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We compute the time evolution of the nonequilibrium entropy in the homogeneous isotropization
dynamics of the 1 R-Charge Black Hole model, which has a critical point in its conformal phase diagram
defined at finite temperature and R-charge density. We also evaluate the time evolution of the pressure
anisotropy and the scalar condensate of the medium. We disclose a new feature (not present in the Bjorken
flow dynamics analyzed in previous works), which is observed for all the analyzed initial data: the
formation of a periodic sequence of several close plateaus in the form of a stairway for the entropy density
near thermodynamic equilibrium. We find that the period of plateau formation in the stairway is half the
period of oscillations of the slowest quasinormal mode of the system, which is therefore strongly tied to the
late-time dissipative dynamics of the system associated with the irreversibility of entropy production. For
the particular case of the purely thermal Supersymmetric Yang-Mills plasma at zero density and vanishing
scalar condensate, we find that the period of the stairway is half the period of oscillations of the slowest
quasinormal mode associated with the late-time equilibration of the pressure anisotropy of the fluid, while
at finite chemical potential the slowest quasinormal mode of the system is associated with the late-time
equilibration of the scalar condensate.
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I. INTRODUCTION

The investigation of entropy production and thermal-
ization in initially out of equilibriumdynamical systems is of
fundamental interest for several areas of research in physics
(see, e.g., [1–7]). In a broad sense, one could think on
defining thermodynamic equilibrium for a dynamical sys-
tem as a putative state in the late-time evolution of the system
for which entropy reaches its maximum value and becomes
stationary. Indeed, the second law of thermodynamics states
that for an isolated system the entropy either increases (for
irreversible processes) or remains stationary (for reversible
processes). If a given dynamical system thermalizes, at
equilibrium there should be no net macroscopic flow of
energy and matter within the system (at least for the
timescales where the relevant observations are done).
Therefore, due to the absence of gradients of temperature,

energy, and chemical composition between the different
parts of the system, only reversible processesmay take place
and the entropy remains stationary at equilibrium. It is
important to notice, however, that in some cases one may
have transient time windows with zero entropy production
even though the dynamical system under consideration is
still far from equilibrium—in such cases, although constant
within a limited time interval, the entropy still increases at
late times and may eventually approach a definitive sta-
tionary state where it reaches its maximum value for given
values of internal energy and charge densities (see, e.g.,
[8–10]). Furthermore, the equilibrium state, when it exists,
should not depend on most details of the initial data evolved
in time. Instead, it is characterized by a few macroscopic
parameters like, e.g., temperature (T) and chemical potential
(μ). For given values of these control parameters, a single
stable equilibrium state should exist (besides possibly other
unstable and metastable states), while several far-from-
equilibrium initial data with different time evolutions may
converge to a single stable equilibrium state characterized by
a given value of μ=T. Thus, in a certain sense, entropy
production and thermalization effectively “erase” some
details of the far-from-equilibrium initial states considered,
leading to an effectively universal description of the long
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time, stationary behavior of the system in terms of just a few
macroscopic control parameters.
Some subtleties may arise, however. In fact, as we are

going to discuss in the present work, one may find that the
entropy of some dynamical systems has already approx-
imately equilibrated within some numerical tolerance while
other physical observables (like the condensate of some
scalar operator in a quantum field theory) still have not
reached its equilibrium value. Indeed, more generally, one
may refer to the “thermalization time” of a dynamical
system as the latest characteristic timescale for which all the
relevant observables of the system have reached their
equilibrium values within a given tolerance [11], and then
one may refer to different characteristic equilibration times
for different operators of a given quantum field theory [12].
This is interesting because one may then study how fast
different physical observables equilibrate for different
physical systems initially defined out of equilibrium. In
particular, the holographic gauge-gravity duality [13–16]
allows for the calculation of several kinds of far-
from-equilibrium dynamics in different strongly coupled
quantum media; see, e.g., [8–12,17–47] for a nonexhaus-
tive list.
In Ref. [11], the homogeneous isotropization dynamics

of the top-down holographic 1 R-Charge Black Hole
(1RCBH) model [48–55] was analyzed with the calcu-
lation of the time evolution of the pressure anisotropy and
the scalar condensate for a set of initially homogeneous
but anisotropic far-from-equilibrium states. In the present
work, we numerically evaluate and analyze for the first
time the evolution of the nonequilibrium entropy of the
1RCBH model undergoing homogeneous isotropization
dynamics for several initial data, while also comparing
with the results for the pressure anisotropy and the scalar
condensate of the dynamical medium. Interestingly and
akin to what has been previously found for the inhomo-
geneous Bjorken flow of the same model [10],1 also for
the homogeneous isotropization dynamics there are
numerical solutions for which the corresponding initial
data satisfy all the energy conditions, but whose dynami-
cal evolutions transiently violate the dominant and even
the weak energy conditions when the medium is far from
equilibrium. On the other hand, contrary to what happens
in the Bjorken flow, in the homogeneous isotropization
dynamics of the 1RCBH model the violations of energy
conditions are generally reduced as the ratio μ=T is
increased.
As in the Bjorken flow, for some solutions we also

observe the formation of transient plateaus in the

nonequilibrium entropy, however, differently than in the
Bjorken flow, in the homogeneous isotropization dynamics
not all the transient plateaus are anticipating a posterior
violation of energy conditions. In fact, we observe a more
complex structure of transient plateaus in the homogeneous
isotropization dynamics than in the Bjorken flow of the
1RCBH model.
Indeed, the main result of the present work regards the

disclosure of a new feature corresponding to the formation
of a periodic sequence of several close plateaus for the
entropy density near thermodynamic equilibrium, which is
observed for all the solutions analyzed. Such a structure
resembles the form of a stairway as the entropy approaches
its asymptotic equilibrium value. The near-equilibrium
plateaus for the entropy may be so close to each other
that they might go unnoticed at first glance, therefore they
typically require a high numerical precision to be resolved.
Interestingly, by adopting a not so small tolerance to define
the characteristic equilibration times of different physical
observables, one may effectively conclude that the entropy
in the homogeneous isotropization dynamics of the
1RCBH model approximately equilibrates well before
the scalar condensate, with the latter then setting the actual
thermalization time for this system.2 However, a subtlety
remains in this regard, since the observation of the
sequential close plateaus for the entropy density near
equilibrium indicates that some intriguing and nontrivial
physical effects are still taking place at such late stages in
the evolution of the system. This becomes even more
apparent by the fact that typically the scalar condensate still
presents appreciable oscillations around its asymptotic
equilibrium value even for considerably larger timescales.
In fact, as one of the main results of the present work, we
identify the period of plateau formation in the stairway to
equilibrium entropy as half the period of oscillations of the
slowest quasinormal mode of the system, which is asso-
ciated with the equilibration of the scalar condensate for
finite density states of the medium. For the particular case
of the purely thermal SYM plasma at zero density and
vanishing scalar condensate, we find that the period of the
stairway is half the period of oscillations of the slowest
quasinormal mode associated with the equilibration of the
pressure anisotropy of the fluid.
The present manuscript is structured as follows: in

Secs. II A and II B we briefly review some of the main
aspects used in the holographic computation of the homo-
geneous isotropization dynamics of the 1RCBH model

1The 1RCBH model has as a particular case with zero
R-charge chemical potential and zero scalar condensate: the
purely thermal N ¼ 4 Supersymmetric Yang-Mills (SYM)
plasma, whose Bjorken flow dynamics has also been shown to
admit dynamical solutions with transient violations of energy
conditions [8,9].

2In fact, in Ref. [11] it was argued that the equilibration of the
scalar condensate should be regarded as the thermalization time
of this system, since it was always observed to be much larger
than the isotropization time associated with the (approximate)
vanishing of the pressure anisotropy of the medium. The
inclusion of the nonequilibrium entropy in the set of dynamical
observables analyzed in the present work does not change this
conclusion.
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[11]. In Sec. II C we derive the holographic formula for the
calculation of the holographic nonequilibrium entropy in
this setup, while in Sec. II D we derive the energy
conditions for the 1RCBH model undergoing homo-
geneous isotropization dynamics, besides also discussing
the set of initial data analyzed in the present work. In
Sec. III we present our main results, with the outcomes for
the time evolution of the pressure anisotropy, the scalar
condensate, and the nonequilibrium entropy, with the latter
revealing the stairway structure to equilibrium entropy
which is present for all the numerical solutions analyzed.
The conclusions and future perspectives are presented
in Sec. IV.
In this work we use a mostly plus metric signature and

natural units where c ¼ ℏ ¼ kB ¼ 1.

II. HOMOGENEOUS ISOTROPIZATION
DYNAMICS OF THE 1RCBH MODEL

The 1RCBH model [48–55] is a top-down gauge-gravity
construction holographically dual to a strongly coupled and
conformalN ¼ 4 SYM plasma at finite temperature with a
chemical potential associated with the conserved R-charge
related to an AbelianUð1Þ subgroup of the SUð4Þ R-charge
global symmetry of the boundary quantum field theory. Its
bulk description is given in terms of a five dimensional
Einstein-Maxwell-Dilaton (EMD) action,

S¼ 1

2κ25

Z
d5x

ffiffiffiffiffiffi
−g

p �
R−

fðϕÞ
4

FμνFμν−
1

2
ð∂μϕÞ2−VðϕÞ

�
;

ð1Þ

where κ25 ≡ 8πG5 is the five dimensional gravity constant,
while the dilaton potential VðϕÞ and the Maxwell-dilaton
coupling function fðϕÞ read,

VðϕÞ ¼ −
1

L2
ð8eϕ=

ffiffi
6

p
þ 4e−

ffiffiffiffiffiffi
2=3

p
ϕÞ; fðϕÞ ¼ e−2

ffiffiffiffiffiffi
2=3

p
ϕ;

ð2Þ

where L is the asymptotic AdS5 radius (which we set here
to unity). The bulk action (1) is accompanied by two
boundary actions: the traditional Gibbons-Hawking-York
action [56,57] required for the well posedness of the
Dirichlet boundary condition problem in spacetimes with
boundaries [58] (as in the case of asymptotically AdS
geometries), and a counterterm action [11] constructed via
the holographic renormalization procedure [59–61] with
the purpose of consistently removing the boundary diver-
gences of the full onshell action.
Due to its simplicity and to the fact that it is a rigorous

top-down holographic construction describing a strongly
coupled quantum medium at finite temperature and density
with a critical point in its phase diagram, the 1RCBHmodel
is being widely explored in the holographic literature in

recent years. Indeed, for instance, its thermodynamics has
been analyzed in [54,62], some hydrodynamic transport
coefficients have been calculated in [54,63], the spectra of
quasinormal modes have been obtained in [11,62], several
observables of quantum information theory were evaluated
in [64–66], chaotic properties and the pole-skipping
phenomenon have been addressed in [67,68], while the
holographic renormalization and previous far-from-
equilibrium numerical simulations of homogeneous iso-
tropization dynamics and inhomogeneous Bjorken flow
were discussed in [10,11,38].
The focus of the present work is on the computation of

the nonequilibrium entropy of the 1RCBH model under-
going homogeneous isotropization dynamics, besides the
analysis of the energy conditions during the time evolution
of the system. None of these topics have been addressed
before in such a context and will be discussed in detail in
the present work, but since most of the details of the
homogeneous isotropization dynamics of the 1RCBH
model have been already covered in Ref. [11], most of
the discussion in the present section will be presented in the
form of a brief revision for the convenience of the reader
(for full details we refer the interested reader to consult [11]
and references therein).

A. Late-time equilibrium thermodynamics

In this section we briefly review the main points
regarding the thermodynamics of the 1RCBH model
required for the purposes of the present work. Thermo-
dynamic equilibrium is only reached at late times
in the evolution of the homogeneous isotropization
dynamics starting far-from-equilibrium anisotropic initial
states.
The 1RCBH model is a conformal field theory with no

intrinsic energy scale, therefore, its hot and dense phase
diagram is one dimensional, being effectively described in
terms of a single control parameter, the dimensionless
ratio μ=T, instead of independent ðT; μÞ. The phase
diagram of the 1RCBH model has the peculiar feature
of being a limited line segment, μ=T ∈ ½0; π= ffiffiffi

2
p �, where

for μ=T ¼ 0 (and zero scalar condensate) the theory
reduces to the purely thermal SYM plasma, while at
μ=T ¼ π=

ffiffiffi
2

p
there is a critical point where second (and

higher) order derivatives of the pressure of the medium
diverge [54,62]. However, since the phase diagram of the
model ends at the critical point, there is no actual phase
transition. For each value of μ=T there are two different
solutions, one of which is thermodynamically unstable
and another one which is stable, with the latter being of
physical interest for us. In which branch of black hole
solutions the system lies within is something controlled by
the dimensionless ratio between the black hole charge and
the radial position of its equilibrium event horizon,
Q=rEH—see Fig. 1 of [62].
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Within the thermodynamically stable branch of equilib-
rium black hole solutions, we shall use in this work two
results that will serve as analytical consistency checks of
the late-time numerical evolution of the scalar condensate
and the entropy density, besides serving also to characterize
the effective equilibration times of these observables for
different initial conditions. As in Ref. [11], we fix here the
equilibrium temperature as T ¼ 1=π and then measure the
chemical potential of the medium with respect to this scale,
setting x≡ μ=T ¼ πμ. By solving Eq. (4.10) of [11] for the
radial position of the event horizon in equilibrium and then
substituting the result into Eq. (4.8) with the aforemen-
tioned choice for T ¼ 1=π, one finds the following result
for the black hole charge in equilibrium as a function of
μ=T,

Qðx≡ μ=T ¼ πμÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 −

ðx=xcÞ2
2

−
2ðx=xcÞ2

1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðx=xcÞ2

p
s

;

ð3Þ

where xc ¼ ðμ=TÞc ¼ π=
ffiffiffi
2

p ¼ πμc gives the critical
chemical potential. Letting X be any physical observable
and taking X̂ ≡ κ25X ¼ 4π2X=N2

c, by means of Eq. (4.24)
of [11] one finds that the thermodynamically stable
equilibrium value of the normalized scalar condensate is
given by

hÔϕieq
T2

¼ π2
ffiffiffi
2

3

r
Q2ðx≡ μ=T ¼ πμÞ; ð4Þ

with Qðx≡ μ=T ¼ πμÞ given by Eq. (3). Moreover, by
means of Eq. (4.11) of [11] one obtains the following result
for the thermodynamically stable equilibrium value of the
normalized entropy density of the medium,

ŝeq
T3

¼ π4

4

"
3 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

�
x
xc

�
2

s #2"
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

�
x
xc

�
2

s #
: ð5Þ

B. Holographic equations of motion out of equilibrium
and renormalized 1-point functions

The general EMD equations of motion obtained by
extremizing the bulk action (1) are [10,11]

Rμν −
gμν
3

�
VðϕÞ − fðϕÞ

4
F2
αβ

�

−
1

2
∂μϕ∂νϕ −

fðϕÞ
2

FμρF
ρ
ν ¼ 0; ð6aÞ

∇μðfðϕÞFμνÞ ¼ 1ffiffiffiffiffiffi−gp ∂μðfðϕÞFμνÞ ¼ 0; ð6bÞ

1ffiffiffiffiffiffi−gp ∂μð
ffiffiffiffiffiffi
−g

p
gμν∂νϕÞ − ∂ϕVðϕÞ −

∂ϕfðϕÞ
4

F2
μν ¼ 0; ð6cÞ

while the ansatze for the bulk fields compatible with the
symmetries of the homogeneous isotropization dynamics
read as follows in generalized infalling Eddington-
Finkelstein (EF) coordinates [11],

ds2 ¼ 2dv½dr − Aðv; rÞdv�
þ Σðv; rÞ2½eBðv;rÞðdx2 þ dy2Þ þ e−2Bðv;rÞdz2�;

Aμdxμ ¼ Φðv; rÞdv; ϕ ¼ ϕðv; rÞ; ð7Þ

where v is the EF time defined by the relation,

dv ¼ dtþ
ffiffiffiffiffiffiffiffiffiffi
−
grr
gtt

r
dr: ð8Þ

Since grr and gtt are the holographic radial and temporal
diagonal components of an asymptotically AdS5 spacetime,
as one approaches the boundary of the bulk geometry
at r → ∞, one obtains the time coordinate of the dual
quantum field theory living at the boundary, v → t.
Infalling radial null geodesics satisfy v ¼ constant and
outgoing radial null geodesics obey dr=dv ¼ Aðv; rÞ [17].3
There is also a residual diffeomorphism invariance for the
metric in (7) associated with the radial shift r ↦ rþ λðvÞ,
with λðvÞ being an arbitrary function of the EF time [24].
Close to the boundary the bulk metric approaches AdS5, the
dilaton field approaches zero and the Maxwell field gives at
asymptotically large times the R-charge chemical potential
of the strongly coupled quantum fluid living at the
boundary. The precise form of the boundary conditions
for the bulk functions to be integrated will be specified in
Sec. II C.
By substituting the particular ansatze (7) in the general

EMD equations (6a)–(6c), one gets the following set of
coupled 1þ 1 partial differential equations [10,11],4

∂vE þ AE0 þ
�
3
dþΣ
Σ

þ ∂ϕf

f
dþϕ

�
E ¼ 0; ð9aÞ

3Σ0

Σ
þ ∂ϕf

f
ϕ0 þ E0

E
¼ 0; ð9bÞ

4ΣðdþϕÞ0 þ 6ϕ0dþΣþ 6Σ0dþϕþ ΣE2
∂ϕf − 2Σ∂ϕV ¼ 0;

ð9cÞ

3Note that Aðv; rÞ here is half the corresponding metric
function in the convention adopted in Ref. [17].

4We employed Eq. (9b) to write down the constraint (9a),
taking also into account that, from the definitions of dþ and E,
one can rewrite ðdþΦÞ0 ¼ −∂vE − A0E − AE0. In writing down
the constraint (9h) we employed the Hamiltonian constraint (9g).
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ðdþΣÞ0 þ
2Σ0

Σ
dþΣþ Σ

12
ð2V þ fE2Þ ¼ 0; ð9dÞ

ΣðdþBÞ0 þ
3

2
ðB0dþΣþ Σ0dþBÞ ¼ 0; ð9eÞ

A00þ 1

12

�
18B0dþB−

72Σ0dþΣ
Σ2

þ6ϕ0dþϕ−7fE2−2V

�
¼0;

ð9fÞ

Σ00 þ Σ
6
ð3ðB0Þ2 þ ðϕ0Þ2Þ ¼ 0; ð9gÞ

dþðdþΣÞ þ
Σ
2
ðdþBÞ2 − A0dþΣþ Σ

6
ðdþϕÞ2 ¼ 0; ð9hÞ

where X0 ≡ ∂rX is the directional derivative along infalling
radial null geodesics, dþX ≡ ½∂v þ Aðv; rÞ∂r�X is the direc-
tional derivative along outgoing radial null geodesics, and
E ≡ −Φ0. Equations (9a) and (9b) are the nontrivial
components of Maxwell’s equation, Eq. (9c) is the dilaton
equation, and Eqs. (9d)–(9h) are the nontrivial components
of Einstein’s equations. There are five unknown functions,
fAðv; rÞ;Σðv; rÞ; Bðv; rÞ;ϕðv; rÞ; Eðv; rÞg, to be deter-
mined by the five dynamical equations of motion (9b)–
(9f), besides three constraints given by Eqs. (9a), (9g), and
(9h). Equations (9b)–(9g) form a nested set of equations of
motion which may be numerically integrated, while the
constraints (9a) and (9h) may be employed to check the
accuracy of such numerical solutions.
The form of the ultraviolet near-boundary expansions

of the bulk fields for the 1RCBH model undergoing

homogeneous isotropization dynamics may be written as
follows [11],

Aðv; rÞ ¼ ½rþ λðvÞ�2
2

− ∂vλðvÞ þ
X∞
n¼1

AnðvÞ
rn

; ð10aÞ

Σðv; rÞ ¼ rþ λðvÞ þ
X∞
n¼1

ΣnðvÞ
rn

; ð10bÞ

Bðv; rÞ ¼
X∞
n¼1

BnðvÞ
rn

; ð10cÞ

ϕðv; rÞ ¼
X∞
n¼2

ϕnðvÞ
rn

; ð10dÞ

Φðv; rÞ ¼ Φ0ðvÞ þ
X∞
n¼2

ΦnðvÞ
rn

: ð10eÞ

As discussed in detail in [11], one may derive from the
Maxwell’s equation (9b) and from the ultraviolet near-
boundary analysis of the bulk fields the following relation,

Eðv; rÞ ¼ 2Φ2Σðv; rÞ−3e2
ffiffi
2
3

p
ϕðv;rÞ: ð11Þ

Moreover, the physical observables related to the renor-
malized one-point functions of the boundary energy-
momentum tensor and the charge current operator read
as follows [11],

ε̂≡ κ25ε ¼ κ25hTtti ¼ κ25εeqðx ¼ μ=TÞ ¼ 3

32

"
3 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

�
x
xc

�
2

s #3"
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

�
x
xc

�
2

s #
; ð12aÞ

ρ̂≡ κ25ρ ¼ κ25hJti ¼ −Φ2 ¼ κ25ρeqðx ¼ μ=TÞ ¼ x
4π

"
3 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

�
x
xc

�
2

s #2

; ð12bÞ

Δp̂ðvÞ≡ κ25ðpT − pLÞ ¼ κ25½hTxxi − hTzzi� ¼ 6B4ðvÞ; ð12cÞ

hÔϕiðvÞ≡ κ25hOϕi ¼ −ϕ2ðvÞ; ð12dÞ

where κ25 ¼ 4π2=N2
c for a strongly coupled SYM plasma

(as the 1RCBH model), ε is the internal energy density and
ρ is the R-charge density, both of which are conserved in
the homogeneous isotropization dynamics, and Δp is the
pressure anisotropy of the medium.
As discussed in [11], one may fix the vast majority of the

ultraviolet expansion coefficients in Eqs. (10a)–(10e) in terms

of just a few undetermined coefficients and their time
derivatives. This is accomplished by substituting these
expansions in the EMD equations of motion and then solving
theobtained algebraic equationsorder byorder in powersof r.
By considering ultraviolet expansions up to order n ¼ 8
there remain five undetermined coefficients in such analysis:
fΦ0ðvÞ;Φ2ðvÞ; A2ðvÞ; B4ðvÞ;ϕ2ðvÞg. The coefficientΦ0ðvÞ
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is fixed by the Dirichlet boundary condition for the (nonzero
time component of the) Maxwell field,

lim
v→∞

lim
r→∞

Φðv; rÞ ¼ lim
v→∞

Φ0ðvÞ ¼ μ; ð13Þ

which gives the Uð1Þ R-charge chemical potential at the
boundary quantum field theory. The coefficient Φ2ðvÞ is
actually constant and it is related to the conserved R-charge
density of the fluid as given in Eq. (12b). The coefficient
A2ðvÞmay be fixed in terms of the constantH ≡ 18A2ðvÞ þ
ϕ2
2ðvÞ ¼ −ε̂=3 if one knows the coefficientϕ2ðvÞ. In fact, the

two remaining undetermined ultraviolet coefficients
fB4ðvÞ;ϕ2ðvÞg are dynamical quantities related to the scalar
condensate and the pressure anisotropy according to
Eqs. (12c) and (12d). The values of these two coefficients
at the initial time slice can be freely chosen since they are
given by the boundary values of the initial profiles for the
metric anisotropy function Bðv; rÞ and the dilaton field
ϕðv; rÞ, which are two of the three initial data that must be
chosen for the 1RCBH model undergoing isotropization
dynamics (the third initial data is the value of μ=T), as we
shall discuss in a moment; and once their initial values are
specified, their subsequent time evolutions are determined by
numerically solving the nested set of partial differential
equations previously obtained.
Schematically, the numerical integration of the nested set

of 1þ 1 partial differential equations of motion describing
the homogeneous isotropization dynamics of the 1RCBH
model proceeds as follows:
(a) On the hypersurface at the initial time slice v0 (which

we set to be zero here, v0 ¼ 0), choose the initial
profiles for the metric anisotropy function Bðv0; rÞ and
for the dilaton field ϕðv0; rÞ, besides also the value for
the dimensionless ratio μ=T defining the chemical
potential of the medium at the boundary, which is
associated with the charge of the black hole solution
within the bulk.5

(b) Next radially solve the Hamiltonian constraint (9g) to
obtain Σðv0; rÞ, which at this step fixes the value of
Eðv0; rÞ through Eq. (11).

(c) Next radially solve Eq. (9d) to obtain dþΣðv0; rÞ.
(d) Next radially solve Eq. (9e) to obtain dþBðv0; rÞ.
(e) Next radially solve the dilaton Eq. (9c) to obtain

dþϕðv0; rÞ.
(f) Next radially solve Eq. (9f) to obtain Aðv0; rÞ.
(g) At this step, from the definition of the directional

derivative along outgoing radial null geodesics,

dþ ≡ ∂v þ Aðv; rÞ∂r, one has f∂vBðv0; rÞ; ∂vϕðv0; rÞg,
which together with the initial profiles chosen for
the metric anisotropy and the dilaton field, comprise
the set of initial conditions required to evolve
fBðv0; rÞ;ϕðv0; rÞg to the next time slice v0 þ Δv
using discrete numerical integration techniques (here
we employ the pseudospectral method [69] to perform
the radial integrations, while the time integrations are
performed with the fourth order Adams-Bashforth
method).

(h) Repeat the previous steps to obtain all the bulk
functions in the current time slice and iterate the
procedure until reaching any desired end time vend for
the numerical simulations (for the calculations
performed in the present work, we set vend ¼ 13,
which gives the dimensionless time measure
vendT ¼ 13=π).

C. Subtracted fields, boundary conditions,
apparent horizon, and the holographic

nonequilibrium entropy

Reference [11] dealt with the formulation of the homo-
geneous isotropization dynamics of the 1RCBH model
with λðvÞ ¼ 0. The physics does not depend on the choice
of λðvÞ (since it works like a gauge function), however,
depending on the system under consideration, for numeri-
cal stability the introduction of this function in the
formalism may be required [24]. This was the case for
the Bjorken flow dynamics of the 1RCBH model [10]. For
the homogeneous isotropization dynamics one does not
really need to work with a nonzero radial shift function,
nonetheless, for completeness, in the present work we
consider a nontrivial λðvÞ. We explicitly checked that the
results for all the physical observables at the boundary
quantum field theory are the same obtained with vanishing
λðvÞ, as it should be.
By considering the ultraviolet near-boundary expansions

of the bulk fields with nonzero λðvÞ and by introducing a
new compact radial coordinate u≡ 1=r suited for numeri-
cal integration, we introduce below subtracted bulk fields
with the purpose of obtaining radial constants as the
boundary values of the subtracted fields to be numerically
integrated. We define upXsðv; uÞ≡ Xðv; uÞ − XUVðv; uÞ,
where p∈Z and XUVðv; uÞ is some ultraviolet truncation
of the field Xðv; uÞ such that Xsðv; u ¼ 0Þ gives a radial
constant. The subtracted fields to be numerically integrated
are defined here as follows (note that in the equations below
we also provide the boundary conditions for the subtracted
fields),6

5If one chooses to work with nonzero radial shift function λðvÞ,
also its initial value must be chosen, and we set here
λðv0 ¼ 0Þ ¼ 0; its time evolution can be obtained by requiring
that the radial position of the apparent horizon of the black
hole solution remains fixed during the time evolution of the
system [24].

6One substitutes the expansions (10a)–(10e) into the equations
of motion (9b)–(9g), eliminates all possible coefficients in favor
of the others, and then passes from the original radial coordinate r
to the new compact radial coordinate u ¼ 1=r.
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u2Asðv; uÞ≡ Aðv; uÞ − 1

2u2
−
λðvÞ
u

−
½λ2ðvÞ − 2∂vλðvÞ�

2
; ð14aÞ

⇒ Asðv; u → 0Þ → 18H − ϕ2
2ðvÞ

18
−
½ϕ2ðvÞ∂vϕ2ðvÞ þ λðvÞð36H − 2ϕ2

2ðvÞÞ�u
18

þOðu2Þ; ð14bÞ

⇒ ∂uAsðv; u ¼ 0Þ ¼ −
ϕ2ðvÞ½∂uϕsðv; u ¼ 0Þ þ 2λðvÞϕ2ðvÞ� þ λðvÞð36H − 2ϕ2

2ðvÞÞ
18

; ð14cÞ

where we made use of Eq. (17c) in obtaining Eq. (14c) (which is used as an extra boundary condition in the radial
integration of As) from Eq. (14b),

u4Bsðv; uÞ≡ Bðv; uÞ; ð15aÞ

⇒ Bsðv; u → 0Þ → B4ðvÞ þ ½∂vB4ðvÞ − 4λðvÞB4ðvÞ� × uþOðu2Þ; ð15bÞ

⇒ ∂vB4ðvÞ ¼ ∂uBsðv; u ¼ 0Þ þ 4λðvÞB4ðvÞ; ð15cÞ

u2Σsðv; uÞ≡ Σðv; uÞ − 1

u
− λðvÞ; ð16aÞ

⇒ Σsðv; u → 0Þ → −
ϕ2
2ðvÞu
18

−
½3ϕ2ðvÞ∂vϕ2ðvÞ − 5λðvÞϕ2

2ðvÞ�u2
30

þOðu3Þ; ð16bÞ

u2ϕsðv; uÞ≡ ϕðv; uÞ; ð17aÞ

⇒ ϕsðv; u → 0Þ → ϕ2ðvÞ þ ½∂vϕ2ðvÞ − 2λðvÞϕ2ðvÞ�uþOðu2Þ; ð17bÞ

⇒ ∂vϕ2ðvÞ ¼ ∂uϕsðv; u ¼ 0Þ þ 2λðvÞϕ2ðvÞ; ð17cÞ

Esðv; uÞ≡ Eðv; uÞ; ð18Þ

u2ðdþΣÞsðv; uÞ≡ ðdþΣÞðv; uÞ −
1

2u2
−
λðvÞ
u

−
λ2ðvÞ
2

;

ð19aÞ

⇒ ðdþΣÞsðv; u → 0Þ → H þ ϕ2
2ðvÞ
36

þOðuÞ; ð19bÞ

u3ðdþBÞsðv; uÞ≡ ðdþBÞðv; uÞ; ð20aÞ

⇒ ðdþBÞsðv; u → 0Þ → −2B4ðvÞ þOðuÞ; ð20bÞ

uðdþϕÞsðv; uÞ≡ ðdþϕÞðv; uÞ; ð21aÞ

⇒ ðdþϕÞsðv; u → 0Þ → −ϕ2ðvÞ þOðu2Þ: ð21bÞ

The equations of motion to be numerically solved as
functions of the coordinates ðv; uÞ are obtained by rewriting
the original equations of motion in terms of the subtracted
fields, whose boundary values were derived above. As
detailed discussed in Sec. 5.4 of [11], by discretizing the
radial part of these continuum differential equations of
motion using the pseudospectral method, one obtains an
eigenvalue problem where one needs to invert a diagonal
ðN − 1Þ × ðN − 1Þ matrix for each of the bulk fields, with
N being the number of collocation points of the radial
Chebyshev-Gauss-Lobatto grid. These matrices correspond
to the homogeneous part of the discretized differential
equations of motion evaluated at each radial grid point,
with the exception of the boundary grid point. The
multiplication of the inverse matrices by the column vectors
corresponding to the inhomogeneous part of the equations
of motion provides the numerical solutions for the bulk
fields. At the boundary grid point one must impose the
boundary conditions derived above for the subtracted bulk
fields. Then one must join to the (N − 1)-dimensional
eigenvectors obtained as solutions of the aforementioned
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eigenvalue problem the values of the respective bulk fields
determined at the boundary grid point by the associated
boundary conditions. In this way one obtains the complete
N-dimensional eigenvectors providing the numerical sol-
utions for the radial part of the EMD equations of motion at
a hypersurface defined at any given time slice (the
components of these N-dimensional eigenvectors are the
values of the bulk fields at each of the N collocation points
of the radial grid).
The set of initial data needed to be chosen in order to

start the time evolution of the system of partial differential
equations of motion is fBsðv0; uÞ;ϕsðv0; uÞ; μ=Tg,
besides also the value of λðv0Þ if one wants to use a
nontrivial radial shift function λðvÞ. As aforementioned, we
set here λðv0 ¼ 0Þ ¼ 0. The equation of motion for λðvÞ
comes from Eq. (14a) evaluated at the radial location of the
apparent horizon, u ¼ uAH ¼ 1=rAH, which for any
metric of the form shown in Eq. (7) is obtained as the
outermost solution of the equation ðdþΣÞðv; rAHÞ ¼ 0 [24],
where one imposes that the radial location of the apparent
horizon stays fixed during the time evolution of the
system by requiring that ∂vrAH ¼ 0 ⇒ dþ½dþΣ�ðv; rAHÞ ¼
Aðv; rAHÞ∂r½dþΣ�ðv; rAHÞ, which leads to the following
condition when substituted in the constraint (9h),

Aðv;uAHÞ¼
6ð½dþB�ðv;uAHÞÞ2þ2ð½dþϕ�ðv;uAHÞÞ2

2VðϕÞþfðϕÞE2
: ð22Þ

Substituting (22) in Eq. (14a) one obtains the equation of
motion for the radial shift function,

∂vλðvÞ¼u2AHAsðv;uAHÞþ
1

2u2AH
þλðvÞ
uAH

þλ2ðvÞ
2

−Aðv;uAHÞ:

ð23Þ

Equation (23) evolves in time the initial condition λðv0Þ by
shifting the radial coordinate u at each time slice such as to
keep uAH ¼ constant. The apparent horizon is the outer-
most trapped null surface inside the event horizon and it
(usually) converges to the latter at late times, when the
black hole geometry approaches thermodynamic equilib-
rium. Since the apparent horizon is inside the event
horizon, by cutting off the radial integration of the bulk
equations of motion at some position inside the apparent
horizon, one guarantees that the radial domain of the bulk
spacetime causally connected to observers at the boundary
is being properly taken into account and, consequently, no
physical information is lost in this integration procedure.
In order to evolve in time the initial data

fBsðv0; uÞ;ϕsðv0; uÞg one needs to obtain the time deriv-
atives ∂vBs and ∂vϕs, what can be done by taking the
expressions for dþB ¼ ∂vBþ A∂rB and dþϕ ¼
∂vϕþ A∂rϕ rewritten in terms of the subtracted bulk fields
and the compact radial coordinate u ¼ 1=r. One then
obtains the following results,

∂vBsðv;uÞ¼
½dþB�s

u
þ2Bs

u
þB0

s

2
þ4u3AsBs

þu4AsB0
sþð4BsþuB0

sÞλþ
�
2uBsþ

u2B0
s

2

�
λ2

−ð4uBsþu2B0
sÞ∂vλ; ð24aÞ

∂vBsðv;u¼0Þ¼∂vB4ðvÞ; ð24bÞ

∂vϕsðv; uÞ ¼
½dþϕ�s

u
þ ϕs

u
þ ϕ0

s

2
þ 2u3Asϕs þ u4Asϕ

0
s

þ ðuϕ0
s þ 2ϕsÞλþ

�
uϕs þ

u2ϕ0
s

2

�
λ2

− ð2uϕs þ u2ϕ0
sÞ∂vλ; ð25aÞ

∂vϕsðv; u ¼ 0Þ ¼ ∂vϕ2ðvÞ; ð25bÞ

with X0
sðv; uÞ≡ ∂uXsðv; uÞ being calculated at any fixed

time slice by applying the pseudospectral finite differ-
entiation matrix [69] to the numerical solution Xsðv; uÞ.
Now we derive the holographic formula for the non-

equilibrium entropy density of the strongly coupled quan-
tum fluid living at the boundary of the bulk geometry. The
famous Bekenstein-Hawking’s equation [70,71] relates the
area of the event horizon of a black hole in equilibrium with
its entropy and, through the holographic dictionary, this
gives the thermodynamic entropy of the dual quantum field
theory also in equilibrium. However, for strongly coupled
media out of equilibrium, it has been argued (e.g., in
Ref. [72]) that the corresponding holographic nonequili-
brium entropy should be calculated from the area of the
apparent horizon instead of the area of the event horizon.
This is so because one expects that entropy production is
local in time, therefore, associating the out of equilibrium
entropy to the area of a dynamic event horizon seems rather
unnatural because in such a context the event horizon can
only be determined with the knowledge of the entire future
evolution of the black hole geometry, consequently, it is a
global rather than a local observable.7 Also in several other
works in the literature [4,18,20,21,25,26,34,74,75] the

7Reference [72] also provides a strong counterexample to
further justify such a proposal: for the conformal soliton flow
[73], corresponding to an ideal fluid, entropy production must be
identically zero at all times. The entropy calculated from the area
of the apparent horizon in such a case is indeed constant,
however, the area of the event horizon diverges showing that
it is an inadequate measure of the nonequilibrium entropy of the
dual medium at least in this case. In fact, for the conformal soliton
flow the system does not approach a stationary state at late times,
and the apparent horizon does not converge to the event horizon,
differently from what happens in systems where dissipation
drives the evolution of the medium, as in the 1RCBH model
analyzed in the present work.
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holographic nonequilibrium entropy has been associated
with the area of the apparent horizon, and here we adopt the
same approach. Note that since the apparent horizon is
inside the event horizon and (for the 1RCBH model it does
converge to the event horizon at late times) for sufficiently
long times the areas of both horizons coincide and provide
the same result for the entropy of the dual medium in
thermodynamic equilibrium.
The area of the black hole apparent horizon in infalling

EF coordinates is given by,

AAHðvÞ ¼
Z
AH

d3x
ffiffiffiffiffiffiffiffiffiffi
jγAHj

p ����
u¼uAH

¼
Z
AH

dxdydz
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gxxgyygzz

p ����
u¼uAH

¼ jΣðv; uAHÞj3V3; ð26Þ

where V3 ¼
R
AH dxdydz is the volume of the planar

horizon parallel to the boundary. Resorting to an analogous
expression to the Bekenstein-Hawking’s relation, one sets
for the holographic nonequilibrium entropy of the fluid,

ŝAHðvÞ≡ κ25sAHðvÞ ¼ κ25
SAHðvÞ
V3

¼ κ25
AAHðvÞ=4G5

V3

¼ 2πjΣðv; uAHÞj3; ð27Þ

where, from Eq. (16a),

Σðv; uAHÞ ¼ u2AHΣsðv; uAHÞ þ
1

uAH
þ λðvÞ: ð28Þ

Therefore, setting T ¼ 1=π as before, one has for the
normalized nonequilibrium entropy density of the medium,

ŝAHðvÞ
T3

¼ 2π4jΣðv; uAHÞj3; ð29Þ

which must converge to the analytical result (5) at late times
for any chosen value of μ=T. This in fact happens for all the
initial data we analyzed, as will be shown in Sec. III.

D. Energy conditions and initial data

Now, by following a similar approach as the one devised
in [76], we derive the weak energy condition (WEC) and
the dominant energy condition (DEC) for the conformal
1RCBH model undergoing homogeneous isotropization
dynamics. These classical energy conditions are usually
postulated in general relativity to restrict the content of the
energy-momentum tensor of matter employed in Einstein’s
equations with the aim of enforcing energy positiveness,
although some quantum effects are known to violate these
energy conditions [77,78].

The WEC states that hT̂μνitμtν ≥ 0 for any timelike
vector tμ,8 while the DEC posits that for any future-directed
timelike vector tμ (i.e., with tv > 0), Xμ ≡ −hT̂μνitν must
also be a future-directed timelike or null vector (this is a
sufficient but not a necessary condition to establish causal
propagation of matter [79]).
For the homogeneous isotropization dynamics of the

1RCBH model, one has from Eqs. (4.40)–(4.42) and (4.45)
of [11] the following form for the boundary energy-
momentum tensor,

hT̂μνi ¼ diagðε̂; p̂T; p̂T; p̂LÞ

¼ diag

�
ε̂;
ε̂þ Δp̂

3
;
ε̂þ Δp̂

3
;
ε̂ − 2Δp̂

3

�
: ð30Þ

On the other hand, the most general timelike or null vector
at the flat boundary may be written as, tμ≡
ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 þ 2ω2 þ ξ2

p
;ω;ω; ξÞ. In fact, this implies that,

tμtμ¼−ðs2þ2ω2þξ2Þþ2ω2þξ2¼−s2≤0; ∀ s;ω;ξ∈R.
Now we analyze the WEC,

0 ≤ hT̂μνitμtν ¼ ε̂s2 þ ð4ε̂þ Δp̂Þ 2ω
2

3
þ ð2ε̂ − Δp̂Þ 2ξ

2

3
;

ð31Þ

and since fs;ω; ξg are arbitrary real numbers, (31) can only
be satisfied ∀ s;ω; ξ∈R if

ε̂ ≥ 0;
4ε̂þ Δp̂ ≥ 0

2ε̂ − Δp̂ ≥ 0

�
⇒ −4 ≤

Δp̂
ε̂

≤ 2: ð32Þ

For the DEC one has that

0≤Xv¼−hT̂vvitv¼ ε̂
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2þ2ω2þξ2

p
⇒ ε̂>0; ð33Þ

0 ≥ XμXμ ¼ −s2½ε̂2� − 2ω2

�
ε̂2 −

�
ε̂þ Δp̂

3

�
2
�

− ξ2
�
ε̂2 −

�
ε̂ − 2Δp̂

3

�
2
�
; ð34Þ

and since (34) must be valid ∀ s;ω; ξ∈R, it follows that

0≤1−
�
1þΔp̂=ε̂

3

�
2

⇒

����1þΔp̂
ε̂

����≤3⇒−4≤
Δp̂
ε̂

≤2;

ð35Þ

8We note that for a conformal fluid, like the 1RCBHmodel, the
strong energy condition (SEC), which states that
hT̂μνitμtν ≥ −hT̂μ

μi=2, is equivalent to the WEC, since hT̂μ
μi ¼

0 for a conformal medium.
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0≤1−
�
1−2Δp̂=ε̂

3

�
2

⇒

����1−2Δp̂
ε̂

����≤3⇒−1≤
Δp̂
ε̂

≤2;

ð36Þ

where (36) is clearly more restrictive than (35).
Interestingly, for the homogeneous isotropization

dynamics of the 1RCBH model, the WEC, given by the
conditions in (32), and the DEC, given by the conditions in
(33) and (36), have the same form obtained in the case of
the Bjorken flow dynamics [8–10].
We remark that although the DEC and the WEC may be

transiently violated in strongly coupled far-from-
equilibrium quantum systems depending on the initial data
being evolved in time, the quantum null energy condition
(QNEC) [80] is expected to be satisfied in general,
including the cases of holographic systems defined as
far from equilibrium [81].9

Finally, the set of initial conditions analyzed in the
present work is given by the following functional forms for
the initial profiles of the metric anisotropy function and the
dilaton field,

Bsðv0 ¼ 0; uÞ ¼ Be−SBðu−uBÞ2 ; ð37Þ

ϕsðv0 ¼ 0; uÞ ¼ Fe−Sϕðu−uϕÞ2 ; ð38Þ

where the parameters chosen in the present work are given
in Table I.
For each pair of initial profiles fBs;ϕsg specified above

we consider some values for the ratio between the chemical
potential and the temperature, μ=T, as discussed in the next
section.

III. TIMEEVOLUTIONOFTHE SYSTEMANDTHE
STAIRWAY TO EQUILIBRIUM ENTROPY

In Figs. 1–3 we display the numerical time evolution for
the different physical observables considering the initial

data discussed in the previous section. One can notice that
typically the scalar condensate only approaches its asymp-
totic equilibrium value for each μ=T at considerably larger
times than the pressure anisotropy and the entropy density.
Furthermore, for some initial data preserving all the energy
conditions discussed before, one can observe transient
violations of the DEC and even of the WEC when the
fluid is still far-from-thermodynamic equilibrium. This has
been also observed before for the 1RCBH model under-
going Bjorken flow [10] (and, as a particular case, also in
the Bjorken flow of the SYM plasma [8,9]), however,
differently than in Bjorken flow, for the homogeneous
isotropization dynamics of the 1RCBH model such energy
condition violations are generally reduced as one increases
the value of μ=T.
Also as in the Bjorken flow, we observe for some initial

data the formation of transient plateaus with zero entropy
production when the system is still far-from-thermody-
namic equilibrium. However, the interplay of these far-
from-equilibrium plateaus and transient violations of
energy conditions measured by the behavior of the pressure
anisotropy is more complicated in the homogeneous iso-
tropization dynamics. In fact, not all far-from-equilibrium
plateaus in the entropy density are anticipating a posterior
violation of energy conditions in the pressure anisotropy in
the case of the homogeneous isotropization dynamics.
Moreover, from the analysis of several time evolutions of

different initial conditions, for which Figs. 1–3 are quite
representative, we observed for any considered value of
μ=T the formation of multiple plateaus in the form of a
stairway close to the respective equilibrium value for the
entropy density. The plateaus produced in this late-time
near-equilibrium regime have no relation with the far-from-
equilibrium plateaus which may or may not be produced in
the time evolution of the system, depending on the initial
conditions considered. Moreover, there are no violations of
energy conditions near thermodynamic equilibrium, where
the stairway structure of near-equilibrium plateaus for the
entropy is observed. The near-equilibrium stairway struc-
ture for the entropy could easily have gone unnoticed due to
the very close proximity of such plateaus, which requires a
high numerical precision to be resolved. To clearly display
this peculiar behavior we constructed the following loga-
rithmic function with the nonequilibrium entropy density
ŝAHðvT; μ=TÞ and its asymptotic equilibrium value
ŝeqðμ=TÞ,

SðvT; μ=TÞ ¼ ln

	
ŝeqðμ=TÞ

ŝeqðμ=TÞ − ŝAHðvT; μ=TÞ
�
: ð39Þ

This led us to realize that the stairway to equilibrium
entropy comprises a periodic formation of ever increasing
plateaus asymptotically approaching its ceiling value. In
order to determine such a period at the critical point of the
model as displayed in Fig. 4, we calculated the finite

TABLE I. Set of parameters for the initial profiles of the
subtracted metric anisotropy function (37) and the subtracted
dilaton field (38).

IC B SB uB F Sϕ uϕ

1 0.1 102 0.4 −0.01 102 0.3
2 0.1 0 0 −0.1 1 0.3
3 0.5 102 0.4 −

ffiffiffiffiffiffiffiffi
2=3

p
Q2 0 0

4 0.5 10 0.4 −
ffiffiffiffiffiffiffiffi
2=3

p
Q2 0 0

9In the present work we compute the out of equilibrium
entropy associated with the area of the apparent horizon, as
aforementioned, but still do not analyze the QNEC, which
requires calculating functional derivatives of the entanglement
entropy of the system, which is not being evaluated here.
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difference of Eq. (39) to establish where the minima and
maxima of SðvT; μ=TÞwere. We then made use of the well-
known software HARMINV [82] to evaluate the mean value
of the frequency of such extrema by means of the
calculation of the second finite difference of Eq. (39),
which gave us, at the critical point (CP),10

νCPS
T

¼ ð1.21235� 0.00002Þ
⇒ τCPS T ≈ ð0.82484� 0.00001Þ: ð40Þ

It is important to clearly state that in Fig. 4(a) the quantity S
defined on Eq. (39) is not saturating at large times. In fact,
from the given definition this quantity asymptotically
diverges at asymptotic times, as the entropy density tends
towards its equilibrium value. Of course, our numerical
simulations cannot proceed to arbitrarily large times, so that
the plot represents the results obtained up to the end time
chosen for our simulations. If one wants to increase the end
time of the simulations, in order to resolve the structure of
the stairway to equilibrium entropy at larger times, due to
the progressively smaller differences in magnitude with
respect to the ceiling asymptotic value of equilibrium, one
also needs to increase the numerical precision of the
calculations, which will considerably augment the compu-
tation time of the simulations.
The periodicity of the oscillations of the pressure

anisotropy near equilibrium is given by the real part of

(a) (b)

(c)

FIG. 1. Numerical evolution of dimensionless ratios involving (a) the pressure anisotropy, (b) the nonequilibrium entropy density, and
(c) the scalar condensate, all of them plotted for μ=T ¼ 0. The initial conditions (ICs) are given in Table I. In (a) for the pressure
anisotropy, the salmon regions delimit the regions with WEC violation (which automatically imply DEC violation), while the gray
region delimits the region with only DEC violation. In (b) the thin straight line gives the equilibrium value of the entropy density attained
by the system at long times.

10We remark that the quoted uncertainties refer primarily to the
calculation of the frequency from the given numerical data. There
are also uncertainties stemming from the numerical solutions of
the EMD equations of motion which are not being accounted for
here.
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the lowest quasinormal frequency of the SOð3Þ quintuplet
channel of the 1RCBH model [11,62]. On the other hand,
the exponential decay of such oscillations is associated with
the imaginary part of that complex quasinormal frequency.
In Fig. 4(c) we removed the aforementioned exponential
damping and employed the HARMINV software to obtain the
harmonic frequency of the pressure anisotropy oscillations
near equilibrium evaluated at the critical point,

Re½νCPp �
T

¼ ð1.54887� 0.00002Þ
⇒ Re½τCPp �T ≈ ð0.645632� 0.000008Þ: ð41Þ

The above result agrees with the real part of the lowest
quasinormal frequency of the SOð3Þ quintuplet channel of

the 1RCBH model at the critical point as calculated
in [11].11

Furthermore, the periodicity of the oscillations of the
scalar condensate near equilibrium is given by the real part
of the lowest quasinormal frequency of the SOð3Þ singlet
channel of the 1RCBH model [11]. On the other hand, the
exponential damping of such oscillations is associated with
the imaginary part of that complex quasinormal frequency.
In Fig. 4(d) we removed the aforementioned exponential
decay and used the HARMINV software to obtain the
harmonic frequency of the scalar condensate oscillations
near equilibrium evaluated at the critical point,

(a) (b)

(c)

FIG. 2. Numerical evolution of dimensionless ratios involving (a) the pressure anisotropy, (b) the nonequilibrium entropy density, and
(c) the scalar condensate, all of them plotted for μ=T ¼ 1. The initial conditions (ICs) are given in Table I. In (a) for the pressure
anisotropy, the salmon regions delimit the regions with WEC violation (which automatically imply DEC violation), while the gray
region delimits the region with only DEC violation. In (b) and (c) the thin dashed lines give, respectively, the equilibrium value of the
entropy density and of the scalar condensate attained by the system at long times.

11See Fig. 22(a) of [11] taking into account that ω ¼ 2πν.
Notice also that the coefficient of the argument in the time
exponential used in Fig. 4(c) is given by minus the imaginary part
of the quasinormal frequency in Fig. 22(b) of [11].
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Re½νCPhÔi�
T

¼ ð0.60804� 0.00005Þ
⇒ Re½τCPhÔi�T ≈ ð1.6446� 0.0001Þ: ð42Þ

The above result agrees with the real part of the lowest
quasinormal frequency of the SOð3Þ singlet channel of the
1RCBH model at the critical point as calculated in [11].12

In Fig. 4 we show, for the four initial conditions in
Table I evaluated at the critical point μ=T ¼ π=

ffiffiffi
2

p
, the

logarithmic function S defined in Eq. (39), its first finite
difference ΔS with each curve shifted to visually overlap
for presentation purposes of our main results, and the
harmonic parts of the pressure anisotropy and of the scalar
condensate oscillations, also shifted to visually overlap.
From the results in Eqs. (40)–(42) one sees that at the
critical point the period of plateau formation in the stairway
to equilibrium entropy is ∼28% larger than the period of
harmonic oscillations of the pressure anisotropy close to
thermodynamic equilibrium, while being ∼50% smaller
than the period of harmonic oscillations of the scalar
condensate in the linear regime.
Interestingly, we repeated the above calculations also for

μ=T ¼ f0; 1; 2g and found that in all cases the period of
plateau formation in the stairway to equilibrium entropy is

(a) (b)

(c)

FIG. 3. Numerical evolution of dimensionless ratios involving (a) the pressure anisotropy, (b) the nonequilibrium entropy density, and
(c) the scalar condensate, all of them plotted for μ=T ¼ π=

ffiffiffi
2

p
(critical point). The initial conditions are given in Table I. In (a) for the

pressure anisotropy, the salmon regions delimit the regions with WEC violation (which automatically imply DEC violation), while the
gray region delimits the region with only DEC violation. In (b) and (c) the thin dashed lines give, respectively, the equilibrium value of
the entropy density and of the scalar condensate attained by the system at long times.

12See Fig. 24(a) of [11] taking into account that ω ¼ 2πν.
Notice also that the coefficient of the argument in the time
exponential used in Fig. 4(d) is given by minus the imaginary part
of the quasinormal frequency in Fig. 24(b) of [11].
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approximately half the period of oscillations of the slowest
quasinormal mode of the system. That is always the lowest
quasinormal mode associated with the scalar condensate,
except for the particular case of the purely thermal SYM
plasma defined at μ=T ¼ 0 with zero scalar condensate,
and in such a case the slowest quasinormal mode is
associated with the pressure anisotropy of the medium.
The results are summarized in Table II.

IV. CONCLUSIONS AND PERSPECTIVES

In the present work, we analyzed the homogeneous
isotropization dynamics of the top-down 1RCBH holo-
graphic model, including for the first time the calculation of
the time evolution of its nonequilibrium entropy density.
We found that generally the scalar condensate takes a
considerably longer time than the pressure anisotropy and
the entropy density to approach the respective equilibrium
values. Furthermore, for some initial data preserving all the
energy conditions, transient violations of the dominant and
even of the weak energy conditions are observed when the
fluid is still far-from-thermodynamic equilibrium, with the
magnitude of such violations getting reduced as the
chemical potential of the medium is increased (contrary
to what happens in the Bjorken flow of the same model).
Moreover, a new feature disclosed in the present work is

the formation of a stairway to equilibrium entropy at late

(a) (b)

(c) (d)

FIG. 4. Time evolution of: (a) the logarithmic function S defined in Eq. (39); (b) its first finite differenceΔS (with the curves shifted to
visually overlap); (c) the harmonic part of the pressure anisotropy (also with the curves shifted to visually overlap); and (d) the harmonic
part of the scalar condensate (also with the curves shifted to visually overlap). The initial conditions (ICs) are given in Table I and are
plotted here for μ=T ¼ π=

ffiffiffi
2

p
(critical point).

TABLE II. Dimensionless periods for the different physical
observables near thermodynamic equilibrium.

μ=T τST Re½τp�T Re½τhÔi�T
0 (SYM) 0.320(8) 0.641140(7) Not applicable
1 0.734(2) 0.6360716(2) 1.54841(2)
2 0.76836(2) 0.632959465(4) 1.5501881(2)
π=

ffiffiffi
2

p
(CP) 0.82484(1) 0.645632(8) 1.6446(1)
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times. This stairway is observed for all the initial data
analyzed undergoing homogeneous isotropization dynam-
ics in the 1RCBH model and comprises the formation of a
periodic sequence of several close plateaus in the entropy
density near thermodynamic equilibrium. We also found
that the period of plateau formation in this near-equilibrium
stairway structure for the entropy is always half the period
of oscillations of the slowest quasinormal mode of
the system. For finite density states of the present model,
the slowest quasinormal mode is always associated with the
late-time equilibration of the scalar condensate. In the
particular case of the purely thermal SYM plasma defined
at zero density and vanishing scalar condensate, the slowest
quasinormal mode of the system is associated with the late-
time equilibration of the pressure anisotropy.
At this point, we believe we may provide a more general

perspective about the main results obtained in the present
work, concerning the homogeneous isotropization dynam-
ics of the 1RCBH model (having the purely thermal SYM
plasma as a particular case), and also some of the main
results obtained in previous works concerning the Bjorken
flow dynamics of the same model [8–10]. In fact, one may
ask, e.g., whether some qualitative results reported in those
different works are model dependent and/or dynamics
dependent.
We begin by addressing model dependence. Since the

1RCBH model analyzed in the present work reduces to the
purely thermal SYM plasma at zero density and vanishing
scalar condensate, and since several other holographic
models at finite density also reduce to the purely thermal
SYM plasma in the zero chemical potential limit, we expect
that some features observed both in the 1RCBH model at
finite and zero density, will be also generally displayed by
other holographic models. Such an expectation includes the
formation of a stairway structure for the entropy near
thermodynamic equilibrium in the homogeneous isotrop-
ization dynamics, which is something that can be tested in
other models.
We now discuss dynamics dependence, i.e., the depend-

ence of some qualitative results on the specific kind of far-
from-equilibrium dynamics considered. The stairway struc-
ture for the entropy near thermodynamic equilibrium
disclosed in the present work for the homogeneous iso-
tropization dynamics has not been observed in the Bjorken
flow dynamics. In fact, as aforementioned, the formation of
plateaus for the entropy near equilibrium in the homo-
geneous isotropization dynamics is periodic, with its period
corresponding to half the period of oscillations of the
observable which takes longer to equilibrate in the system.
Consequently, in the homogeneous isotropization dynam-
ics, the period of oscillations of the slowest observable to
equilibrate in the system is strongly correlated with the
dissipative dynamics of the system associated with the
irreversible production of entropy near thermodynamic
equilibrium, which turns out to be also periodic. Very

interestingly, since the entropy cannot oscillate without
violating the second law of thermodynamics, it finds a way
of developing a periodicity by creating a stairway structure
with periodic formation of plateaus. On the other hand, in
the Bjorken flow dynamics, it was found that the pressure
anisotropy and the scalar condensate hydrodynamize at late
times by going into analytical curves which decrease
towards their respective asymptotic values without oscil-
lating [8–10]. Correspondingly, we have also not observed
the formation of a stairway structure for the entropy in the
late-time evolution of the system in the Bjorken flow
dynamics.13 Moreover, one of the main conclusions we
previously reached for the Bjorken flow dynamics, regard-
ing the statement that exact plateaus for the entropy when
the system is still far from equilibrium always anticipates
posterior violations of the dominant energy condition from
below, is something that we have found in the present work
to not hold for the homogeneous isotropization dynamics.
The present analysis provides, therefore, a broader picture
regarding some dynamics-dependent features of far-from-
equilibrium, strongly coupled quantum fluids described by
holographic models.
More importantly, the present analysis also indicates that

one may predict some general features of the entropy or of
the pressure anisotropy and of the scalar condensate by just
knowing the behavior of some other observables. Indeed,
by detecting the presence or absence of a stairway structure
for the entropy near thermodynamic equilibrium, from the
analysis of both the homogeneous isotropization dynamics
and the Bjorken flow dynamics, it is clear that one could
correctly anticipate whether the pressure anisotropy and the
scalar condensate tend towards their asymptotic values with
or without oscillating around them, respectively (and vice
versa). Not only that, but if the stairway structure is
detected, one can further predict the period of oscillations
near thermodynamic equilibrium of the observable which
takes longer to equilibrate as being twice the period of
plateau formation in the stairway (and vice versa).
As a future perspective, it would be interesting to

investigate some important points related specifically to
the Bjorken flow dynamics. In particular, the relation
between transients of the Bjorken flow and the homo-
geneous quasinormal modes [83–85], and the relation
disclosed here between the homogeneous quasinormal
modes and the periodic stairway structure for the entropy
density near thermodynamic equilibrium in the homo-
geneous isotropization dynamics, may suggest that those
facts may be somehow connected.

13For the particular case of the purely thermal SYM plasma,
analytical expressions for the late-time hydrodynamic curves for
the entropy are known, from which it is clear that a stairway
structure with periodic plateau formation for the near-equilibrium
entropy cannot be produced in the Bjorken flow dynamics—see,
e.g., Eq. (46) of [9] and Eq. (23b) of [18].
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Moreover, as another perspective for future works,
possibly the implementation ofmachine learning techniques
can further help in the task of recognizing nonobvious
patterns and correlations between different physical observ-
ables, as in the recent work of Ref. [86]. For instance, in that
work, a deep neural network applied to a different holo-
graphic model allowed for the reconstruction of the boun-
dary nonequilibrium entropy from data concerning some
characteristic features of the boundary pressure anisotropy.
As a longer-term perspective, it would be interesting to

investigate entropy production and thermalization in bot-
tom-up holographic EMDmodels tailored for a quantitative

description of the quark-gluon plasma produced in heavy
ion collisions [87], as in the constructions discussed
in [88,89].
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