs of different
subdiagrams. Finally, these subdiagrams are connected into
a network pattern, known as a tensor network. Our research
is interested in characterizing the entanglement structure of
holographic gravity from a complementary perspective—
the “thread” perspective [53–63]. Similarly, the thread
perspective is also geometrically intuitive. The difference
is that, in the tensor network picture, the objects of interest
are tensors represented by local subdiagrams, while in the
thread perspective, the objects of interest are threads with
global features. Broadly speaking, we can define a thread
configuration as a collection of threads, wherein the end
points of the threads are anchored in the boundary quantum
system. This perspective is inspired by the so-called bit
threads [53–56],2 which arise from the rephrasing of the RT
formula for holographic entanglement entropy.
In a series of previous works [59–63], we constructed

a class of thread configurations closely related to many
concepts in the research of holographic duality, such
as bit threads [53–56], kinematic space [41,87], holo-
graphic entropy cone [88–91], and holographic partial
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1For more research on tensor networks in the holographic
context, see, e.g., [25–52].

2For the recent developments of bit threads see, e.g., [57–86].
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entanglement entropy [59,64,92–96]. These connections
are somewhat natural and easily obtained. Especially, the
conditional mutual information (CMI), which characterizes
the density of entanglement entropy in some sense, plays a
central role in all these themes. Discussions about these
connections can be found in a series of papers [59–65].
However, our main point is that these thread configurations
can be endowed with a clear interpretation of a class of
quantum states. From now on, we will systematically refer
to them as coarse-grained states.3 As the name suggests,
coarse-grained states are expected to only characterize the
quantum entanglement of holographic quantum systems at
a coarse-grained level. The true entanglement structure of a
holographic quantum system is expected to be much more
complex. The key point is that the study of these coarse-
grained states will lead us to recognize the necessity of
perfect tensor entanglement in holographic quantum sys-
tems. A preliminary discussion can be found in [63].
In this paper, by using these coarse-grained states to

further characterize some of the geometric duals of quan-
tum information theory quantities, such as the RT surface
corresponding to the entanglement entropy of disconnected
regions and the entanglement wedge cross section (EWCS)
corresponding to the entanglement of purification (EoP)
[97,98], we find that, even at the coarse-grained level,
we encounter unavoidable difficulties. Our core idea is that
the introduction of perfect tensor entanglement [12] nat-
urally resolves these issues. The introduction of perfect
entanglement not only achieves the characterization of the
entanglement entropies of disconnected regions [63], but
also naturally gives rise to the equivalence between two
quantum information theory quantities related to the
entanglement wedge cross section—the entanglement
of purification [97,98] and the balanced partial entropy
(BPE) [99–101]. In other words, it allows the so-called
BPE to reasonably characterize the inherent correlation in a
bipartite mixed state. Moreover, to demonstrate our ideas
more clearly and concretely, we construct a thread configu-
ration with a multiscale entanglement renormalization ansatz
(MERA) structure [7–11] and associate it with a coarse-
grained state characterized by perfect tensor entanglement.
We further explore the connection between the MERA
structure and kinematic space [41,87]. The construction also
has an inspiring role in understanding the relationship
between MERA tensor networks and bit threads [71].
The structure of this paper is as follows: In Sec. II, we

provide a review of refined thread configurations, coarse-
grained states, and the thread-state correspondence. In
Sec. III, motivated by the thread perspective for character-
izing the entanglement entropy of disconnected regions and
the entanglement wedge cross section, we propose the

necessity of introducing perfect tensor entanglement. In
Sec. IV, we construct a thread configuration with the
MERA structure and its corresponding coarse-grained state
to illustrate our proposal. This thread configuration pro-
vides an example of thread-state correspondence and is
closely related to kinematic space. In Secs. V and VI, we
interconnect all intersecting threads in the MERA-structure
thread configuration to introduce the perfect tensor entan-
glement and demonstrate that it can nicely solve the
problems proposed in Sec. III. Section VII concludes the
paper with discussions.

II. BACKGROUND REVIEW

A. Refined thread configurations

A naive illustration of the entanglement structure
revealed by the RT formula is shown in Fig. 1(a).
Consider the entanglement entropy of a subsystem A
and its complement B in a pure state of a CFT dual to a
pure AdS space. We can envision a family of uninterrupted
threads connecting A and its complement B, passing
through the RT surface γA. The number of these threads,
denoted as NAB, is exactly equal to the entanglement
entropy SðAÞ between A and B:

NAB ¼ SA: ð2Þ

These threads are commonly referred to as “bit threads”
[53–56].
We can do better. We can construct a series of increas-

ingly refined thread configurations that can be used to
calculate the entanglement entropies for more than one
region [57–59,61,62]. As shown in Fig. 1(b), we can further
decompose region A into A ¼ A1 ∪ A2 and B into
B ¼ A3 ∪ A4. Thus, we can construct a more refined thread
configuration that can calculate the entanglement entropies
between six connected regions and their complements,
including A1, A2, A3, A4, A ¼ A1 ∪ A2, and A2 ∪ A3.
In other words, the number of threads connecting these
six regions and their complements is exactly equal to the
corresponding entanglement entropy. Similarly, we can
further divide the quantum system M into more adjacent
and nonoverlapping basic regions A1; A2; ...; AN and then
obtain corresponding more refined thread configurations
[see Fig. 1(c)].4 This process can be iterated (as long as
each basic region is still much larger than the Planck length
to ensure the applicability of the RT formula). Here, we
define basic regions such that

3In previous literature, we often referred to them as distilled
states, given their close connection with entanglement distillation
tensor networks [58].

4These thread configurations are referred to as “locking”
thread configurations in the literature [57]. Note that here we
have carefully drawn the threads to appear perpendicular to the
RT surfaces they pass through, in keeping with the conventional
property of bit threads. However, in the sense of coarse-grained
states, only the topology is really important, and we have not yet
seriously considered the exact trajectories of these threads.
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Ai ∩ Aj ¼ ∅; ⋃ Ai ¼ M: ð3Þ

Next, we can define a function Nij ≡ NAi↔Aj
for each

pair of basic regions Ai and Aj, representing the number of
threads connecting Ai and Aj. The papers [59,61,62]
impose the following physical requirement on the thread
configuration: the set of threads fNijg should satisfy

Saðaþ1Þ…b ¼
X
i;j

Nij; where i∈ fa; aþ 1;…; bg;

j ∉ fa; aþ 1;…; bg: ð4Þ

Here, Saðaþ1Þ…b represents the entanglement entropy SA
of a connected composite region A ¼ Aaðaþ1Þ…b ≡
Aa ∪ Aaþ1 ∪ … ∪ Ab. This equation can be intuitively
understood as the entanglement entropy between A and
its complement Ā coming from the sum of Nij between

basic regions Ai within A and basic regions Aj within the
complement Ā. Thread configurations satisfying condi-
tion (4) are commonly referred to as locking thread
configurations, borrowing terminology from network flow
theory. Solving condition (4), the first thing we find is that
the number of threads connecting two basic regions is
precisely given by the so-called conditional mutual infor-
mation. In other words, the conditional mutual information
characterizes the correlation between two regions Ai and Aj

separated by a distance L,

NAi↔Aj
¼ 1

2
IðAi; AjjLÞ

≡ 1

2

�
SðAi ∪ LÞ þ SðAj ∪ LÞ

− SðAi ∪ L ∪ AjÞ − SðLÞ�: ð5Þ

A

B

(a)

1A

2A

3A

4A

(b)

fine-grainedfine-grained

1A 1A1A
2A

3A

2A2A

3A
3A

4A

4A

5A

(c)

FIG. 1. (a) A thread picture characterizing the entanglement entropy between two complementary regions. (b) A more refined thread
configuration characterizing a set of entanglement entropies involving more subregions. (c) By iteratively dividing the quantum system,
more and more refined thread configurations can be constructed, characterizing the entanglement structure at more and more refined
levels, see details in [61]. Here the threads are schematically represented as blue lines, and the RT surfaces are represented as
red dashed lines.
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Here, L ¼ Aðiþ1Þ…ðj−1Þ represents the region between Ai

and Aj, which is a composite region consisting of many
basic regions and also represents the distance between Ai
and Aj.
In fact, this class of refined thread configurations is

closely related to various concepts proposed from different
perspectives in holographic duality research, including
kinematic space [41,87], entropy cone [88–91], and holo-
graphic partial entanglement entropy [59,64,92–96]. These
connections are, in a sense, natural and easy to obtain,
especially where the conditional mutual information plays
a central role. For example, it is defined as the volume
measure in kinematic space [41,87], characterizing the
density of entanglement entropy. Discussions about these
connections can be found in a series of articles [59–65].
The key point is that, in our framework, we will understand
these refined thread configurations as a kind of coarse-
grained state of the holographic quantum system [61–63],
which only characterizes the entanglement structure of the
holographic quantum system at a coarse-grained level. Our
approach is to explore the properties that these entangle-
ment structures should have by studying them at this level.

B. Coarse-grained state

Now, we will refer to these thread configurations as
representing the coarse-grained state of the holographic
quantum system. In [61–63], this is also referred to as
thread-state correspondence. In simple terms, the idea is
that, in such a locking thread configuration, each thread can
be understood as a pair of maximally entangled qudits. One
end of the thread corresponds to one qudit. For example, let
us take d ¼ 2, so one end of the thread corresponds to a
qubit. Thus, a thread corresponds to

jthreadi ¼ 1ffiffiffi
2

p ðj00i þ j11iÞ: ð6Þ

Then the direct product of the states of all threads in the
thread configuration gives a coarse-grained state of the
quantum system,

jΨicoarse ¼
Y

all thread

jthreadi: ð7Þ

Refs. [61–63] argue that, if we take the partial trace of the
coarse-grained state jΨicoarse to obtain reduced density
matrices for various connected regions fAi; AiAiþ1;
AiAiþ1Aiþ2;…g and calculate the corresponding von
Neumann entropies, we exactly obtain a set of correct
holographic entanglement entropies.
In fact, the idea of thread-state correspondence expresses

more than what expression (6) presents. By combining with
the surface/state duality [21,22] or tensor network models,
each thread actually represents not only the entanglement
between the two end points of the thread, but also the

entanglement between all degrees of freedom that the
thread passes through in the holographic bulk. For this,
we can agree on a thread-state rule: each thread is in a
state [61–63]

jthreadi ¼ 1ffiffiffi
2

p ðjredi þ jblueiÞ: ð8Þ

Then, the entanglement between multiple sites (or qudits)
strung together by a single thread follows the rules: each
jredi state actually represents that the qudits the thread
passes through are all in their own j0i state, and each jbluei
state actually represents that the qudits the thread passes
through are in their own j1i state, that is,

jredi ¼ j0102 � � � 0ni;
jbluei ¼ j1112 � � � 1ni: ð9Þ

In fact, we will see explicit examples of this interpretation
in the following sections.

III. MOTIVATION AND PROPOSAL: NECESSITY
OF PERFECT ENTANGLEMENT

As the name suggests, the coarse-grained state is just a
characterization of quantum entanglement at the coarse-
grained level of the holographic quantum system. The
entanglement structure of a genuine holographic quantum
system is expected to be much more complex. The key
point is that the study of these coarse-grained states will
lead us to discover some properties of the entanglement
structure in holographic quantum systems. In particular,
in this paper, we will systematically demonstrate how the
study of these coarse-grained states will lead to the
necessity of perfect tensor entanglement in holographic
quantum systems, with our preliminary work available
in [63]. This section will demonstrate this in two aspects,
where Sec. III A is a restatement of the conclusions of [63],
while Sec. III B is entirely new. In Sec. IV, we will support
our argument by constructing a more interesting locking
thread configuration.

A. Characterizing entanglement entropy
of disconnected regions

Characterizing the holographic entanglement entropy of
disconnected regions using the coarse-grained state is
nontrivial. Without loss of generality, let us focus on the
entanglement entropy SR of a nonconnected region R ¼
A1 ∪ A3 in Fig. 2. Suppose we already have a coarse-
grained state jΨicoarse corresponding to the top left of Fig. 2,
which can characterize the entanglement entropies of all
connected regions, i.e., fA1; A2; A3; A4; A1 ∪ A2; A2 ∪ A3g.
We can further refine this coarse-grained state to obtain a
new coarse-grained state jΨ0icoarse, such that the new
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coarse-grained state jΨ0icoarse can also characterize the
entanglement entropy of the disconnected region R.
A simple method is pointed out in [63]. Note that, in the

original thread configuration (see the top left of Fig. 2),
intersecting threads do not influence each other. For
example, consider two intersecting threads a1a3 and a2a4,
apply the thread-state correspondence, and take d ¼ 3.
Then the overall state of the intersecting threads is simply
the direct product of two pair-entangled states, i.e.,

ja1a2a3a4i ¼
1ffiffiffi
3

p ðj0a10a3i þ j1a11a3i þ j2a12a3iÞ

⊗
1ffiffiffi
3

p ðj0a20a4i þ j1a21a4i þ j2a22a4iÞ: ð10Þ

Now, the idea is to entangle these two noninteracting
threads, making the overall state of the four qutrits a1, a3,
a2, a4 a specific entangled state as follows:

ja1a2a3a4i ¼
1

3
ðj0a10a30a20a4i þ j1a11a31a20a4i þ j2a12a32a20a4i þ j0a11a32a21a4i þ j1a12a30a21a4i þ j2a10a31a21a4i

þ j0a12a31a22a4i þ j1a10a32a22a4i þ j2a11a30a22a4iÞ: ð11Þ

The key is that the original state (10) is not symmetric about
the four qutrits. Note that in it, the entanglement entropy
between qutrits a1 ∪ a2 with a3 ∪ a4 is 2 log 3, while the
entanglement entropy between qutrits a1 ∪ a2 with a2 ∪ a4
is 0. The reason is simple because a1 and a3 are at the two
ends of the same thread, and a2 and a4 are at the two ends

of the same thread. And these two threads are direct
product. On the other hand, the new state is symmetric
about the four qutrits. The state (11) is commonly referred
to as a perfect tensor state in the literature. It can be more
compactly written as (we adopt Einstein’s index summation
convention and omit the summation symbol)

FIG. 2. The thread configuration in the upper left corresponds to a coarse-grained state constructed from the direct product of all
pairwise entangled states, from which the entanglement entropies of all the connected subregions involved can be calculated. The top-
right figure shows that in order for the original coarse-grained state to further characterize the entanglement entropy of an disconnected
region A1 ∪ A3, perfect entanglement must be introduced. The key point is illustrated at the bottom. Consider a thread connecting a site
a1 in A1 and a site a3 in A3, and couple it to a thread connecting a site a2 in A2 and a site a4 in A4, so that the overall state of four qudits
changes from (10) to (11).
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jχi ¼ Tαβμνjαβμνi; ð12Þ

where jαβμνi ¼ jαi ⊗ jβi ⊗ jμi ⊗ jνi, and

T0000 ¼ T1110 ¼ T2220 ¼ T0121 ¼ T1201 ¼ T2011 ¼ T0212

¼ T1022 ¼ T2102 ¼
1

3
; ð13Þ

while other components are 0. Tαβμν is an example of a
(rank four) perfect tensor, and correspondingly, jχi is a
perfect tensor state. The two “knotted” threads in the
bottom right of Fig. 2 form a vertex extending four legs,
essentially the graphical representation of Tαβμν in tensor
network language. The key is to realize that this state has an
interesting property: for any one of the four qutrits, the
entanglement entropy between it and its complement is
log 3, and for any two of them with their complement, the
entanglement entropy is 2 log 3. Perfect tensor states are
well-known ingredients in the holographic HaPPY code used
for quantum error correction [12] and are also known as
absolutely maximally entangled states in quantum infor-
mation theory [102,103]. More generally, perfect tensors
can be defined equivalently in two ways:
Definition 1. A 2s-perfect tensor is a 2s-qudit pure state

for any positive integer s such that the reduced density
matrix involving any s qudits is maximally mixed.
Definition 2. A 2s-perfect tensor is a 2s-qudit pure state

for any positive integer k ≤ s such that the mapping from
the states of any k qudits to the states of the remaining
2s − k qudits is an isometric isomorphism.
In summary, by replacing the tensor product states with

perfect tensor states, it is possible to characterize the

entanglement entropy of disconnected regions using
coarse-grained states. More detailed discussions can be
found in [63]. We will further indicate in Sec. VA that
perfect tensor entanglement is inevitable for characterizing
the entanglement entropies of disconnected regions.

B. Characterizing the entanglement wedge
cross section

In this subsection, we point out another noteworthy
phenomenon that once again indicates the inevitability of
perfect tensor entanglement for the entanglement structure
of holographic quantum systems at the coarse-grained
level. This phenomenon is related to the holographic
entanglement wedge cross section.
Taking Fig. 3(a) as an example, let us consider the

correlation between two adjacent subregions A1 and A2 in
the conformal field theory (CFT). Within the framework of
holographic principles, this quantity can be measured by
the area of a so-called entanglement wedge cross section
σA1∶ A2

[97,98]. The definition of the entanglement wedge
cross section σA1∶ A2

is as follows: first, define the entan-
glement wedge WðAÞ of A ¼ A1 ∪ A2 as the bulk region
enclosed by A and its corresponding RT surface γA. Then, a
minimal extremal surface σA1∶ A2

can be defined, satisfying:
(1) it divides the entanglement wedgeWðAÞ into two parts,
one entirely touching A1 and the other entirely touching A2;
(2) among all extremal surfaces satisfying condition 1,
select the one with the smallest area.
Now, there is a holographic method to calculate the area

of this surface [99]. As shown in Fig. 3(b), first, we find a
point Q� on the complement B of A to divide B into two
parts B1 and B2. Consequently, we can construct a locking

(a) (b)

FIG. 3. (a) The correlation between two adjacent subregions A1 and A2 can be holographically measured by the area of the
entanglement wedge cross section σA1∶A2

, represented by the red solid line. (b) The BPE method to calculate the area of σA1∶A2
: divide the

complement B into two parts such that NA1↔B2
¼ NA2↔B1

.
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thread configuration corresponding to the basic region
selection fA1; A2; B1; B2g to characterize the entanglement
structure at this coarse-grained level. The requirement is to
find a point Q� such that, in its corresponding thread
configuration, the number of threads connecting A1 and B2

is equal to the number of threads connecting A2 and B1,

NA1↔B2
¼ NA2↔B1

: ð14Þ

Then, we can obtain

AreaðσA1∶A2
Þ

4GN
¼ NA1↔B2

þ NA1↔A2
: ð15Þ

This interesting fact was first proposed in the language of
partial entanglement entropy in the paper [99] and is known
as the balanced partial entropy method. The right-hand side
of (15) is named as BPE.
So, how do we understand this method of probing the

geometric area? Essentially, the area of the surface σA1∶ A2

measures the correlation between the two parts A1 and A2

in A.5 When we apply the concept of coarse-grained states
of thread configurations to understand this “experimental
fact,” we will once again see the necessity of perfect tensor
states.
The key point remains that we must “entangle” the

threads connecting A1 and B2 with the threads connecting
A2 to B2 to form a perfect tensor state (11) about the four
qutrits. As shown in Fig. 3(b), once we handle the coarse-
grained state in this way, it becomes clear that the
correlation between A1 and A2 is precisely composed of
two parts. One part [the second term in (15)] is contributed
by the bipartite entanglement

ja1a2i ¼
1ffiffiffi
3

p ðj0a10a2i þ j1a11a2i þ j2a12a2iÞ; ð16Þ

where between a1 and a2 there exists log 3 of entangle-
ment. The other part [the first term in (15)] is contributed by
the perfect tensor entanglement

ja1b2a2b1i ¼
1

3
ðj0a10b20a20b1i þ j1a11b21a20b1i

þ j2a12b22a20b1i þ j0a11b22a21b1i
þ j1a12b20a21b1i þ j2a10b21a21b1i
þ j0a12b21a22b1i þ j1a10b22a22b1i
þ j2a11b20a22b1iÞ; ð17Þ

where a1 is symmetrically entangled with the other three
qutrits in its complement, which introduces log 3 of
correlation between a1 and a2.
Once again, we see the necessity of perfect state

entanglement. Because if we only use bipartite entangle-
ment, that is, if we do not entangle the threads connecting
A1 and B2 with the threads connecting A2 to B2, there will
be no correlation between a1 and a2 at this point, as seen in
its corresponding expression,

ja1b2a2b1i ¼
1ffiffiffi
3

p ðj0a10b2i þ j1a11b2i þ j2a12b2iÞ

⊗
1ffiffiffi
3

p ðj0a20b1i þ j1a21b1i þ j2a22b1iÞ; ð18Þ

because at this point, the two threads a1b2 and a2b1 are
independent of each other. In this way, we would miss the
first contribution in (15) and fall into contradiction.
In this paper, we will only consider the case where A1

and A2 are adjacent. Similar results, as in (15), will still
appear for the case where A1 and A2 are not adjacent.
However, the physical analysis is entirely similar.

IV. A MORE CONCRETE MODEL:
THREAD CONFIGURATIONS
WITH MERA STRUCTURE

In this section, we will construct a more nontrivial thread
configuration to further elucidate our proposal introduced
in the previous section, namely, the necessity of perfect
tensor entanglement for holographic quantum systems at
the coarse-grained level. Specifically, we construct a thread
configuration with a MERA structure [7–11]. MERA
structure originated as a tensor network method invented
for characterizing the ground state of critical systems that
do not satisfy the area law [7–9]. It has been considered
in [10,11,37] to simulate a time slice of anti–de Sitter (AdS)
spacetime in the holographic duality and was later pro-
posed to be closely related to the kinematic space corre-
sponding to AdS space in [41,87]. Therefore, it is a highly
important and insightful structure in the research of holo-
graphic duality.
Our approach is as follows: first, we will show that the

MERA tensor network automatically generates a locking
thread configuration. In other words, we construct a
specific thread configuration with a MERA structure.
This allows us to study its corresponding coarse-grained
state. Consequently, we can further introduce perfect
tensor entanglement to this coarse-grained state and dem-
onstrate how this procedure resolves issues encountered in
characterizing the holographic entanglement entropies of
disconnected regions and the correlations dual to entangle-
ment wedge cross sections.

5In previous studies, this correlation has been understood
as various quantum information theory quantities such as EoP
[97,98], BPE [99–101], reflected entropy [104], logarithmic
negativity [105,106], odd entropy [107], differential purification
[108], etc.
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A. MERA tensor network naturally generates
a thread configuration

As shown in Fig. 4, the MERA tensor network is
composed of two basic tensors [7–9]. The first type of
tensor is called the coarse grainer w, which is an isometry,
satisfying

w†w ¼ 1: ð19Þ

It is generally represented by a triangle in the diagram and
has three legs, indicating that it represents a rank-three
tensor. The other type of tensor is called the disentangler u,
which is a unitary operator, satisfying

u†u ¼ 1; uu† ¼ 1: ð20Þ

It is typically represented by a square in the diagram and
has four legs, indicating that it represents a rank-four tensor.
MERA is a hierarchical array, representing entanglement at
different length scales through alternating layers of coarse
grainers and disentanglers. As the coarse-graining process
proceeds, the disentangling layer is responsible for reduc-
ing the quantum entanglement of the ground state, which
was highly entangled originally. Generally, when the wave
function can be written as a direct-product state (an
unentangled state), the network terminates. However, for
cases with scale invariance, the tensor network has infinite
depth. It must be noted that the MERA tensor network is, in
fact, a general method for constructing arbitrary quantum
states (not limited to critical quantum systems), and its
construction recipe depends on the specific form given to
the isometry w and the disentangler u.
Swingle [10,11] first proposed that a MERA tensor

network can simulate a discretization of a time slice of AdS
spacetime, particularly, it can characterize the discretized
RT formula. In Fig. 4, we illustrate the concept of the RT

surface in the network. It is a “cut” that divides the entire
network into two parts, satisfying: (1) one part only touches
A, and the other part only touches B, the complement of A;
(2) among all cuts satisfying condition 1, select the one
with the minimum number of cut legs. In the MERA tensor
network, it can be argued that the number of legs the cut
passes through exactly gives the entanglement entropy of
region A (more precisely, an upper bound on the entangle-
ment entropy). Thus, by defining the number of legs the cut
passes through as the area of the cut, we return to the RT
formula.
Although not necessarily related to our main theme, let

us point out one intuitive motivation from the perspective of
bit-thread representation that leads to the generation of a
thread configuration by the MERA tensor network. In the
bit-thread representation, a Planck area is usually allowed
to accommodate the passage of one bit thread [53–56]. In
other words, the number of bit threads is proportional to the
area measure of the channel cross section. Now, since in the
MERA tensor network, the number of legs cut by the RT
cut plays the role of the area measure, we can naturally
regard each leg as a channel carrying a network flow. We
agree that the number of threads passing through this
channel is precisely equal to the logarithm of the dimension
of the leg. The practical implementation of this idea is
shown in Fig. 5(a). Note that we do not require a general
construction; in fact, we choose very simple (even trivial in
their own right) representations of disentanglers and coarse
grainers, and such choices should not be expected to
capture the ground state of a true CFT. However, our goal
is to construct a coarse-grained state, and what we want to
retain is the skeletal structure of MERA itself.6

1

2

FIG. 4. The MERA tensor network, composed of two basic tensors. The coarse grainers are represented by three-leg triangles, the
disentanglers are represented by four-leg squares. The red dashed lines 1 and 2 represent two choices of defining an RT surface.

6It was actually proposed in [37] that the skeletal structure of
the MERA tensor network plays a role in gluing spacetime
fragments, which themselves are represented by the so-called
Euclidean tensors, into an AdS time slice.

YI-YU LIN and JUN ZHANG PHYS. REV. D 109, 126012 (2024)

126012-8



Regarding each fundamental tensor as corresponding to
channels carrying a subset of thread flows immediately
generates an overall thread configuration, as shown in
Fig. 5(a). This configuration can be understood as being
composed of many small thread configurations glued
together according to the MERA structure. The first thing
we can immediately check about this overall thread
configuration is that it automatically satisfies the locking
property of the thread configurations reviewed in Sec. II A.
That is, we can directly and precisely calculate the
entanglement entropy of a specified connected boundary
subregion from this thread configuration. Specifically,
consider a boundary subregion A of this thread configu-
ration, which consists of end points of a set of threads.
Now, if we examine the RT surface γA corresponding to A
in the MERA tensor network, we find that the RT surface
exactly divides this thread configuration into two halves,
such that each thread passes through γA at most once, and
the number of threads passing through γA exactly gives the
entanglement entropy of A (or precisely the area of γA).
Clearly, the red thread 1 marked in the figure as the RT
surface is consistent with the interpretation in the thread
configuration viewpoint. We can also define the area of the
RT surface by counting the number of cut disentanglers
[109], as shown by the red thread 2, which cuts the “inner
threads” of the disentanglers. Nevertheless, cutting the legs
of the MERA tensor network can then be interpreted in our
construction as cutting the number of threads connecting
the interior of region A and the remaining part, and the
number of these threads gives the entanglement entropy of
A, very similar to the picture proposed in the bit-thread

representation. Early discussions on the connection
between bit threads and MERA tensor networks can be
found in [71].
Let us point out that if, as shown in Fig. 6(a), we choose

another way to construct disentanglers and coarse grainers,
we can also obtain a thread configuration. Moreover, if
we examine the trajectory of the RT surface, the above
considerations still hold, meaning that we still get a locking
thread configuration. In fact, the structures of these two
configurations are essentially the same, except for a small
difference in the first layer. They are topologically identical
and can be equivalently characterized by the diagram in
Fig. 6(b). This is because, as shown in Fig. 6(a), taking
two coarse grainers connected by one disentangler in the
previous layer as a basic unit, the local thread configura-
tions obtained by the two construction methods are the
same. For symmetry considerations in the diagram, we
uniformly define the RT surface as shown in the figure,
presenting a shape similar to a light cone. Note that, for
our current purposes, this diagram has only topological
significance; however, we present it as a regular pattern,
which, in appearance, is arranged in alternating tiles of
quadrilaterals and pentagons. Still, keep in mind that, in
the current context, these threads only overlap with each
other and are not “coupled” together (we will discuss the
significance of coupling later). This regular pattern facil-
itates our understanding of the precise correspondence
between the MERA structure and kinematic space.
Why do we not choose a thread configuration repre-

sentation of basic tensors as shown in Fig. 7? This is
because, in this representation, long-range entanglement

(a)

(b)

FIG. 5. Regarding the legs of each fundamental tensor as channels carrying thread flows will generate an overall thread configuration.
The red dashed lines in (b) represent the RT surfaces in this context. Note that in (a) we choose very simple thread representations of
disentanglers and coarse grainers.
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cannot be conveniently characterized, as shown in Fig. 7.
Moreover, the application of the RT formula may also
encounter difficulties because the RT surface defined by the
minimum cut may pass through the same thread twice. In
other words, the MERA state constructed in this way, with
the minimum cut, only characterizes the upper bound of the
entanglement entropy of the corresponding region and is
not exactly equal. Therefore, we choose to construct the
thread configuration that satisfies our motivation. In fact,
we realize that there are multiple constructions of thread
configurations that meet our requirements. For example,
as long as we arrange the dimensions of bonds of

disentanglers and coarse grainers appropriately, we can
construct more general thread configuration states.
However, we only want to discuss what interesting proper-
ties the MERA structure will bring to the thread configu-
ration, so we choose the simplest case.

B. Coarse-grained state corresponding
to the thread configuration

Now let us provide a more physical interpretation for
the above intuition. In fact, Fig. 8(a) perfectly conforms to
the rules of the thread-state correspondence reviewed in
Sec. II B. More specifically, each thread can be considered
to correspond to a Bell state,

jredi ¼ j0102 � � � 0ni;
jbluei ¼ j1112 � � � 1ni: ð21Þ

In this context, that a thread is said to pass through multiple
qudits is because, as constructed in Fig. 8(a), a global
thread actually results from gluing together the legs of
different positions of disentanglers and coarse grainers. As
a result, by focusing on the thread things, we are visualizing
the entanglement between different fundamental tensors.

(a)

(b)

FIG. 6. (a) Another thread construction of disentanglers and coarse grainers lead to a similar thread configuration. (b) Another
representation of the thread configuration with a MERA structure, which has the same topology.

FIG. 7. An illegal thread construction for our purposes.
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To explicitly show that the thread configurations with
MERA structure we constructed can be included in the
framework of the thread-state interpretation [61–63], we
provide a physical interpretation for the thread representa-
tion of disentanglers and coarse grainers as shown in
Fig. 8(b). Essentially, we construct a special disentangler
tensor by using local thread configurations, where each
local thread segment represents a Bell pair, and the
resulting disentangler is simply the tensor product of these
Bell states, i.e.,

juA1A2B1B2CDi ¼
1ffiffiffi
2

p ðj0A1
0Ci þ j1A1

1CiÞ

⊗
1ffiffiffi
2

p ðj0B2
0Di þ j1B2

1DiÞ

⊗
1ffiffiffi
2

p ðj0A2
0B1

i þ j1A2
1B1

iÞ: ð22Þ

To show that this satisfies the unitary condition (20), we
redefine

j0000iAB ¼ j0A1
0B2

i ⊗ 1ffiffiffi
2

p ðj0A2
0B1

i þ j1A2
1B1

iÞ;

j0010iAB ¼ j0A1
1B2

i ⊗ 1ffiffiffi
2

p ðj0A2
0B1

i þ j1A2
1B1

iÞ;

j1000iAB ¼ j1A1
0B2

i ⊗ 1ffiffiffi
2

p ðj0A2
0B1

i þ j1A2
1B1

iÞ;

j1010iAB ¼ j1A1
1B2

i ⊗ 1ffiffiffi
2

p ðj0A2
0B1

i þ j1A2
1B1

iÞ: ð23Þ

With this, the disentangler tensor can be expressed as
uABCD, and it satisfies

u000000 ¼ u001001 ¼ u100010 ¼ u101011 ¼
1

2
; ð24Þ

which indeed conforms to the condition (20) and thus is a
unitary tensor. Similarly, it is not difficult to verify that the
coarse-graining tensor in Fig. 8(b) is an isometry. Likewise,
it is a tensor product of three Bell states, where

(a)

(b)

FIG. 8. (a) A global thread defined from gluing together the legs of different basic tensors conforms to the rules of the thread-state
correspondence. (b) Essentially, we construct the basic tensors as the coarse-grained states of local thread configurations.
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jwEFG1G2
i ¼ 1ffiffiffi

2
p ðj0E0G2

i þ j1E1G2
iÞ

⊗
1ffiffiffi
2

p ðj0F0G1
i þ j1F1G1

iÞ: ð25Þ

Define

j00iG ¼ j0G2
i ⊗ j0G1

i;
j10iG ¼ j0G2

i ⊗ j1G1
i;

j20iG ¼ j1G2
i ⊗ j0G1

i;
j30iG ¼ j1G2

i ⊗ j1G1
i: ð26Þ

With this, the coarse grainer can be written as wEFG, and it
satisfies

w0000 ¼ w0110 ¼ w1020 ¼ w1130 ¼
1

2
; ð27Þ

which indeed satisfies condition (19). The same method
can also be used to explain the state interpretation corre-
sponding to the construction method in Fig. 6(a).
Now, we focus our attention on the thread-state repre-

sentations (22) and (25) of the fundamental tensors u andw.
It can be seen that, when connecting (contracting) funda-
mental tensors at different positions, the global thread
only needs to exhibit two overall states jredi and jbluei, as
each local thread segment representing a Bell pair essen-
tially provides a unitary mapping between two sites. A
global thread vividly represents the transmission path of
information.

C. Connection with kinematic space

We have demonstrated that the constructed thread
configuration with MERA structure is precisely a locking
thread configuration in the sense of Sec. II. As a result, this
thread configuration can be used to calculate the entangle-
ment entropy between any connected subregion and its
complement, which will precisely equal the number of
connecting threads. Moreover, by employing the thread-
state correspondence, one can partially trace over the
coarse-grained states corresponding to this thread configu-
ration to prove this result. Additionally, in this framework,
the number of threads connecting two regions Ai and Aj

precisely gives half the value of the conditional mutual
information IðAi; AjjLÞ, where L represents the region
between Ai and Aj.
Now, it is interesting to compare the thread configuration

with MERA structure with kinematic space [41,87].7 For
AdS3, kinematic space is a two-dimensional dual space.
The points in this space, denoted in light-cone coordinates

as ðu; vÞ, are obtained by mapping each pair of points
parametrized by coordinates u, v on the one-dimensional
time slice of the original CFT2. The essential feature of
kinematic space is that its metric (or spatial volume density)
is defined by the conditional mutual information. In other
words, 1

2
IðAi; AjjLÞ is precisely given by the volume of a

diamond-shaped region ♢Ai;AjjL, defined as the region
enclosed by the light rays starting from the end points
of Ai and Aj at the boundary of kinematic space,

1

2
IðAi; AjjLÞ ¼ volð♢Ai;AjjLÞ: ð28Þ

In [41,87], the MERA tensor network is identified as a
kinematic space itself, and the conditional mutual infor-
mation 1

2
IðAi; AjjLÞ is interpreted as the number of iso-

metries inside the counterpart of ♢Ai;AjjL in MERA. Let us
carefully examine this viewpoint. In our framework, the
volume measure of the kinematic space, represented by
the conditional mutual information, is explicitly given by
the number of disentangler tensors in MERA. This quan-
tity is also related to the so-called entanglement density
in [109]. The reason is intuitive: as illustrated in Fig. 9(a),
considering the RT surfaces γAi

and γAj
corresponding

to two connected subregions Ai and Aj, respectively,
1
2
IðAi; AjjLÞ represents the number of threads simultane-

ously crossing γAi
and γAj

. However, note that now the
number of these threads precisely matches the number of
“horizontal lines” inside the counterpart of diamond-
shaped region ♢Ai;AjjL in our thread configuration.
Reviewing the thread representation of disentanglers in
Fig. 5(a), each horizontal line actually corresponds to a
disentangler tensor. Therefore, in our framework,
1
2
IðAi; AjjLÞ precisely corresponds to the number of dis-

entangler tensors inside the diamond-shaped region
♢Ai;AjjL. The discussion of the connection between entan-
glement density and conditional mutual information has
also been explored in [64]. It is worth noting that,
in [41,87], the conditional mutual information is argued
to be given by the number of isometries (i.e., the coarse
grainers). Since in the MERA tensor network isometries
and disentanglers are added successively, the number of
both along the light-cone direction is consistent.
Note that, in the general MERA construction, one can

only argue that the upper limit of the entanglement entropy
of a subregion A is given by the minimum number of cuts.
In the model we constructed, however, the entanglement
entropy is designed to be strictly saturated, i.e., SðAÞ is
exactly proportional to the minimum number of cuts. Thus,
our model helps demonstrate the structural mechanism of
the connection between MERA and the nature of kinematic
space. Moreover, the equivalence of conditional mutual
information and the number of disentangler tensors in our
model is exact [109]. Another thing to note is that, as we

7The connection between kinematic space and bit threads is
also discussed in [64].
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have consistently emphasized, what we constructed is not
a MERA state that truly characterizes the ground state of a
CFT, but rather a coarse-grained state. However, such a
MERA state is sufficient to characterize the properties that
kinematic space portrays. In a sense, kinematic space does
not present many other important aspects of a truly ground-
state MERA state characterizing a CFT, but rather reflects
its skeletal structure.

V. CHARACTERIZATION OF ENTANGLEMENT
ENTROPY FOR DISCONNECTED REGIONS

A. Perfect tensor states couple bipartite correlations

As reviewed in Sec. III A, a significant challenge of
the coarse-grained state of this thread configuration is its
inability to consistently characterize the entanglement
entropies of disconnected regions. This paradox is explic-
itly pointed out in [63]. Simply put, in the current scenario,
consider a disconnected region A shown in Fig. 9(a),
composed of two nonadjacent parts A1 and A2, i.e.,
A ¼ A1 ∪ A2. The goal is to compute its entanglement
entropy. Assuming the sizes of A1 and A2 are relative small
compared to the size of their separation, according to the
RT formula, then the RT surface should be Γ ¼ γ1 ∪ γ2,

where γ1 and γ2 are the RT surfaces corresponding to A1

and A2, respectively. However, interpreting the quantum
state of thread configurations as a direct product of threads
equipped with Bell states cannot correctly provide a self-
consistent account of the entanglement entropy for
A ¼ A1 ∪ A2. As shown in the figure, the reason is that,
when the same thread (e.g., the thread connecting the point
x1 inside A1 and the point x2 inside A2, denoted as ςx1x2)
simultaneously passes through the surfaces γ1 and γ2, the
entanglement represented by this thread should be regarded
as the internal entanglement of A, thus not contributing
to the entanglement entropy of A. More explicitly, calcu-
lations based on the direct-product coarse-grained state
correctly provides the entanglement entropy for A1 and A2

themselves, but the resulting entanglement entropy for A
calculated by the same direct-product coarse-grained state
will be less than the expected SðAÞ ¼ SðA1Þ þ SðA2Þ;
the difference is precisely proportional to the number of
threads simultaneously passing through γ1 and γ2, or in
other words, the number of threads connecting A1 and A2,
i.e., half of the conditional mutual information between
A1 and A2.
This implies the necessity to design entanglement

beyond bipartite. The reason can be seen from a simple

(a)

(b)

FIG. 9. (a) For two nonadjacent subregions (separated by L), the green lines here represent the internal entanglement. The number of
these internal threads matches the number of disentanglers inside the region♢Ai;AjjL in kinematic space. Furthermore, to characterize the
entropy of the union of the two, the green lines should entangle with the purple lines, which represent the entanglement within the
complement. Red dashed lines represent RT surfaces. (b) Entangle the threads such that there is 2 log 2 of entanglement between x1 ∪ x2
and y1 ∪ y2.
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analysis. As shown in Fig. 9(a), let us imagine another
thread ςy1y2 connecting points y1 and y2 outside region A.
ςy1y2 and ςx1x2 are superficially overlapping. Asking for the
entanglement entropy between x1 ∪ x2 and y1 ∪ y2, we first
write down the state of x1 ∪ x2 ∪ y1 ∪ y2 as a whole.
According to the thread-state rules, if we assume that there
is no entanglement between the two threads ςy1y2 and
ςx1x2 , then

jx1x2y1y2i ¼
1ffiffiffi
2

p ðj0x10x2i þ j1x11x2iÞ

⊗
1ffiffiffi
2

p ðj0y10y2i þ j1y11y2iÞ: ð29Þ

Obviously, the entanglement entropy between x1 ∪ x2 and
y1 ∪ y2 is 0 in (29). The key is that (29) is not symmetric
for the four indices x1, x2, y1, y2. If we consider the
entanglement entropy between a single index and the other
three indices, we get log 2. However, if we consider the
entanglement entropy between two specified indices and
the other two, different situations arise. For example,
considering the entanglement entropy between x1 ∪ y1
and x2 ∪ y2, we get 2 log 2, while considering the case
between x1 ∪ x2 and y1 ∪ y2 results in 0.
That the thread ςx1x2 represents the internal entanglement

of A ¼ A1 ∪ A2 is equivalent to saying that ςx1x2 and ςy1y2
have no entanglement between them. To obtain the correct
entanglement entropy SðAÞ as the sum of the areas of γ1 and
γ2, we should hope x1 ∪ x2 as a whole to provide 2 log 2 of
entanglement with y1 ∪ y2. Therefore, we should modify
the state (29) to be completely symmetric for all four
indices. As reviewed in Sec. III, perfect tensor states can
satisfy this requirement. Let us recopy it as follows:

jx1x2y1y2i ¼
1

3
ðj0x10x20y10y2i þ j1x11x21y10y2i

þ j2x12x22y10y2i þ j0x11x22y11y2i
þ j1x12x20y11y2i þ j2x10x21y11y2i
þ j0x12x21y12y2i þ j1x10x22y12y2i
þ j2x11x20y12y2iÞ: ð30Þ

More thoroughly, to address the issue of characterizing
the entanglement entropies of disconnected regions, we can
propose a natural picture: in the original thread configu-
ration, although bulk threads may appear to “intersect”with
each other, they are actually not coupled with each other.
This means that the state of the thread configuration is
simply the direct product of the quantum states correspond-
ing to these threads. Now imaging the threads coupling
with each other at all intersection points [see Fig. 9(b)], the
original thread configuration becomes a tensor network
composed of rank-four tensors. More explicitly, we assume
that these rank-four tensors are recognized as perfect

tensors. This is actually a concrete implementation of
the idea proposed recently in [63].
A natural way to argue for this approach is to use

recursive thinking: At the beginning, in the original “direct-
product state” picture, we have already successfully char-
acterized the entanglement entropies of all connected
subregions. Then we can gradually couple one “internal
thread” (such as ςx1x2) with one “external thread” (such as
ςy1y2) for specified disconnected subregions (such as A ¼
A1 ∪ A2) to further characterize the entanglement entropies
of the specified disconnected regions, without changing
other entanglement structures. By adding entanglement
into all threads at all “intersections” in this step-by-step
way, it can be expected that the entanglement entropies of
all disconnected regions can be consistently characterized.
We will provide a more rigorous proof in the next section.
The issue of characterizing the entanglement entropies of

disconnected regions also suggests that kinematic space
cannot be simply related to a simple direct product of the
quantum states of each spatial point, even though in kine-
matic space the entropy corresponding to the diamond-
shaped region is notably proportional to its volume. This is
because now the threads that are one-to-one mapped with
the spatial points in kinematic space should be understood
as being entangled with each other. Therefore, points in
kinematic space are also highly entangled with each other.

B. Proof

First, we point out that assigning a rank-four perfect
tensor state to each “four-legged subdiagram” in the
“entangled thread configuration” and eventually unambig-
uously gluing these small tensors together is feasible. We
agree to label each rank-four perfect tensor as Tαβμν, where
the order of the four qutrits α, β, μ, ν is important. In other
words, once we specify the four legs of a four-legged
subdiagram as being respectively associated with α, β, μ, ν,
the entangled state of the four qutrits as a whole is defined
according to the pattern specified in Eq. (12). Now,
contraction implies index summation, so to avoid ambi-
guity, we stipulate that when two adjacent four-legged
subdiagrams are glued, legs with the same label are always
connected, as shown in Fig. 10. Thus, when dealing with an
entire tensor network diagram glued together by multiple
four-legged diagrams, the unambiguous requirements for
tensor contraction are equivalent to the need to assign index
types α; β; μ; or ν to each leg in the tensor network,
ensuring that legs sharing a vertex cannot be assigned
the same index types. Fortunately, this is explicitly achiev-
able. Considering each index type as a color and each leg in
the network as an area with a certain width, what we require
is simply to color a “map” with four different colors in such
a way that any two adjacent regions must be painted in
different colors. The well-known “four color theorem”
in mathematics has already told us that this intuition is
precisely correct.
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1. Calculation of entanglement entropy
for a connected region

We first prove that, in this entangled thread configuration
with assigned perfect tensor states, the calculation of the
entanglement entropy SðAÞ for a single connected region A
satisfies the holographic RT prescription. To do this, we
first calculate the reduced density matrix

ρA ¼ trĀðjΨihΨjÞ; ð31Þ

where jΨi is now the entire tensor network state formed by
gluing all perfect tensor states. Figure 11 illustrates the
tensor network diagrammatic representation of the expres-
sion (31), where taking the trace over Ā means gluing
together the indices inside Ā. Now, we will utilize the
following interesting properties of perfect tensors (depicted
in Fig. 12):

X
αβ

TαβμνðTαβμ0ν0 Þ� ¼
1

9
δμμ0δνν0 ; ð32Þ

and
X
μ

1

3
δμμ0 ¼ 1; ð33Þ

where each 1=3δ represents a tensor

2
4

1
3

0 0

0 1
3

0

0 0 1
3

3
5, char-

acterizing the density matrix of a single qutrit as
ρ ¼ P

i¼0;1;2
1
3
jiihij, and thus conveniently represented

by a single thread. A circle then represents the trace over
the tensor 1=3δ, yielding 1.
Applying these two simple rules iteratively, we can

simplify expression (31) step by step, and all operations
will be performed graphically, see Fig. 13. In the first step,
we use Eq. (32), and in the second step, we use Eq. (33).
By combining these two steps, we find that this process
suggests that short-range entanglement from previous
layers has not entered into the calculation at larger scales.
Moreover, after this process, a symmetric pattern suitable
for iteration emerges. We can use (32) and (33) again to
further remove short-range entanglement. After repeated
iterations, the net result is obtained in Fig. 13(e). Observing
this result, to calculate the entanglement entropy of A,
we actually only need to consider a subnetwork, which can
be precisely interpreted as the entanglement wedge WðAÞ
of A. Denoting the lattice sites included in A as xa and the
sites included in the minimal cut γA as sγ , this entanglement
wedge subnetwork can be seen as characterizing a pure
state of the whole set fxag ∪ fsγg, and calculating the von
Neumann entropy of A is also equivalent to calculating the
entanglement entropy between fxag and fsγg.
To calculate this entanglement entropy more conven-

iently, as shown in Fig. 14(b), we next choose to contract
fxag rather than fsγg. In other words, we calculate the
reduced density matrix corresponding to the entanglement
entropy

ρent ¼ trfxagðjψAihψAjÞ; ð34Þ

FIG. 10. The four color theorem ensures that index types α; β; μ; or ν can be unambiguously assigned to each leg in the network.

FIG. 11. The tensor network diagrammatic representation of
the expression (31), where taking the trace over Ā means gluing
together the indices inside Ā.

FIG. 12. The diagram representation of rules (32) and (33).
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where jψAi represents the state corresponding to the
entanglement wedge subnetwork of A.
As shown in Fig. 14(c), we then iteratively apply the

expressions (32) and (33) again, and finally, we find that the
graphical representation of this density matrix is simply a
cluster of threads representing the direct product of Bell
pairs. Moreover, the number of threads is exactly equal to
the number of threads crossed by the minimal cut. Thus, we
verify the first expectation that coupling the thread con-
figuration according to the entanglement pattern of perfect
tensors does not affect the expression of the entanglement
entropy for connected subregions. Note that, similarly, in
the process of graphical calculation, it can be clearly seen
that short-range entanglement within A does not contribute
to the entanglement entropy of A.

2. Calculation of entanglement entropies
for disconnected regions

Next, we will clarify the proof that resolves the calcu-
lation problem of entanglement entropy for disconnected

regions proposed in Sec. VA. The method is similar,
employing the expressions (32) and (33), with some subtle
details that we present in this section.
Consider the configuration as shown in Fig. 15(a), where

the entanglement entropy of A ¼ A1 ∪ A2 is given by the
sum of the areas of the RT surfaces γ1 for A1 and γ2 for A2.
The steps for calculating the entanglement entropy are
similar. Again, we first calculate the reduced density matrix
ρA by gluing together the indices inside Ā. Then, we
iteratively apply the two simple rules (32) and (33) to
simplify the expression (31). The first and second steps
are illustrated in Fig. 15. Similarly, symmetry allows an
iterative scheme, and we can proceed similar to Fig. 14(c).
It can be verified that, by iterating continuously, the final
pattern in Fig. 15(d) is obtained.
Note that, in the current context, although during the

iteration process entanglement at each scale has been
removed by (32) and (33), some long-range entanglement
crossing the disconnected regions A1 and A2 has not been
removed. This is manifested in the pattern as circles around
A1 and A2. Let us denote these circles from inner to outer as

(a) (b)

(c) (d)

(e)

FIG. 13. (a) The original diagram representing (31). (b) The first step, in which (32) has been used. (c) The second step, in which (33)
has been used. (d) Iteratively using (32) and (33) due to the symmetry. (e) The net result.
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C1; C2;…; Cn, where these circles intersect only at circles
O1 surrounding A1 or circles O2 surrounding A2. Note that
more outer circles have already been removed by the
previous standard procedure through (32) and (33).
However, we can further eliminate circles C1; C2;…; Cn

using (32) and (33). As shown in Fig. 16, we first apply
(32) at the intersection of the outermost circle Cn with
either O1 or O2, and the net result is the decoupling of the
circle Cn from O1 and O2, i.e., they no longer intersect.
Therefore, by (33), Cn no longer contributes to the entropy
calculation. Obviously, this process can be repeated,

successively removing Cn−1;…; C1, until reaching the final
configuration in Fig. 15(d).
To handle the final configuration in Fig. 15(d), note

that it is topologically equivalent to the configuration in
Fig. 16(a). Thus, as shown in Fig. 16, we can first apply
(32) and then (33) to reach the configuration in Fig. 16(c).
However, Fig. 16(c) is nothing else but the sum of the
entanglement entropy for regions A1 and A2, and the
entanglement entropy for A1 and A2 is precisely given
by the number of cuts through their respective entangle-
ment wedges. We can replicate the calculation in Fig. 14(c)

(a) (b)

(c)

FIG. 14. (a) Figure 13(e) tell us that to calculate SðAÞ we only need to consider a subnetwork. (b) Equivalently calculate the
entanglement entropy between fxag and fsγg. (c) Iteratively applying (32) and (33) finally leads to a simple result.
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(a)

(b) (c)

(d)

FIG. 15. Calculation of entanglement entropy for a disconnected region. (a) The reduced density matrix of a disconnected region.
(b) The first step of calculation. (c) The second step of calculation. (d) By iterating, the final pattern is obtained.
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and obtain the following result:

SðA1 ∪ A2Þ ¼ k ln 3ðNo: cutγðA1Þ þ No: cutγðA2ÞÞ: ð35Þ

Thus, we obtain

SðA1 ∪ A2Þ ¼ SðA1Þ þ SðA2Þ; ð36Þ

where “No: cutγðA1Þ” represents the number of cut legs
through the minimal surface γðA1Þ. k is a coefficient chosen
as needed.
Note that, according to this, the paradox proposed in

Sec. III A has received an insightful resolution. In our case,
there indeed exists a thread [the green thread shown in
Fig. 15(a)] that characterizes the conditional mutual infor-
mation between regions A1 and A2. If we simply interpret
this CMI as a kind of bipartite entanglement, we cannot
consistently characterize (36). But now we consider this
thread as being in an entangled state with other threads, and
we have just proven that this entanglement scheme allows
the characterization of entanglement entropy for discon-
nected regions.
Now, for completeness, we should also prove that this

perfect tensor-type thread configuration can give another
facet of entropy for disconnected subregions. As is well
known, for a disconnected subregion A ¼ A1 ∪ A2, the
holographic RT surface can be either γðA1Þ ∪ γðA2Þ or
γðA1 ∪ L ∪ A2Þ ∪ γðLÞ, where L is the intermediate region
between A1 and A2, as long as the latter gives a smaller area.
Figure 17(a) shows an example of this situation, noting that
there are still threads connecting A1 and A2 that characterize
the conditional mutual information relative to L. It now
needs to be proved that, in this case, counting the number
of cut legs still correctly gives the entanglement entropy,
i.e., prove

SðA1 ∪ A2Þ ¼ SðA1 ∪ L ∪ A2Þ þ SðLÞ; ð37Þ
or

SðA1 ∪ A2Þ ¼ k ln3ðNo: cutγðA1∪L∪A2Þ þNo: cutγðLÞÞ: ð38Þ

Based on the previous calculation experience, we can
now easily go from the original configuration of calculating

FIG. 16. Calculation of entanglement entropy for a disconnected region.

(a)

(b)

FIG. 17. (a) The reduced density matrix for another case of
disconnected region’s entanglement entropy. (b) First reduce the
thread configuration inside γðLÞ.
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the reduced density matrix ρA directly to the pattern in
Fig. 17(a). This is because we can continuously use (32)
and (33) to reduce the threads and circles outside the
surface γðA1 ∪ L ∪ A2Þ to the configuration in Fig. 17(a).
On the other hand, from the calculation in Fig. 12, we can
also directly reduce the thread configuration inside the
surface γðLÞ to the configuration in Fig. 17(b).

Following a similar logic to the step in Fig. 14(b),
now Fig. 17(b) is equivalent to calculating Fig. 18(a). Thus,
we arrive at a pattern that is very easy to directly apply (32)
and (33) for reduction, and after several steps of operation,
we get the pattern in Fig. 18(b). Making a deformation
that preserves the topology, we can continue to use (32)
and (33), thus finally obtaining Fig. 18(c). Figure 18(c)

(a)

(b) (c)

FIG. 18. The calculation details. (a) Calculation equivalent to Fig. 18(a). (b) The pattern obtained by a series of reductions. (c) The
final pattern.
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consists of two parts, where the smaller part, by a calculation
similar to Fig. 13(e), will contribute to SðLÞ, and the other
part precisely calculates the entanglement entropy of the
reduced density matrix represented by n threads, where n is
precisely proportional to γðA1 ∪ L ∪ A2Þ. Thus, we have
completed the proof.

VI. CHARACTERIZATION OF ENTANGLEMENT
WEDGE CROSS SECTIONS

A. Review of entanglement of purification

In the holographic duality, there exist many quantum
information theory quantities that characterize the correla-
tions between subsystems A1 and A2 in a mixed-state
bipartite system A ¼ A1 ∪ A2. Here, we choose to use the
entanglement of purification EPðA1∶A2Þ [97,98] to char-
acterize this correlation. The method is as follows: imagine
introducing two auxiliary systems, denoted as A0

1 and A0
2,

so that A1 ∪ A2 ∪ A0
1 ∪ A0

2 as a whole is in a pure state
ψðA1A2A0

1A
0
2Þ. In this way, one can legitimately define the

entanglement entropy between A1A0
1 and A2A0

2. As there
are infinitely many purification schemes, the entanglement
of purification takes the minimum entanglement entropy
SðA1A0

1Þ between A1A0
1 and A2A0

2 over all possible schemes
as the correlation between A1 and A2, i.e.,

EPðA1∶A2Þ ¼ min
jψiA1A01A2A02

SðA1A0
1Þ: ð39Þ

Similar to the RT formula, it has been proposed in the
literature [97,98] that the entanglement of purification can
be calculated from the area of the dual EWCS surface, i.e.,

EPðA1∶A2Þ ¼
AreaðσA1∶A2

Þ
4GN

: ð40Þ

Detailed discussions on holographic entanglement of
purification are found in the literature on surface-state
duality (see [74,110,111]). Since what we want to measure
is the (minimal possible) entanglement entropy between
A1A0

1 and A2A0
2, the optimal scheme should first satisfy

that the auxiliary system A0
1 ∪ A0

2 itself has no internal

entanglement, allowing its Hilbert space to be used most
economically, thus providing a purification with the
smallest possible Hilbert space dimension. Intuitively,
the dimension of the Hilbert space of A0

1 ∪ A0
2 with no

internal entanglement is precisely used entirely to charac-
terize the entanglement between A1 and A2, thereby
capturing the intrinsic correlation between A1 and A2.

B. Necessity of perfect entanglement for mixed-state
intrinsic correlations

Let us choose A1 and A2 as shown in Fig. 19, and we
have marked the types of various threads with colors in the
figure. Before “tying up” all the threads (corresponding to
the original direct-product coarse-grained state), we can see
that the green threads represent the connections between A1

and A2, the yellow threads represent the connections from
A1 to the region we define as B2, and the purple threads
represent the connections from A2 to the region we define
as B1. Note that we have arranged for the number of yellow
threads to be equal to the number of purple threads. In other
words, we have agreed on B1 and B2 in such a way that

NA1↔B2
¼ NA2↔B1

: ð41Þ

Thus, we obtain a configuration consistent with Sec. III B.
We can also precisely draw the position of the entanglement
wedge cross section in the current context. It is the minimal
cut (indicated by red solid line in the figure) that starts from
the boundary point of A1 and A2 and divides the entangle-
ment wedge WðA1 ∪ A2Þ into two halves. In this setup, we
can reproduce the “experimental results” (15): Given

NA1↔A2
¼ 1; ð42Þ

NA1↔B2
¼ NA2↔B1

¼ 2; ð43Þ

AreaðσA1∶A2
Þ

4GN
¼ No:minimal cut ¼ 3; ð44Þ

we have

FIG. 19. Here the entanglement wedge cross section is the minimal cut indicated by the red solid line. We have arranged for the
number of yellow threads to be equal to the number of purple threads, which means NA1↔B2

¼ NA2↔B1
.
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AreaðσA1∶A2
Þ

4GN
¼ NA1↔B2

þ NA1↔A2
¼ NA2↔B1

þ NA1↔A2
:

ð45Þ

Consider the case where A ¼ A1 ∪ A2 as a whole is a
connected region. Recall that in Sec. V B, we have obtained
a tensor network representation of the reduced density
matrix of any connected region, as shown in Fig. 14(b),
which is the adhesion of the entanglement wedge and its
mirror image. In this section, we label the sites inside A1 as
xi, the sites inside A2 as yj, and the sites contained in the
minimal cut γA of A as rk. In particular, we have chosen a
concise example as shown in Fig. 20, where

A1 ¼ fx1; x2; x3; x4; x5g: ð46Þ

As pointed out in Sec. V B, the minimal cut γA can be
regarded as a purification of the system A ¼ A1 ∪ A2. In
other words, the system γA ≡ frkg can be exactly regarded
as the auxiliary system A0

1 ∪ A0
2. The resulting purified state

ψðA1A2A0
1A

0
2Þ is precisely the state jψAi corresponding to

the entanglement wedge subnetwork of A. More impor-
tantly, when tracing out A from jψAi, we obtain that the
reduced density matrix of γA is direct product (see Fig. 14),
in other words, it does not contain internal entanglement.
Therefore, the auxiliary system γA ¼ A0

1 ∪ A0
2 can now be

used to characterize the intrinsic correlation between A1

and A2.
If we regard the thread configuration simply as the direct

product of all threads representing Bell states, how much is
the intrinsic correlation between A1 and A2? For this, we
can partition the sites in γA as follows to obtain the minimal
entanglement of purification SðA1A0

1 ↔ A2A0
2Þ as a mea-

sure of this intrinsic correlation,

A0
1 ¼ fr1; r2; r4; r5g; A0

2 ¼ fr3; r6g: ð47Þ

How do we know this is the optimal solution? Notice that
x1 forms the Bell pair with r4 that has the maximum
entanglement, and x5 forms the Bell pair with r5, and so on.
The principle is to try to place pairs of sites with maximum
entanglement into the same group. In this way, what truly
characterizes the intrinsic correlation between A1 and A2 is
only one Bell pair, which is represented by the thread
connecting x3 and y1. Any other nonoptimal purification
scheme would introduce redundant correlations. For exam-
ple, if we factitiously consider sites r4 and r5 as degrees of
freedom belonging to A0

2, it would introduce redundant
correlations between A0

2 and sites x1, x5 in A1. In a word,
as implicitly implied in Sec. III B, when using a coarse-
grained state containing only bipartite entanglement, that
characterizes the intrinsic correlation between A1 and A2 is
only the number NA1↔A2

of threads directly connecting A1

and A2 (such as x3 connecting to y1),

EPðA1∶A2Þ ¼ min
jψiA1A01A2A02

SðA1A0
1Þ ¼ NA1↔A2

; ð48Þ

and this equation contradicts (45).
This is not a mathematical difficulty but signifies a rigid

physical requirement: we must introduce ingredients
beyond bipartite entanglement. The perfect entanglement
scheme can indeed resolve this physical dilemma. As
shown in Fig. 21(a), let us verify the expected optimal
purification scheme from the surface-state duality, i.e.,

A0
1 ¼ fr1; r2g; A0

2 ¼ fr3; r4; r5; r6g: ð49Þ

By this, we perform the calculation of the entanglement
entropy SðA1A0

1 ↔ A2A0
2Þ, which means tracing

ρA1A0
1
¼ trA2A0

2
ψðA1A2A0

1A
0
2Þ: ð50Þ

The graphical algorithm is shown in Fig. 21(a). Similarly,
at a particular step, we can again use the technique of

(a) (b)

FIG. 20. (a) The entanglement wedge of A ¼ A1 ∪ A2, the red solid line represents EWCS. (b) the minimal entanglement of
purification when the coarse-grained state is simply obtained by the direct product of all threads.
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exchanging the trace to calculate the entanglement entropy.
The ultimately simplified net result consists of three direct-
product threads, which gives the correct answer (44).
Interestingly, we can also identify from the figure that
the sources of these three threads exactly correspond to all
the green and purple threads in Fig. 19. Readers can also
verify that, if the purification scheme (47) is adopted, a
larger entropy will be obtained.
Although we have presented a detailed calculation, it is

not difficult to straightforwardly grasp the most essential
nature. Seeing Fig. 21(b), focusing on the site x1 ∈A1 and
the site y3 ∈A2, before applying perfect entanglement to
the coarse-grained state, there is obviously no entanglement
between x1 and y3. Therefore, it cannot contribute to the
correlation between A1 and A2. However, after coupling the
thread ζx1r4 and the thread ζy3r3 into a perfect tensor state,
x1 and y3 are locally living in a full entangled state. At
this point, we must find a way to measure the intrinsic
correlation between x1 and y3. A natural way is entangle-
ment of purification, and the optimal purification scheme is
to choose r3 ∪ r4 as the auxiliary system associated with y3
and choose the empty set as the auxiliary system associated

with x1. In this way, the amount of entanglement obtained
will be 1 × log 3.

C. Discussion on more general thread configurations

Attentive readers will notice a particular feature in
Fig. 1(c): it only presents nonintersecting RT surfaces
(in the context of tensor network, this implies considering
tree tensor networks [17,52]). Indeed, in the current study
of thread configurations, we mainly focus on the character-
istics of fluxes of thread bundles. What about the specific
details of how these threads traverse through the bulk?
The study of entanglement wedge cross sections, which

are extremal surfaces whose end points can be located
within bulk, indicates that we can go further. As shown in
Fig. 22, we can consider two boundary subregions B1 and
B2 with overlaps, denoting their overlap region as A2, and
let A1 ¼ B1nA2 and A3 ¼ B2nA2, with the remaining part
of the system denoted as A4. Correspondingly, denote the
RT surfaces of B1 and B2 as γ12 and γ23. Inevitably, γ12 and
γ23 intersect. At this point, if we focus on the overlapping
region A2 and consider the thread bundles from A2 to A4,
we find two possible scenarios: threads can either first pass

(a)

(b)

FIG. 21. (a) The calculation of the entanglement entropy SðA1A0
1 ↔ A2A0

2Þ according to the optimal purification scheme expected
from the surface-state duality. (b) The introduction of perfect entanglement.
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through the σ1 surface in the diagram and then reach A4, or
they can first pass through the σ2 surface and then reach A4.
On the other hand, if we consider the threads from A2 to A1,
we would have reason to believe that these threads must all
pass through the σ1 surface to enter A1. In other words,
threads from A2 passing through the σ2 surface before
reaching A1 are not allowed. This straightforwardly inherits
the experience from bit threads [53–56]. Simply put, under
the requirements of bit threads, the maximum number of bit
threads connecting two complementary connected regions
must equal the minimum area of the bulk surface (i.e., RT
surface) that separates these two regions. This is known as
the max-flow min-cut theorem. Since bit threads are
required not to exceed a constant density 1

4GN
in the bulk,

if a thread crosses the RT surface twice or more, it will
occupy the positions of the threads connecting the two
complementary regions, thus preventing the maximization
of the number of threads. On the other hand, due to the
overly strict constraints of the original thread density of
bit threads, there are significant obstacles to the existence
of thread configurations (see the detailed discussion in
Ref. [57]), therefore, we only retain this topological
property of the threads: an internal thread connecting two
subsystems within a connected region (such as B1 here)
should not overflow its corresponding RT surface (such
as γ12 here), or in other words, an internal thread of a
connected region will not pass through its RT surface more
than once. It is worth noting that this also aligns well with
the spirit of entanglement wedge reconstruction of boun-
dary subregions [112–117]. If we attribute possible quan-
tum information-theoretic meanings to such threads, the
bulk information “decoded” from the information of a
subregion should still lie within its entanglement wedge.
We believe that the thread-state correspondence [61–63]
mentioned in this paper is a simple and inspiring attempt to
take this idea seriously, where not only the end points of a
thread connecting two boundaries, but also the “bulk sites”

on the RT surfaces that the thread traverses through are
considered to correspond to some qudits, and together form
a special entangled quantum state indicated by the thread.
For the simple example in Fig. 22, we can easily enu-

merate all independent thread bundles. Recall that, for the
four elementary regions A1, A2, A3, A4, we previously had a
total of 4×3

2
¼ 6 independent thread bundles, which con-

sequently yield six unknown fluxes Nij to be solved, where
the subscripts ij range from 1 to 4. The entanglement
entropy of the six connected regions (i.e., the area of their
RT surfaces) then exactly provides six constraints, ensuring
a full rank solvable linear equation system. As shown in
Fig. 22, however, now we can find a total of eight
independent thread bundles, simply because two of them
have split. Their flux relations can be explicitly expressed as

N13 ¼ Nσ1σ4
13 þ Nσ3σ2

13 ;

N24 ¼ Nσ1σ3
24 þ Nσ4σ2

24 ; ð51Þ

where superscripts indicate the intermediate surfaces
encountered along the thread. In principle, adding two
new unknown fluxes implies the need for the areas of two
new additional surfaces as constraints. Obviously, the areas
of the σ1 and σ3 surfaces can serve as choices. Note that,
since the areas of all RT surfaces of connected regions have
already been used, once the area of σ1 is determined, the
area of σ2 is also determined. Similarly, the area of σ4 is no
longer a new constraint. Next, similar to (4), we only need
to track the threads passing through these independent
surfaces and require the number of threads to match the
area of the surfaces to obtain the complete system of
equations. The key point is that this approach provides
an idea for more refined thread configurations. We can
consider more complex scenarios involving more intersect-
ing RT surfaces, where the RT surfaces are divided into
more components. By “more refined,” we mean that, in
addition to knowing the information about the thread fluxes
connecting various boundary elementary regions, one can
also further know how much proportion of threads pass
through different parts of RT surfaces in the bulk. We will
systematically study the more general and refined thread
configurations in another work [118], using the tools of
kinematic space.
Furthermore, a natural question arises: Can this more

refined thread configuration further be used to provide (or
“detect”) information about the entanglement structure of
holographic dualities? A possible idea is to associate it
with the concept of differential entropy [119–121]. The
reason is that differential entropy has been proposed to
characterize the area of arbitrary surfaces within the holo-
graphic bulk, while in the context involving more refined
thread configuration, we have gone beyond the discussion
of RT surfaces anchored to the boundary; that is, we can
extend the thread method to more general bulk extreme
surfaces. Therefore, by associating more general thread

FIG. 22. A more refined thread configuration.
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configurations with the idea of differential entropy in the
context of quantum information theory, it is possible to
obtain more interesting results about the entanglement
structure of holographic dualities. We leave this aspect
of the research for future exploration.

VII. CONCLUSION AND DISCUSSION

In recent years, many concepts and tools from quantum
information theory have been employed to study the
quantum entanglement structure in holographic duality.
It is extremely challenging to directly derive the mechanism
that precisely generates the quantum entanglement struc-
ture of the dual spacetime in one fell swoop. Therefore, we
choose to explore this entanglement structure at a coarse-
grained level, which has generated some insightful and
crucial clues. More specifically, we focus on a core
concept: conditional mutual information, constructing a
class of coarse-grained states intuitively related to a family
of thread configurations. It is noteworthy that such coarse-
grained states are closely connected to concepts such as
kinematic space, holographic entropy cone, holographic
partial entanglement entropy, and so on. However, funda-
mentally, these coarse-grained states are just direct-product
states of bipartite entangled states. When we attempt to
use these coarse-grained states to further characterize some
quantum information theory quantities with geometric
duals in holographic duality, such as entanglement entropy
of disconnected regions and entanglement of purification
dual to entanglement wedge cross section, unavoidable
difficulties arise even at the coarse-grained level. On the
other hand, introducing perfect tensor entanglement with
permutation symmetry naturally solves these problems.
In summary, there are several notable findings in this

paper. First, our work, in a sense, provides a equivalency
between two quantum information theory quantities of
entanglement wedge cross section—entanglement of puri-
fication and balanced partial entropy [i.e., expression (15)].
This relies on our physical interpretation of replacing
bipartite entanglement with perfect entanglement. Before
this, expression (15) should be regarded as a noteworthy
“experimental phenomenon.” Only when adopting this
understanding of perfect entanglement can expression (15)
reasonably characterize the intrinsic correlation between
two parts of a system in a mixed state. Second, we re-
examine, in a sense, the connection between MERA
structure and kinematic space. We construct a coarse-
grained state with MERA structure, and it is noteworthy
that this coarse-grained state does not need to completely
characterize the ground state of the holographic CFT, but
only delineates its entanglement structure at the coarse-
grained level. However, this structure is already sufficient
to present the key features of kinematic space: its volume
density is precisely given by conditional mutual informa-
tion. Moreover, our investigation indicates that the spatial
points in kinematic space should not be viewed as being

direct product but, in some sense, entangled together by
perfect entanglement. Additionally, the thread configura-
tions with MERA structure that we construct have an
insightful role in the relation between MERA tensor
networks and bit threads. In this paper, we have not
considered the context of Banados-Teitelboim-Zanell
(BTZ) black holes [9,25,122,123]. A very natural idea is
to further consider the thread configurations dual to the
MERA structure of dual BTZ black holes and their corres-
ponding coarse-grained states. What is more intriguing is
that wormhole geometry has been argued to be closely
related to entanglement wedge cross section [110,111],
stemming from the fact that BTZ black holes can be viewed
as quotients of AdS space. Thus, we expect to once again
see the necessity of perfect entanglement in the context of
BTZ black holes, which may appear in a more nontrivial
way. We leave this fascinating idea for future work.

APPENDIX: BASIC RULES FOR TENSOR
DIAGRAM CALCULUS

This paper involves a significant amount of tensor
diagram calculus. Therefore, here are some brief rules
for computing with tensor networks.
We can represent a normalized quantum state over k sites

(or qudits) as a simple diagram T, which consists of k legs
extending from a vertex,

jχi ¼ Tα1α2���αk jα1α2 � � � αki: ðA1Þ

In Fig. 23(a), we depict the case of k ¼ 4, which is the
primary case used in this paper. Accordingly, each end
point αi of the legs of T represents a qudit equipped with a
Hilbert space of dimension di. With this, the tensor
contraction operation can be translated into diagrammatic
calculations involving T. For example, consider the
operation

jψi ¼ Tα1α2α3α4Tβ1α2β3β4 jα1α3α4β1β3β4i; ðA2Þ

for which the graphical representation is shown in
Fig. 23(b), where the index contractions are represented
by two corresponding legs being glued together into an
inner leg. Thus, by continually gluing basic patterns, one
can obtain more complex pure states of a large number of
qudits.
The above procedure can be extended to operations

involving density matrices. Taking the example of the state
(A1) for k ¼ 4, its corresponding density matrix, shown in
Fig. 23(c), is

ρ ¼ TαβμνTα0β0μ0ν0 jαβμνihα0β0μ0ν0j: ðA3Þ

Because of the apparent symmetry, we represent it as the
original tensor network representing a pure state accom-
panied by its mirror image. Additionally, to distinguish it
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from the representation of the pure state, we arrange it in an
upper-lower configuration.
Now, what is interesting is that the operation of taking

the trace of the density matrix becomes a diagrammatic
calculation. For instance, the reduced density matrix

ρβμν ¼ trαρ ¼
X
α00

hα00jρjα00i ¼ Tα00βμνTα00β0μ0ν0 jβμνihβ0μ0ν0j

ðA4Þ

corresponds to Fig. 23(d).

Similarly, we can obtain the following examples as
shown in Fig. 23(e):

ρμβ ¼ trανρ; ðA5Þ

ρβ ¼ trαμνρ; ðA6Þ

and especially,

trαβμνρ ¼ 1: ðA7Þ

(a) (b)

(c) (d)

(e)

FIG. 23. Basic rules for tensor diagram calculus. (a) A tensor as a simple diagram. (b) Tensor contraction. (c) A density matrix. (d) A
reduced density matrix. (e) Other examples.
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