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We study the notion of volume and its dynamics in the loop-quantum-gravity truncation known as the
two-vertex model. We also show that its UðNÞ-symmetry reduction provides the old effective dynamics of
loop quantum cosmology with an arbitrary perfect barotropic fluid content. A suitable modification of the
Poisson bracket structure of the UðNÞ-symmetric model leads to the loop quantum cosmology improved
dynamics.
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I. INTRODUCTION

Loop quantum gravity (LQG) [1,2] proposes a theoreti-
cal framework to describe the geometry of spacetime at the
Planck scale. This is particularly relevant in the vicinity of
black-hole and big-bang general relativistic singularities. A
basis of the Hilbert space of LQG is formed by the so-called
spin networks: SU(2) wave functions defined on graphs,
labeled by spins on edges and intertwiners on vertices.
These spin networks are eigenstates of the area and volume
operators, which have discrete spectra [3,4].
The quantization techniques used in LQG have been

mimicked on highly symmetric universes, giving rise to loop
quantum cosmology (LQC) [5–7]. Since its beginning, LQC
has obtained several successes, describing different cosmo-
logical models [8–11] and physical predictions. The most
relevant result of LQC is the prediction of a big bounce that
avoids the initial singularity of the big bang [8].
Despite the advances made on both full LQG and LQC,

the implementation of the dynamics and the search of a
semiclassical sector of the theory (that would relate the
theory with smooth solutions to the Einstein’s equation)
remain as the main open problems of the theory. Besides,
the identification of a cosmological sector within LQG
in order to make contact with the results of LQC—and, in
the semiclassical limit, with relativistic cosmology—is still
missing [12].
The study of simple (truncated) models within the

full theory has proved to be extremely useful. The trunca-
tion to a fixed graph is described by the corresponding
holonomy-flux phase space on the graph and its

quantization leads to the spin networks with support on that
graph. The simplest nontrivial graphs are the two-vertex,
N-edge graphs (the so-called two-vertex model, for brevity)
[13–18]. The two-vertex model can be interpreted as two
polyhedra with identical areas but, in general, with different
volume. The classical dynamics of these polyhedra has
been studied analytically in a symmetry-reduced sector
[by a global UðNÞ symmetry] [14] and, more recently,
numerically in the general case [17]. In both situations a
cosmological behavior is observed, presenting oscillatory
and divergent regimes that avoid any singularities. Besides,
in [18] it was shown that, in the low-curvature regime,
the UðNÞ-reduced two-vertex dynamics is related to the
classical dynamics of a Friedmann-Lemaître-Robertson-
Walker (FLRW) universe with a cosmological constant.
We will describe the two-vertex model using the spino-

rial formalism for LQG [14,19–21], a description of the
phase space of each edge using two spinors, one for each
vertex of the edge. These spinors satisfy two constraints:
the matching constraint—which ensures that there is only
one SU(2) irreducible representation (one spin) on each
edge—and the closure constraint—which ensures the
SU(2) invariance of the theory. The spinorial formalism
allows for a simple description of the model in terms of 2N
spinors that, upon quantization, recovers the Hilbert space
of LQG on the graph [19]. Therefore, we can study the
classical dynamics of the model using the spinorial
formalism in order to gain insight into full LQG, as it will
give us a first contribution to the quantum dynamics of
states peaked on classical trajectories. Moreover, using
Minkowski’s theorem for convex polyhedra [22], the
spinors provide a parametrization of the framework
described by the twisted geometries [21,23,24]. In this
framework, each vertex of the graph is associated with a
polyhedron and the edges indicate adjacent faces with the
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same area but, in general, different shapes. In this way, the
classical counterpart (parametrized by the spinors) asso-
ciated with a spin network gives us an unconventional
discretization of space in which the polyhedra do not fit,
i.e., they are twisted with respect to each other.
There are no closed general formulas to compute the

volume of these polyhedra (apart from the tetrahedron).
Therefore, we need to resort to numerical methods [25,26]
or to approximations to the volume formula. One such
approximation is given in terms of the quadrupole moment
for discrete surfaces, introduced in [27] and studied
numerically in [17], whose determinant qualitatively rep-
licates the behavior of the volume of the polyhedron. In this
paper we analytically calculate the equation of motion for
the volume approximated by the quadrupole moment.
The UðNÞ-symmetric sector of the two-vertex model

contains just one degree of freedom corresponding to the
twist angle and its canonical conjugate momentum, i.e. the
total area of the polyhedra. Comparing the evolution of
the quadrupole approximation to the volume and the total
area, we find that they precisely follow the evolution one
expects from a homogeneous and isotropic evolution. We
also find that a generalization of the two-vertex Hamiltonian
constraint in the form of the addition of a function of the
area (that preserves the symmetries of the reduced model)
effectively takes into account matter content and, further-
more, fully determines the equation of state.
Finally, we show that the two-vertex model is indeed an

LQG truncation that effectively describes the LQC old
dynamics [28,29] with arbitrary barotropic perfect fluids.
Furthermore, a suitable modification of the Poisson bracket
structure of the UðNÞ-symmetric model leads to the LQC
improved dynamics [9].
The paper is structured as follows. In Sec. II we

introduce the spinorial formalism and the twisted geo-
metries. We will use both of them in Sec. III to describe the
two-vertex model and its dynamics. We will also use the
notion of quadrupole moment of a discrete surface to study
analytically the volume and its evolution. In Sec. IV we
introduce the global UðNÞ symmetry and study the dyna-
mics on the reduced sector. In Sec. V, we show that the two-
vertex model directly provides the FRLW cosmology and
the LQC effective dynamics. We finally summarize and
conclude in Sec. VI.
Index notation. a; b… ¼ 1, 2, 3 are spatial indices;

i; j… ¼ 1; 2…; N denote the edges of the two-vertex
graph; I; J… ¼ 1, 2, 3 are suð2Þ indices; and A;B ¼ 0,
1 are spinorial indices.

II. SPINORIAL FORMALISM AND TWISTED
GEOMETRIES

In this section we will introduce the spinorial and the
twisted geometries formalisms [14,19,23,24], which we
will use to describe our model and interpret it geometrically
from a classical point of view as a discretization of space.

A. Spinorial formalism for LQG

The phase space of LQG is usually expressed in terms of
holonomies and fluxes [1]. More specifically, given a fixed
graph with N edges, the usual formulation assigns to each
edge i (with i ¼ 1;…; N) a pair of variables (gi, X⃗i), where
gi ∈SUð2Þ is the holonomy of the Ashtekar connection
along i and X⃗i · σ⃗ ∈ suð2Þ is the flux of the densitized triad
on a surface dual to i, with X⃗i ∈R3, and σ⃗ ¼ ðσ1; σ2; σ3Þ
represents the three Pauli matrices, normalized to ðσIÞ2 ¼ I
for each I ¼ 1, 2, 3. Thus, the classical phase space
SUð2Þ × suð2Þ of each edge i is isomorphic to
T�SUð2Þ, the cotangent bundle of SU(2) [19]. Over the
last decade, an alternative parametrization has been devel-
oped in terms of two spinors jzsi i; jztii∈C2, which we will
call source and target spinors, respectively.1 Explicitly, the
components of these spinors are

jzsi i ¼
�
zs0i
zs1i

�
; ð1Þ

and similarly for jzti. For convenience, we define their
conjugate and dual spinors [19]

hzsi j ¼ ðz̄s0i ; z̄s1i Þ; jzsi � ¼ −iσ2jz̄si i ¼
�−z̄s1i

z̄s0i

�
; ð2Þ

and similarly for jzti.
We endow the spinors with canonical commutation

relations, defined by

fzsAi ; z̄sBj g ¼ fztAi ; z̄tBj g ¼ −iδABδij; ð3Þ

and the remaining Poisson brackets are zero. This Poisson
bracket algebra is invariant under the following trans-
formation:

jzs;t Ai j → jzs;t Ai j=
ffiffiffi
β

p
; arg zs;t Ai → β arg zs;t Ai ; ð4Þ

where β∈Rþ is the Barbero-Immirzi parameter (this will
become clear below, when looking at the holonomy-flux
algebra). This ambiguity in the choice of canonical vari-
ables will be relevant in Sec. V.
This parametrization of T�SUð2Þ in terms of two spinors

is the classical analog to Schwinger’s representation of
SU(2) by two decoupled harmonic oscillators [30].
According to this representation, by canonically quantizing
the spinors with the commutation relations (3), we will
obtain two harmonic oscillators on each edge, describing
the SU(2) irreducible representation associated with such
edge [15,19,30].

1Note that, although we will use bra-ket notation for the
spinors, the whole formalism discussed in this paper is purely
classical.

CENDAL, GARAY, and GARAY PHYS. REV. D 109, 126011 (2024)

126011-2



From these spinors we can reconstruct the holonomies gi
and the fluxes X⃗s;t

i [19]:

gi ≔
jzti�hzsi − jztii½zsi jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihztijztiihzsi jzsi i
p ; ð5Þ

X⃗s;t
i ≔

1

2
hzs;ti jσ⃗jzs;ti i; Xs;t

i ≔ jX⃗s;t
i j ¼ 1

2
hzs;ti jzs;ti i: ð6Þ

The Poisson bracket between the holonomies and the
fluxes is

fgi; X⃗s;t
j g ¼ �igiσ⃗δij=2: ð7Þ

The Barbero-Immirzi parameter β divides the flux and
nontrivially modifies the holonomy, in such a way that the
Poisson bracket is invariant under the transformation (4) as
happens in LQG. The action of gi associates the (normal-
ized) spinors on one vertex with the dual (normalized)
spinors on the other vertex:

gi
jzsi iffiffiffiffiffiffiffiffiffiffiffiffiffihzsi jzsi i

p ¼ jzti�ffiffiffiffiffiffiffiffiffiffiffiffihztijztii
p ; gi

jzsi �ffiffiffiffiffiffiffiffiffiffiffiffiffihzsi jzsi i
p ¼ −

jztiiffiffiffiffiffiffiffiffiffiffiffiffihztijztii
p :

ð8Þ

Each edge of a spin network carries an irreducible
representation of SU(2). This representation must be the
same seen from each of the two vertices that share the edge.
In the spinorial formalism, this condition translates into the
fact that the norm of the spinors jzsi i and jztii must be the
same, for which we impose the matching constraint

Ci ¼ hzsi jzsi i − hztijztii ¼ 2ðXs
i − Xt

iÞ ¼ 0: ð9Þ

This constraint generates (via Poisson brackets) U(1)
transformations on the spinors. This will be of particular
importance for the geometrical interpretation of our graphs,
as we will see in the next subsection. It can be shown that
there is a diffeomorphism between the phase space of
each edge (removing the zero-norm vectors) T�SUð2Þ−
fjX⃗j ¼ 0g on the one hand, and the space C2 × C2 of the
spinors at each end of the edge reduced by the matching
constraint on the other hand [19].
The components of the vectors X⃗s;t

i form two Lie
algebras suð2Þ via Poisson brackets and their action (via
Poisson brackets) on the spinors jzs;ti i generates SU(2)
transformations. Thus, the closure vectors, defined as the
sum of all the flux vectors in each vertex, X⃗ s;t ¼PN

k¼1 X⃗
s;t
k ,

generate global SU(2) transformations in all the spinors in
that vertex. Since we seek to obtain an SU(2)-invariant
theory, our observables must be invariant under the trans-
formations generated by the closure vectors. The SU(2)
invariance of the intertwiners in LQG is recovered upon
quantization if the so-called closure constraints have been

previously imposed [19]

X⃗ s;t ¼
XN
i¼1

X⃗s;t
i ¼ 0: ð10Þ

We will use this formalism in the subsequent sections in
order to study the dynamics of a truncated model within
the LQG.

B. Twisted geometries

Spin networks are eigenstates of the area and volume
operators, leading to a notion of discrete geometry given
by a graph with chunks of volume attached to the vertices
and quanta of area associated with the edges. This notion
arises after quantization, but we can look for an equivalent
framework that allows us to understand geometrically the
graphs at the classical level. One such framework is given
by the twisted geometries [23,24].
The closure constraint (10) on noncoplanar vectors is

precisely the condition required by Minkowski’s theorem
[22]. Therefore, these vectors define a unique polyhedron at
each vertex, whose faces are orthogonal to the vectors and
its areas equal their norms. The faces associated with the
same edge but different vertex are understood as adjacent,
and the matching constraint (9) causes both faces on each
edge to have the same area. However, there is no restriction
on the shape of the faces. The faces associated with the
same edge do not necessarily have to fit together, giving a
notion of twist between adjacent faces. The twist on each
edge is parametrized by the twist angle ξi ∈ ½−π; π�.
Consequently, a graph will describe a discretization of
space, in which the polyhedra that share an edge will have
an adjacent face with the same area but different shapes.
For this reason this formalism is known as twisted geo-
metries [23,24]. According to this formalism, the phase
space corresponding to each edge i connecting two vertices
is described by ðX̂s

i ; X̂
t
i; Xi; ξiÞ, where X̂s

i and X̂t
i are the

normal vectors to the source and target faces corresponding
to the edge i; Xi ≔ Xs

i ¼ Xt
i is the area of the faces

associated with the edge i; and ξi is the twist angle of
that edge. See Fig. 1 for a graphical representation of the
polyhedra associated with a given graph.
Once the matching (9) and closure (10) constraints are

imposed, the phase space of the twisted geometries proves
to be isomorphic to the gauge-invariant classical phase
space of each edge. The quantization of this phase space
gives us the Hilbert space of LQG [23,24].
Alternatively, one could impose additional constraints

that fix the shapes of the adjacent faces, eliminating
the twist. Imposing these constraints on graphs dual to
triangulations, the twisted geometries reduce to Regge
geometries [24,31–33]. In the past, there have been
attempts to quantize Regge geometries without success
[34]. In this sense, the degree of freedom associated with
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the possibility of having faces with different shapes on the
same edge allows us to quantize the twisted geometries to
obtain LQG [24].

III. TWO-VERTEX MODEL

We will now apply the formalisms explained in the
previous section to describe the two-vertex model and
introduce the dynamics proposed in [14,17]. We will then
study the evolution of the volume of the dual polyhedra to
the two-vertex graph. To do this, we will use the geometric
quadrupole proposed in [27], which allows us to obtain an
analytical expression that approximates the volume of the
polyhedra and study its evolution.

A. Description and dynamics of the two-vertex model

Let us consider the two-vertex model. We will label the
vertices2 by α and β (see Fig. 2) [14,15,17]. Following the

standard notation in the literature, we will denote spinors at
vertex α as jzii ≔ jzαi i, spinors at vertex β as jwii ≔ jzβi i,
and the vectors at each vertex as X⃗i ≔ X⃗α

i and Y⃗i ≔ X⃗β
i .

The simplicity of this model has made it possible to
implement a nontrivial dynamics. With this aim, we
consider the SU(2)-invariant observables [14,15] (at the
vertex α)

Eα
kl ¼ hzkjzli; Fα

kl ¼ ½zkjzli; F̄α
kl ¼ hzljzk�; ð11Þ

and likewise for the vertex β. Using these observables, we
construct the Hamiltonian H ¼ MC proposed in [14,15],
where

C ¼
XN
k;l¼1

�
λEα

klE
β
kl þ Re

�
γFα

klF
β
kl

��
; ð12Þ

λ∈R; γ ∈C are constants with units of inverse length,3

and the lapse M is a Lagrange multiplier that enforces
the Hamiltonian constraint C ¼ 0. This Hamiltonian is
constructed to the lowest order in the operators (11)
(treating both vertices equally). It is SU(2)-invariant, i.e.
fH; X⃗g ¼ fH; Y⃗g ¼ 0, where X⃗ and Y⃗ are the closure
vector (10) at the vertices α and β, respectively.
Furthermore, it satisfies the matching constraint, so it is
U(1) invariant on every edge, i.e. fH; Cig ¼ 0. For sim-
plicity, the coupling constants λ and γ are taken edge
independent but, in principle, they could also be different
on each edge [14,17]. Nevertheless, the symmetry reduc-
tion to the UðNÞ-invariant sector will impose edge

FIG. 1. (a) Example of a portion of a graph and (b) representa-
tion of the dual polyhedra to this graph given by the twisted
geometries. We indicate with the same colors in both figures the
edges and their corresponding polyhedra. We have taken a low
number of edges for simplicity.

FIG. 2. Two-vertex graph, labeled by α and β, with N edges,
and their respective spinors.

2Note that the concept of source and target vertices depends on
the edge, while the labels α and β characterize concrete vertices.
This notation is more convenient for the two-vertex model.

3Note that C is a Hamiltonian constraint that would come from
integrating the Hamiltonian density from LQG over a fiducial
spatial volume and therefore the coupling constants carry this
information.
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independence on the constants [14], as it is already
assumed in (12).

B. Volume and quadrupole of a surface

In Sec. II B it was shown that, as a consequence of the
closure constraint, the interpretation of twisted geometries
assigns a dual polyhedron to each of the two vertices of our
graph, thus providing a classical notion of areas at the edges
and volumes at the vertices. In this section we will focus on
the polyhedron associated with the vertex α. The reasoning
is completely analogous for the vertex β.
Minkowski’s theorem [22] ensures the existence of a

polyhedron associated with a set of vectors satisfying the
closure constraint, but it does not give a prescription for the
construction of the polyhedron. Although the polyhedron-
reconstruction algorithm has recently been presented in
[25,26] and used in [17] in order to compute the volume
numerically, there is no analytical formula for the volume
of a polyhedron with more than four faces in terms of the
normal vectors to its faces. The tetrahedron (N ¼ 4) is an
exception, and the volume squared is given by [27]

V2 ¼ 2

9

			X⃗1 ·
�
X⃗2 ∧ X⃗3

�			: ð13Þ

In order to analytically study the behavior of the volume
of general polyhedra (with N > 4), we can use a geo-
metric multipole expansion for closed surfaces [27]. This
expansion defines the monopole as the surface area and
the dipole as the center of mass of the surface [which
becomes null when the closure constraint (10) is applied].
Additionally, the geometric quadrupole of the polyhedron α
is defined as [27]

TIJ ¼
XN
k¼1

XI
kX

J
k

Xk
: ð14Þ

This quadrupole gives us basic information about the shape
of the surface: its eigenvalues have a nontrivial relation
with the principal radii of the ellipsoid that best approx-
imates the surface in question, i.e. the ellipsoid with the
same quadrupole [27].
Given that Xk represents the area of the kth face, the

determinant of the geometrical quadrupole has an inter-
pretation as a volume squared. Previous papers have
explored the use of this determinant as an alternative to
the volume squared of the polyhedron [17,27], showing
that both the determinant of the quadrupole and the volume
squared (numerically calculated using the polyhedron-
reconstruction algorithm presented in [25,26]), although
they do not coincide in value, have the same behavior in
terms of their growth and extrema [17]. Therefore, the
determinant of the quadrupole may be a good tool to study
the evolution of the volume, for which we define the
following function:

Ṽ2 ¼ 4π

3
detT ¼ 2π

9
εIJKεLMNTILTJMTKN; ð15Þ

where εIJK is the Levi-Civita symbol (with ε123 ¼ 1). We
will then use the function (15), which we will refer to as the
approximate volume squared, to approximately study the
evolution of our polyhedra.

C. Evolution of the volume

The evolution of the volume under the dynamics given by
the Hamiltonian (12) has been numerically studied in [17]
using the polyhedron-reconstruction algorithm [25,26]. In
order to obtain an analytical expression for the volume and
its evolution, we will use the volume approximation (15).
Indeed, after carrying out a straightforward but lengthy
calculation, we get the evolution of the volume of the
polyhedron associated with the vertex α:

˙̃V ≔ fH; Ṽg ¼ π

3Ṽ
εIJKεLMNṪILTJMTKN

¼ πM

3Ṽ
Im

XN
i;j;k;l¼1

ðX⃗i ∧ X⃗jÞ · X⃗l

XiXjXl


ðX⃗i ∧ X⃗jÞ · X⃗l

Xl

×
�
λEα

klE
β
klþγFα

klF
β
kl

�
− 2
�
X⃗i ∧ X⃗j

�
I

×
�
λGI

klE
β
kl þ γSIklF

β
kl

��
; ð16Þ

where the dot denotes derivative with respect to the evolution
parameter t associated with the HamiltonianH, and we have
introduced the following (non-gauge-invariant) functions:

SIkl ¼ ½zkjσIjzli ¼ SIlk; GI
kl ¼ hzkjσIjzli ¼ ḠI

lk: ð17Þ

We observe in the analytical expression for the evolution
of the volume (16) that a degenerate polyhedron (i.e.
with all its faces parallel to each other) has null volume
throughout the entire evolution. Similarly, we can obtain
the evolution of the polyhedron associated with the vertex β
by substituting in Eq. (16) the functions and vectors defined
on α by the corresponding ones defined on β and vice versa.
The behavior of both the evolution of the approximate

volume (15) and the exact one (calculated numerically)
is qualitatively similar, as shown in [17]. Note that, even
though the volume of the two polyhedra will differ in
general, the matching constraint ensures that the area of
both polyhedra remains equal to each other.

IV. UðNÞ-INVARIANT SECTOR
OF THE TWO-VERTEX MODEL

The two-vertex model presents an invariant sector under
a global UðNÞ symmetry (whose generators involve oper-
ators acting on both vertices) [14,15]. One of the main
results in this sector is that the equations of motion of the
total area of the polyhedra are mathematically analogous to
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the equations of motion of volume in LQC [15]. This has
lead to an interpretation of the two-vertex model as a
cosmological model. In this section we will review the
UðNÞ symmetry and we will study the dynamics of
the two-vertex model (fully described with spinors) on
the UðNÞ-invariant sector.

A. UðNÞ symmetry

The Uð1ÞN symmetry generated by the action of the
matching constraints Ci on each edge is part of a greater
UðNÞ symmetry generated via Poisson brackets by [15]

Eij ¼ Eα
ij − Eβ

ji: ð18Þ

Indeed, we observe that the matching constraint associated
with the edge k is simply the kth element Ck ¼ Ekk of the
diagonal of Eij.
The generators Eij are constants of motion, given that

fEij; Hg ¼ 0. Conversely, the Hamiltonian of the system is
invariant under the UðNÞ transformation generated by Eij.
These transformations will be symmetries of the system
only if the constraints (in this case the matching and closure
constraints) are invariant under the action of Eij. If not,
applying the UðNÞ transformation generated by Eij on
configurations satisfying the constraints would lead to
configurations not satisfying them. A simple calculation
shows that, while the closure constraint is invariant,
fEij; X⃗g ¼ 0, the action of Eij on the matching constraint
(9) is nontrivial,

fCk; Eijg ¼ i
��
Eα
ik − Eβ

ki

�
δkj −

�
Eα
kj − Eβ

jk

�
δki
�
: ð19Þ

That is, the action of Eij on a pair of spinors that initially
satisfy the matching constraint (9) will generally yield
another pair of spinors that do not. However, we can work
on the subspace of spinors that satisfy fCk; Eijg ¼ 0,
restricting our phase space to those configurations that
satisfy �

Eα
ik − Eβ

ki

�
δkj ¼

�
Eα
kj − Eβ

jk

�
δki: ð20Þ

The diagonal case i ¼ j is trivial (the matching constraint
Ck commutes with itself, as it generates uncoupled U(1)
transformations). The case i ≠ j ¼ k gives us the constraint

Eij ¼ Eα
ij − Eβ

ji ¼ 0; ð21Þ

which implies that

hzijzji ¼ hz̄jjz̄ii ¼ hwjjwii: ð22Þ

To satisfy this constraint, the spinors must be related by a
unitary matrix U∈Uð2Þ such that jwii ¼ Ujz̄ii. We can

write any element U∈Uð2Þ as U ¼ e−iφ=2h, where
h∈SUð2Þ and φ∈ ½−π; π� is an arbitrary phase. The theory
is SU(2) invariant, so the SU(2) part of U is pure gauge and
we can fix it without loss of generality. Doing so, the only
part that remains is the phase e−iφ=2 ∈Uð1Þ. Therefore,
we find that the constraint Eij ¼ 0 imposes the following
relation between the spinors on each edge:

jwii ¼ e−iφ=2jz̄ii: ð23Þ

The Hamiltonian is invariant under the action of Eij.
Thus initial conditions satisfying the UðNÞ symmetry [that
is, pairs of initial spinors satisfying (23)] will ensure UðNÞ
symmetry throughout the whole evolution. Expressing
the action on the phase space surface given by Eij ¼ 0

and applying the relation (23), we find that only one
degree of freedom remains. If we choose that degree of
freedom to be the angle φ, the canonical conjugate variable
will be the total area of the polyhedra [14] A ¼P

N
i¼1 Xi ¼

P
N
i¼1 Yi, i.e.

fφ; Ag ¼ 1: ð24Þ

At this point, it is important to note that the ambiguity (4)
parametrized by the Barbero-Immirzi parameter β trans-
lates directly to these variables in the form of the invariance
of the Poisson brackets between them under constant Weyl
transformations with parameter β, i.e. A → A=β, φ → βφ.
Then the Hamiltonian constraint (12) on the surface

Eij ¼ 0 in terms of the canonical pair ðφ; AÞ reduces to

C̆ ¼ 2A2ðλþ γ cosφÞ; ð25Þ

where the symbol ˘ denotes UðNÞ-symmetry reduction. We
can choose γ ∈Rþ without loss of generality, as any phase
can be absorbed in the definition of φ. After imposing the
symmetry and the matching constraint, our Hamiltonian
(25) only depends on two variables: the total area A of the
polyhedron and the angle φ. We observe that both variables
are global, in the sense that they have no information about
different edges and vertices. Because of that, the relation
(23) has been interpreted as a natural way of imposing
homogeneity and isotropy on the graph [14,15].
Imposing the constraint C̆ ¼ 0means that either cosφ ¼

−λ=γ or A ¼ 0. The latter can always be imposed, while the
former is only possible if jλj < γ. As we commented in
Sec. III C, the null-volume (and thus the null-area) poly-
hedra are decoupled from the rest of the configurations. So
we can focus on the case of constant φ. Using the UðNÞ
symmetry-reduced Hamiltonian constraint (25), we can
derive the evolution equations for the conjugate variables φ
and A as follows:

φ̇ ¼ fφ; H̆g ¼ 4MA½λþ γ cosφ� ¼ 0; ð26Þ
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Ȧ ¼ fA; H̆g ¼ 2MγA2 sinφ ¼ 2MA2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ2 − λ2

q
: ð27Þ

Fixing the Lagrange multiplier M ¼ 1, the solution to
Eq. (27) is

AðtÞ ¼ 1

A−1
0 − 2t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ2 − λ2

p ; ð28Þ

where A0 ¼ Aðt ¼ 0Þ. For jλj > γ, the only possible solu-
tion to the constraint is AðtÞ ¼ 0 with arbitrary constant φ.

B. Evolution of the volume

After restricting our system to the UðNÞ-invariant phase
space sector by imposing the relation (23), we can study
the evolution in this sector of observables defined in the
complete phase space. In this section we will study the
volume, for which we have an approximation Ṽ for a
generic polyhedron with N faces given by (15).
After performing some algebra we find that the evolu-

tion of the approximation for the volume (16) in the
UðNÞ-invariant sector is

˙̃V ¼ 3MAγṼ sinφ: ð29Þ

As previously mentioned, while there is no general
equation to express the volume of an irregular polyhedron
with N faces as a function of the normal vectors to the
faces, for the specific case of the tetrahedron (N ¼ 4) we
can express the volume as a function of X⃗i using (13).
Therefore, after computing the evolution of X⃗, given by

ẊI
i ¼ fXI

i ; Hg ¼ −MIm

 XN
k¼1

λGI
kiE

β
ki þ γSIkiF

β
ki

!
; ð30Þ

it is straightforward to compute the evolution of the volume
of the tetrahedron within the UðNÞ-invariant sector

V̇ ¼ 3MAγV sinφ: ð31Þ

We observe that the approximate volume Ṽ (for any
number of faces) and the exact volume V for the tetra-
hedron have the same evolution in the reduced sector
and, hence, we conclude that for the tetrahedron Ṽ ∝ V.
Although the approximation Ṽ for an arbitrary number of
faces N still requires further investigation, the fact that its
evolution on the UðNÞ-invariant sector is identical to that of
V for the tetrahedron strengthens the argument for using Ṽ
in the general case.
On the other hand, by examining (29) and (27), we

immediately observe that, within the UðNÞ-invariant sector,
the approximate volume Ṽ and A (that is the total area of

the polyhedron) satisfy the relation 2 ˙̃V=Ṽ ¼ 3Ȧ=A, which
implies

Ṽ ¼ a0A3=2; ð32Þ

where a0 is a constant determined by the initial conditions.
Equation (32) corresponds to what one would obtain when
uniformly scaling all dimensions of a three-dimensional
body: when we scale all three dimensions by a factor l,
the volume and area differentials scale as l3 and l2,
respectively. Consequently, the relation (32) is that of a
polyhedron undergoing a homogeneous and isotropic
expansion, further strengthening the interpretation of this
UðNÞ-invariant sector as a cosmological (homogeneous
and isotropic) sector.

C. Geometric interpretation

Let us now interpret the two conjugate variables of the
UðNÞ-symmetric Hamiltonian (25). As shown before, the
variable A is the sum of the norms of all the vectors X⃗i,
which directly corresponds to the total area of the poly-
hedron in the dual graph formalism within the framework
of twisted geometries. On the other hand, the variable φ
defines the SU(2) holonomy [14]. We will now provide a
simple relation between φ and the twist angles ξi (described
in Sec. II B).
The framework of twisted geometries defines a twist

angle ξi for each edge. Two possible definitions of ξi exist,
one in terms of the components ðz0i ; w0

i Þ of the twistor, and
the other in terms of ðz1i ; w1

i Þ [24]:

ξAi ¼ i ln
zAi w

A
i

z̄Ai w̄
A
i
; ð33Þ

with A ¼ 0, 1. Both definitions are related by a canonical
transformation, making them equivalent descriptions of the
twist angle [24]. At first sight, this angle is not related to the
variable φ defined in the UðNÞ-symmetry-reduced sector.
However, using the definition (33) and the condition (23),
we find that in this sector

ξAi ¼ i ln
ðe−iφ=2w̄A

i ÞwA
i

ðeiφ=2wA
i Þw̄A

i

¼ φ ≔ ξ: ð34Þ

This shows that the twist angle is the same for all the edges
and that ξ0i ¼ ξ1j , which means that the two definitions
given by (33) coincide in the UðNÞ-reduced sector.
Therefore, we can conclude that, in this case, the variable
φ is the twist angle, which is independent of the edge.
In summary, we have found that the reduced sector

[under the global UðNÞ symmetry] of the two-vertex model
depends solely on two canonically conjugate variables
which are homogeneous and isotropic, i.e. independent
of the edges and vertices. The first one is the total area A of
the polyhedron, directly related to its volume through (32).
Therefore, its evolution can be interpreted as expan-
sion. The second phase space variable is the twist angle
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φ ¼ ξ which, as briefly discussed in the next paragraph,
is related to the extrinsic curvature. Thus, our model
possesses a unique curvature that is independent of edges
and a single polyhedron-area independent of vertices.
Considering the results and conclusions of previous works
[14,15], the fact that our dynamical variables admit an
interpretation of area [one-to-one related with the volume
by Eq. (32)] and extrinsic curvature strengthens the
cosmological interpretation of this model.
According to the proposal of Freidel and Speziale [24],

the discrete twist angle ξi associated with the edge i can
be related to the continuous extrinsic curvature by ξ2i ¼
−l2 detðbla

i KI
aσIÞ, where l is a small length scale, bla

i is a
unitary vector along the edge i, and Ka is the suð2Þ-valued
extrinsic-curvature one-form. In the UðNÞ-symmetric two-
vertex model, the twist angle does not depend on the edge i
as we have seen and hence the edge information disappears
from the relation between twist angle and the extrinsic
curvature proposed in [24] pointing towards an homo-
geneity and isotropy, which we pin down in the following
section.

V. LQC FROM THE UðNÞ-INVARIANT
TWO-VERTEX MODEL

In this section we show that the UðNÞ-invariant two-
vertex model is indeed a reduction of the full LQG theory
which provides LQC effective dynamics.

A. The constraint equation

Let us start by noting that the two-vertex Hamiltonian
(12) can be modified as long as we respect the SU(2)
symmetry and preserve the commutation with the matching
constraint. Thus, we consider the following generalization
of the UðNÞ-reduced Hamiltonian constraint

H̆ ¼ 2MA2½λþ γ cosφþ gðAÞ�; ð35Þ

where gðAÞ is an arbitrary smooth function with dimensions
of inverse length. Notice that this generalized reduced
Hamiltonian constraint can be obtained by imposing the
UðNÞ symmetry on different generalizations of Hamiltonian
constraints of the kind of (12), that is, different classical
Hamiltonians for the general case may lead to the same
homogeneous and isotropic reduced sector.
In order to explicitly connect with the language of

cosmology and motivated by the idea that the variable A
corresponds to an area, we perform the following canonical
transformation

a ¼
ffiffiffiffi
A

p
; πa ¼ −2

ffiffiffiffi
A

p
φ: ð36Þ

The Barbero-Immirzi ambiguity (4) becomes, in this case,
constant Weyl invariance parametrized by

ffiffiffi
β

p
, i.e. under

the transformation a → a=
ffiffiffi
β

p
, πa →

ffiffiffi
β

p
πa. From now on,

we will keep the Barbero-Immirzi parameter explicit since
it will be useful in the following. Then the Hamiltonian
constraint (35) takes the form H̆ ¼ N C̆, where

C̆ ¼ −
4γ

β2
a sin2

βπa
4a

−
κ

γ
aþ a3fðaÞ; ð37Þ

with κ ¼ −2γðλþ γÞ=β2, we have conveniently redefined
the Lagrange multiplier as M ¼ N =a3, and fðaÞ ¼
2ðβaÞ−2gða2=βÞ has dimensions of inverse length. This
Hamiltonian constraint (37) can be written in terms of
ða; ȧÞ by using the equation of motion for a,

ȧ ¼ fa; H̆g ¼ −N
γ

β
sin

βπa
2a

; ð38Þ

and replacing it back into (37). An straightforward manipu-
lation of the resulting expression allows us to write the
constraint equation C̆ ¼ 0 as

1

N 2

ȧ2

a2
¼ γR

�
1 −

a2β2

4γ
R
�
; ð39Þ

where

R ¼ f −
κ

γa2
: ð40Þ

The Hamiltonian constraint (37) and its configuration-
space counterpart (39) will be our starting point for
establishing the connection with LQC.

B. FLRW cosmology as the small-twist regime
of the two-vertex model

The small-twist limit jφj ≪ 1 is equivalent to jπa=aj ≪ 1.
In the lowest order the Hamiltonian constraint (37) acquires
the form

C̆ ¼ −
γ

4

π2a
a
−
κ

γ
aþ a3f: ð41Þ

Note that in this limit the Barbero-Immirzi parameter
disappears as expected. From this Hamiltonian [or equiv-
alently from (38)] we obtain ȧ ¼ −N γπa=ð2aÞ, which,
when replaced back into the constraint, yields

1

N 2

ȧ2

a2
¼ γR: ð42Þ

This equation is precisely Friedmann’s equation for a
homogeneous and isotropic spacetime with spatial sections
of curvature κ and matter content given by the function f.
Indeed, a homogeneous and isotropic universe is described
by the FLRW metric
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ds2 ¼ −N 2ðtÞdt2 þ a2ðtÞdΣ2
k; ð43Þ

where N ðtÞ is the lapse function, aðtÞ is the scale factor,
dΣ2

k ¼ dr2=ð1 − kr2Þ þ r2dΩ2
2, k is the constant that char-

acterizes the curvature of the spatial slices, and dΩ2
2 is the

metric of the unit two-sphere. The general-relativistic
dynamics for this FLRW universe filled with a perfect
fluid with density ρ and pressure p is described by the
Friedmann’s equation

1

N 2

ȧ2

a2
¼ 8πG

3
ρ −

k
a2

; ð44Þ

together with the continuity equation

aρ̇ ¼ −3ȧðρþ pÞ: ð45Þ

For barotropic fluids the equation of state is such that the
pressure depends only on the density and the continuity
equation implies that the density is a given function of the
scale factor ρðaÞ.
In order to compare both dynamical equations (42) and

(44) on equal footing it is necessary to introduce a fiducial
volume VΣ with respect to the line element dΣ2

k (see
footnote 3). This factor naturally appears multiplying both
ρ and 1=G when considering the Hamiltonian for FLRW
dynamics. In this comparison we then see that the small-
twist regime of the UðNÞ-invariant two-vertex model
describes a FLRW cosmology. The cosmological param-
eters and energy density are determined by the parameters
γ, κ, and the function f that define the two-vertex model:
The gravitational constant is given by G ¼ 3γVΣ=ð8πÞ, the
spatial curvature by k ¼ κ, and the matter content is a
barotropic fluid with density ρ ¼ f=VΣ and pressure deter-
mined by the continuity equation p ¼ −ða3fÞ0=ð3VΣa2Þ,
the prime denoting derivative with respect to a.
As a simple example, the two-vertex model with

fðaÞ ¼
X
n

fna−αn ð46Þ

describes a cosmology filled with a number of perfect fluids
with equations of state

pn ¼ wnρn; wn ¼ αn=3 − 1: ð47Þ

As we saw in Sec. IV C, φ ¼ ξ can be interpreted as
extrinsic curvature given by

ξ2i ¼ −l2 detðbla
i KI

aσIÞ ¼ l2bla
i
blb
i KacKc

b: ð48Þ

The extrinsic curvature of the spatial slices of a FLRW
universe is proportional to the spatial metric qab, i.e.
Kab ¼ qabȧ=ðN aÞ. This implies that ξi ¼ lȧ=ðaN Þ,

i.e. that it is independent of the edge i in agreement with
the UðNÞ-invariance, which can be written as

φ ¼ ȧl
N a

: ð49Þ

Therefore, Freidel and Speziale’s interpretation of the twist
angle in terms of the extrinsic curvature [24] finds here an
explicit realization which allows in addition to interpret γ
[and hence G=ðβ2VΣÞ] as the inverse of the fundamental
length scale in the two-vertex model

l ¼ βa=γ; ð50Þ

as can be directly seen by comparing Eq. (49) and
φ ¼ −βπa=ð2aÞ ¼ βȧ=ðN γÞ.

C. LQC effective dynamics

In the previous section we have shown that the two-
vertex dynamics describes an FLRW spacetime filled with
perfect barotropic fluids in the lowest order in the twist
angle, that is, in the low-curvature regime. This has allowed
us to write the gravitational constant, the spatial curvature,
and the matter density in terms of the parameters γ and κ
and the function f that characterize the two-vertex model.
In the old dynamics of LQC for a universe with a free

scalar field and vanishing spatial curvature, the semi-
classical states (i.e. Gaussian coherent states sharply
peaked at the classical FLRW trajectories in the low-
curvature regime) follow the effective Friedmann’s equa-
tion, as can be derived from [35]

1

N 2

ȧ2

a2
¼ 8πG

3
ρ

�
1 −

a2ρ
ρ⋆

�
; ð51Þ

to lowest order in the Gaussian spread of the semiclassical
state, where ρ is the energy density of the scalar field,
ρ⋆ ¼ ð8πGβ2Δ=3Þ−1, and Δ is the (constant) area gap. The
maximum value of the energy density (reached at the
bounce) is ρmax ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
ρ3⋆=ρ0

p
, where ρ0 ¼ ρja¼1.

Comparing Eq. (39) with κ ¼ 0 (as corresponds to
vanishing spatial curvature) and (51) we observe that the
U(N)-symmetric two-vertex model describes the old effec-
tive dynamics of LQC with an area gap Δ ¼ 1=ð2γÞ2 and a
minimum fiducial length μ0 ¼

ffiffiffiffi
Δ

p ¼ 1=ð2γÞ.

D. Towards LQC improved dynamics

The UðNÞ-symmetric two-vertex model describes the old
effective dynamics of LQC. Nevertheless, we can try to
implement the improved dynamics [36] in a similar way to
that of LQC by suitably modifying the model.
To do so, let us go back to the relation (23) imposed by

the UðNÞ symmetry on the spinors. Note that, in the UðNÞ
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sector, the Poisson structure (3) for the spinors determines
the Poisson bracket between the twist angle φ and the total
area A, so that they are canonically conjugate variables.
To introduce the improved dynamics, we need to change
this structure so that φ and A are no longer canonically
conjugate. One way of doing this is to change the Poisson
bracket to fφ; 2 ffiffiffiffi

A
p g ¼ 1, while keeping the Hamiltonian

(35). Another equivalent option, which is the one wewill use
in the following, is to introduce a new variable ϕ ¼ φ=

ffiffiffiffi
A

p
canonically conjugate to A, so that fϕ; Ag ¼ 1. Then, the
UðNÞ relation (23) now becomes

jwii ¼ e−iϕ
ffiffiffi
A

p
=2jz̄ii. ð52Þ

The spinor Poisson structure that leads to this modification
is no longer (3), so this modified model is not a direct
consequence of the two-vertex model but of a suitably
modified one, whose structure is beyond the scope of this
paper. The Hamiltonian in terms of these new canonical
variables ϕ and A is

H̆ ¼ 2MA2
�
γð−1þ cos

� ffiffiffiffi
A

p
ϕÞ�þ gðAÞ�; ð53Þ

where we have set κ ¼ 0 as before for comparison
with LQC.
If we now follow steps analogous to those of Sec. V C,

then we obtain

1

N2

ȧ2

a2
¼ γfðaÞ

�
1 −

β3

4γ
fðaÞ


; ð54Þ

where now fðaÞ ¼ 2β−3gða2=βÞ.
On the other hand, the improved dynamics formalism

introduces in the holonomies a nonconstant minimum
fiducial length μ̄ ¼ ffiffiffiffi

Δ
p

=a. The resulting effective LQC
equation is [37]

1

N 2

ȧ2

a2
¼ 8πG

3
ρ

�
1 −

ρ

ρ⋆

�
: ð55Þ

Therefore, now the maximum energy density (reached
at the bounce) is precisely ρ⋆ and, thus, independent of
the initial energy density ρ0. We see that the modified
UðNÞ-symmetric two-vertex dynamics (54) provides the
effective improved dynamics (55) with energy density
ρ ¼ f=VΣ, gravitational constant G ¼ 3γVΣ=ð8πÞ and area
gap Δ ¼ β=ð4γ2Þ. Consequently, the μ̄ of the LQC
improved dynamics can be written in terms of the modified
two-vertex parameters as μ̄ ¼ ffiffiffiffi

Δ
p

=a ¼ ffiffiffi
β

p
=ð2γaÞ.

As we have already mentioned, this result is a conse-
quence of an ad hoc modification of the two-vertex model

(very much in the same way as the improved dynamics is
introduced in LQC). Nevertheless, this modification is
useful to further understand the underlying physics behind
the imposition of the improved dynamics in LQC and its
relation with full LQG.

VI. CONCLUSIONS

The two-vertex graph has proved to be a useful model
within LQG in order to implement dynamics and to study
the emergence of an interesting cosmological behavior,
at least in a symmetry-reduced sector [14–18]. Therefore,
this model provides an excellent arena to explore the main
open problems of the theory. On the other hand, the
spinorial formalism introduced in [19] gives us a conven-
ient mathematical formulation of the kinematic Hilbert
space of LQG.
We have made use of the spinorial formalism applied to

the two-vertex model in order to analytically study the
evolution of the classical volume. This formalism provides
normal vectors to the faces of the closed polyhedra (the
conditions for the Minkowski theorem are constraints)
associated with each of the vertices. Nevertheless, there
is no known analytical formula to compute the volume
of a general polyhedron (with N > 4 faces) in terms of the
normal vectors that generate it. Instead, we have used
geometric quadrupoles [27] in order to construct an
approximation of the volume that reproduces the quali-
tative behavior of the volume [17]. We have calculated
the equation of motion for this approximation, finding
that degenerate polyhedra—with all the faces parallel
to each other—have null volume forever, i.e. zero-
volume singularities are decoupled from the rest of
configurations.
The UðNÞ-symmetric sector of the two-vertex model

contains just one degree of freedom corresponding to the
twist angle and the total area of the polyhedra, which are
canonically conjugate. We have found that the approxima-
tion to the volume in terms of quadrupoles is proportional
to the exact volume for the case of the tetrahedron (N ¼ 4).
It is left for future work to check whether this behavior
is true for any other number of faces. Comparing the
evolution of the quadrupole approximation to the volume
and the total area in the UðNÞ-symmetric sector, we have
found that they precisely follow the evolution one expects
from a homogeneous and isotropic evolution. This relation
is yet another argument for the use of the quadrupole
approximation of the volume and for the interpretation of
the two-vertex model as a cosmological model [at least in
the UðNÞ-reduced sector].
We have shown that a generalization of the two-vertex

Hamiltonian constraint (that preserves the symmetries of
the model) consisting of the addition of a function of the
area, effectively takes into account matter content in the
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form of arbitrary barotropic perfect fluids. In particular,
we have shown that there is a direct relation between the
equation of state and the specific function of the area
introduced in the two-vertex Hamiltonian.
Finally, we have proved that the two-vertex model is

indeed an LQG truncation that effectively describes LQC
with arbitrary barotropic perfect fluids. The LQC flavor
that derives directly from the two-vertex model is the old
dynamics. However, a suitable modification of the Poisson
bracket structure so that the twist angle is canonically
conjugate to the square root of the area (and not the area
itself) leads to the LQC improved dynamics.
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