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We present a new infinite class of non-Abelian, 6d supergravities with eight supercharges. These
theories not only satisfy all known low-energy consistency conditions, such as being free of anomalies, but
also evade the constraints arising from the consistency of string probes, even after assuming completeness
of the Bogomol'nyi–Prasad–Sommerfield (BPS) spectrum. This demonstrates that some additional UV
input or hitherto unknown IR condition is needed in order to be left with a finite landscape, as is generally
anticipated from a theory of quantum gravity.
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I. INTRODUCTION

In recent years there has been much progress in under-
standing to what extent string universality holds in higher
dimensions. Together, supersymmetry and anomaly can-
cellation constrain the space of allowed low-energy theories
significantly and one can show that there is an exact match
with the string theory landscape for d ¼ 8, 9, 10 [1–6]. For
d ¼ 7 there is also a match, up to a classification of three-
dimensional N ¼ 4 SCFTs [7].
The situation changes dramatically in six dimensions,

the maximal dimension which allows for only eight super-
charges. While it has been shown that the number of
anomaly-free theories is finite provided the number of
tensor multiplets is bounded as T < 9 [8], there do appear
infinite families for T ≥ 9. Nevertheless, assuming com-
pleteness of the Bogomol'nyi–Prasad–Sommerfield (BPS)
spectrum and using the anomaly-inflow arguments devel-
oped in [2] for string probes has proven very effective at
truncating all of the (previously) known infinite families to
a finite subset [2,9].
Recently, in [10] it was shown that there is a wide class

of infinite families which satisfy all (known) low-energy
consistency conditions. These are built starting from a
“seed” theory, which is very loosely constrained, and
augmenting by a huge number of exceptional gauge factors.
Since the resulting gauge groups are enormous, it was
anticipated that this class of theories would similarly be
restricted to a finite number upon considering the

constraints imposed by string probes; the purpose of this
brief article is to show that this is not the case.
The remainder of this article is organized as follows.

In Sec. II we recall the consistency conditions required of
6d supergravities with minimal supersymmetry. Next, in
Sec. III we present a new class of infinite families of
anomaly-free theories in which the gauge group and
numbers of tensor multiplets and hypermultiplets are all
controlled by a single parameter m∈Z>0, and in Sec. III B
we prove that all of the constraints coming from the
consistency of string probes derived in [2] are satisfied
for infinitely many values of m. Finally, we conclude
in Sec. IV.

II. CONSISTENCY CONDITIONS

For our purposes, specifying a theory amounts to
choosing the following data: the number of tensor multip-
lets T ≥ 0, the non-Abelian gauge group G ¼ Q

i Gi with
V ¼ dimG corresponding vector multiplets transforming
in the adjoint representation, the total (generally reducible)
representationH of G for H ¼ dimH hypermultiplets, and
the anomaly vectors bI ∈R1;T (I ¼ 0; i) [11]. There is one
self-dual 2-form field from the gravity supermultiplet and T
anti-self-dual 2-form fields, one from each tensor multiplet,
and the vectors bI control their couplings to the graviton
and gauge vectors.
These data cannot be chosen freely. From low-energy

considerations alone, gauge and gravity anomalies must be
fully cancelled and what we call positivity and unimodu-
larity conditions must be satisfied. Assuming BPS com-
pleteness (e.g. see Refs. [12–14]), there must be BPS
strings charged under the (anti-)self-dual 2-form fields.
When these string probes cannot be coupled to gravity, this
signals the theory should be discarded as inconsistent. We
recall each of these conditions in turn.
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A. Anomaly cancellation

Gauge and gravitational anomalies may be cancelled by
means of theGreen-Schwarz-West-Sagnotti mechanism [15]
(see also [16–20]) wherein the usual 1-loop contributions
from chiral fermions are balanced against the tree-level
exchange of the (anti-)self dual 2-form fields. All together,
we have

Î8 ¼ Î1-L8 þ 1

2
Y4 · Y4;

Yα
4 ≔ −

1

2
bα0trR

2 þ 2
X
i

bαi
λi

trF 2
i ; ð1Þ

where Y4 ∈R1;T is a vector of 4-forms and the λi are
normalization constants given in Table I. The theory is free
of local anomalies exactly when Î8 ¼ 0. For each irreducible
term in Î8 there is a corresponding constraint:

trR4∶ H − V þ 29T ¼ 273; ð2Þ

trF 4
i ∶

X
R

niRB
i
R − Bi

Adj ¼ 0: ð3Þ

The remaining, reducible terms determine all inner products
amongst the vectors bI:

ðtrR2Þ2∶ b0 · b0 ¼ 9 − T;

ðtrF 2
i Þ2∶ bi · bi ¼

1

3

�X
R

niRC
i
R − Ci

Adj

�
;

trR2trF 2
i ∶ b0 · bi ¼

1

6

�X
R

niRA
i
R − Ai

Adj

�
;

trF 2
i trF

2
j∶ bi · bj ¼

X
R;S

ni;jðR;SÞA
i
RA

j
S; ði ≠ jÞ: ð4Þ

niR gives the number of hypermultiplets in the representation
R of the gauge factorGi. Of course, since thevectorsbI live in
R1;T , thematrix of inner productsbI · bJ can have atmost one
positive eigenvalue and at most T negative eigenvalues.
These bounds on the signature of bI · bJ are actually
necessary and sufficient to ensure that there exist vectors
bI ∈R1;T which realize the inner products dictated by the
massless spectrum. In cases where bI · bJ has a positive
eigenvalue or T negative eigenvalues, the vectors bI ∈R1;T

are uniquely determined by their inner products up to
Oð1; T;RÞ transformations.

In relating traces in a representation R of Gi to the
trace in the fundamental, we have introduced the indices
Ai
R, B

i
R, and Ci

R, defined through

λitrRF 2
i ¼ Ai

RtrF
2
i ;

λ2i trRF
4
i ¼ Bi

RtrF
4
i þ Ci

RðtrF 2
i Þ2: ð5Þ

With this choice of normalization Ai
R, B

i
R, and Ci

R are
nearly always integers [21] and we have Ai

Adj ¼ 2h∨i with
h∨i the duel Coxeter number of Gi. See Table II for the
indices of some common irreducible representations with
this normalization. For the simple groups SU(2), SU(3),
En, F4, and G2 there is no independent quartic Casimir
invariant and thus Bi

R ¼ 0 for all representations R.
Finally, there are additional potential global anomalies
for SU(2), SU(3), and G2 gauge factors [22–25] (man-
ifesting as constraints modulo 12, 6, and 3, respectively)
which are easily avoided. It has been shown that the
absence of global anomalies follows from the absence
of local anomalies and that all of the inner products
bI · bJ are integers [8]. That is, Λ ≔ ⨁IbIZ ⊂ R1;T is an
integral lattice and the eigenvalue bounds discussed
above are no longer sufficient.

TABLE I. Normalization constants and dual Coxeter numbers
for simple gauge factors.

Gi SU(N) SO(N) Sp(N) E6 E7 E8 F4 G2

λi 1 2 1 6 12 60 6 2
h∨i N N − 2 N þ 1 12 18 30 9 4

TABLE II. Common irreducible representations and their in-
dices AR, BR, CR defined by Eq. (5).

G R AR BR CR

SU(2) 2 1 0 1=2
3 4 0 8

SU(3) 3 1 0 1=2
6 5 0 17=2
8 6 0 9

SUðN ≥ 4Þ N 1 1 0
NðN − 1Þ=2 N − 2 N − 8 3
NðNþ 1Þ=2 N þ 2 N þ 8 3

N2 − 1 2N 2N 6
SOðNÞ N 2 4 0

ðN − 1ÞðNþ 2Þ=2 2N þ 4 4N þ 32 12

2bN−12 c 2bN−5
2
c −2bN−5

2
c 3 · 2bN−9

2
c

NðN − 1Þ=2 2N − 4 4N − 32 12
SpðNÞ 2N 1 1 0

ðN − 1Þð2Nþ 1Þ 2N − 2 2N − 8 3
Nð2Nþ 1Þ 2N þ 2 2N þ 8 3

E6 27 6 0 3
78 24 0 18

E7 56 12 0 6
133 36 0 24

E8 248 60 0 36
F4 26 6 0 3

52 18 0 15
G2 7 2 0 1

14 8 0 10
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B. Positivity and unimodularity

Scalars in the tensor multiplets parametrize the tensor
branch of the moduli space, j∈R1;T with j · j ¼ 1. The
gauge kinetic terms are −j · bitrF 2

i , so we require that there
exists some choice for j∈R1;T with j · j > 0 that gives
j · bi > 0 for all i. The analogous quantity j · b0 controls
the coefficient of the Gauss-Bonnet term, and although
we do not demand that it is strictly positive we will see that
in fact j · b0 > 0 holds for the class of theories constructed
in Sec. III.
As we saw above, the absence of anomalies implies

that the lattice Λ is integral. Λ is a sublattice of the string
charge lattice Γ and in [26] it was shown by reducing to
four and two dimensions that Γ must be a unimodular
(i.e. integral and self-dual) lattice of signature ð1; TÞ. For
the examples discussed in Sec. III, this condition will be
manifestly satisfied since we will realize bI directly as
elements of the odd unimodular lattice Z1;T . We note that
in general, even if the lattice Λ ⊂ R1;T is completely
fixed up to Oð1; T;RÞ transformations, there may be
several inequivalent ways to realize Λ as a sublattice of Γ
[i.e. with different Γ=Λ or equivalently no Oð1; T;ZÞ
transformation relating them].

C. String probes and anomaly inflow

When a string probe charged under the 2-form fields is
introduced into a background configuration, in general this
induces anomalies on the worldsheet which can then be
cancelled by the anomaly-inflow mechanism [2,27–30].
The central charges were computed in [2]: after subtracting
off the center-of-mass contributions which decouple in the
IR, these read

cL ¼ 3Q ·Qþ 9Q · b0 þ 2;

cR ¼ 3Q ·Qþ 3Q · b0;

kl ¼ 1

2
ðQ ·Q −Q · b0 þ 2Þ;

ki ¼ Q · bi: ð6Þ

cL and cR are the gravitational central charges for the left-
and right-moving sectors and the levels kl and ki corre-
spond to SUð2Þl and the bulk gauge symmetry Gi,
respectively. When all quantities are non-negative,

cL; cR; kl; ki ≥ 0; ð7Þ

a nontrivial constraint arises from requiring that cL is large
enough to accommodate a unitary representation of the
current algebra, namely

X
i

ci ≤ cL; ci ≔
ki dimGi

ki þ h∨i
: ð8Þ

Showing that a theory is inconsistent amounts to an
existential statement:

∃Q∈Γ∶ cL; cR; kl; ki ≥ 0 and
X
i

ci > cL: ð9Þ

In contrast, showing that a theory is not revealed to be
inconsistent via anomaly inflow is a universal statement
and can be considerably more difficult to establish:

∀Q∈Γ; cL; cR; kl; ki ≥ 0 ⇒
X
i

ci ≤ cL: ð10Þ

The computations of Sec. III B amount to a proof of exactly
this statement for the class of theories we will describe.
There, it will be convenient to refer to charges Q∈Γ
satisfying Eq. (7) as admissible. The region of the Q ·Q
versus Q · b0 plane carved out by three of the conditions,
cL ≥ 0, cR ≥ 0, and kl ≥ 0, is shown in Fig. 1; we will
make repeated use of the following weaker bounds,

cR; kl ≥ 0 ⇒ Q ·Q ≥ −1; ð11Þ

kl ≥ 0 ⇒ cL ≥ 12Q · b0 − 4; ð12Þ

the second clearly only being useful for Q · b0 ≥ 1.

III. A NEW CLASS OF INFINITE FAMILIES

A. Preliminaries

Our starting point will be a “seed” infinite family with
simple, non-Abelian group Gseed and charged hypermul-
tiplets Hch

seed chosen so that

2δ ≔ bseed · bseed − b0 · bseed ð13Þ

is constant. This requires Hch
seed to be of the form

Hch
seed ¼ Hch

0 ⊕ xHch
1 ; ð14Þ

where we take both Hch
0 and Hch

1 to be some fixed
(nontrivial) representations of Gseed. The hypermultiplets

FIG. 1. Values for Q ·Q and Q · b0 which are allowed by the
bounds cL ≥ 0, cR ≥ 0 and kl ≥ 0.
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in Hch
0 determine δ and must satisfy the constraint of

Eq. (3), while the hypermultiplets in Hch
1 must satisfy

X
R

niRB
i
R ¼ 0;

X
R

niRA
i
R ¼ 2

X
R

niRC
i
R ð15Þ

so that x ≥ 0 can be chosen freely. For each such seed, we
can construct the following infinite family depending only
on m ≥ 1,

G ¼ Gseed × E4m
8 ;

Hch ¼ ðHch
seed; 1

4mÞ;
T ¼ 12mþ 1; ð16Þ

where we choose x to grow with m in such a way that

bseed · bseed ¼ 24mþ 4Cδγδ

γδ ≔

8>><
>>:

δþ2
2

δ≡ 0 mod 2;
δþ3
4

δ≡ 1 mod 4;
δ−3
4

δ≡ 3 mod 4;

Cδ ≔
�
2 δ≡ 0 mod 2;

3 δ≡ 1 mod 2:
ð17Þ

The (integer) constants γδ and Cδ have been introduced for
later convenience: the reason for having different cases
based on the value of δ modulo four is to allow for
bI ∈Z1;T , as we will see shortly. Let us immediately
check that the gravitational anomaly can be cancelled for
arbitrarily large m. Using Eq. (14), if we separate the
contributions from Hch

0 and Hch
1 and write

Hch
seed ¼ Hch

0 þ xHch
1 ;

bseed · bseed ¼ ðb · bÞ0 þ xðb · bÞ1; ð18Þ

then from Eq. (17) we have x ¼ ðconstÞ þ 24m
ðb·bÞ1 and

Hch − V þ 29T ¼ ðconstÞ − 24m

�
161

6
−

H1

ðb · bÞ1

�
: ð19Þ

Therefore

Hch
1

ðb · bÞ1
<

161

6
¼ 26.8333… ð20Þ

is required so that Hch − V þ 29T decreases with m. By
taking m large enough we can ensure that Hch − V þ
29T ≤ 273 for any choice of Hch

0 and then by adding in an
appropriate number of neutral hypermultiplets, the con-
straint of Eq. (2) can be met exactly. However, the simple
group Gseed is indirectly restricted to have small rank via

Eq. (20): a complete list of possibilities for Gseed andHch
1 is

given in Table III.
From Eqs. (13), (16), and (17), the inner products are

bI ·bJ

¼

0
B@

8− 12m 24mþ 4Cδγδ − 2δ −10
24mþ 4Cδγδ − 2δ 24mþ 4Cδγδ 0

−10 0 −12I4m×4m

1
CA:

ð21Þ

These can be realized by the integer vectors

b0 ¼ ð3; 1; 112mÞ;
bseed ¼ ðWδðmÞ þ Cδ;−WδðmÞ þ Cδ; ð−u⃗δÞmÞ;
bE8

4rþt ¼ ð−1; 1; 012r; v⃗t; 012ðm−r−1ÞÞ; ð22Þ

where r∈ f0; 1;…; m − 1g and t∈ f1; 2; 3; 4g. We have
introduced both

WδðmÞ ≔ ð6 − CδÞmþ γδ ð23Þ

and the following 12-component vectors:

u⃗δ ≔

(
ð04; 18Þ; δ≡ 0 mod 2;

ð112Þ; δ≡ 1 mod 2;

v⃗1 ≔ ð−1; 1; 1; 1; 2; 2; 0; 0; 0; 0; 0; 0Þ;
v⃗2 ≔ ð1;−1; 1; 1; 0; 0; 2; 2; 0; 0; 0; 0Þ;
v⃗3 ≔ ð1; 1;−1; 1; 0; 0; 0; 0; 2; 2; 0; 0Þ;
v⃗4 ≔ ð1; 1; 1;−1; 0; 0; 0; 0; 0; 0; 2; 2Þ: ð24Þ

TABLE III. All simple groups Gseed and hypermultiplets Hch
1

which satisfy Eqs. (15) and (20). For Spð3Þ there is more freedom
in choosing Hch

1 , but the non-negative, co-prime integers x1, x2
must satisfy 7x2 < 5x1.

Gseed Hch
1 Hch

1 ðb · bÞ1
SU(2) 6 × 2 12 1
SU(3) 6 × 3 18 1
SU(4) 4 × 4 ⊕ 6 22 1
SU(5) 3 × 5 ⊕ 10 25 1
SO(7) 7 ⊕ 2 × 8 23 1
SO(8) 8v ⊕ 8s × 8c 24 1
SO(9) 9 ⊕ 16 25 1
SO(10) 10 ⊕ 16 26 1
Sp(2) 4 × 4 ⊕ 5 21 1
Sp(3) ð2x1 þ 7

2
x2Þ × 6

⊕ x1 × 14 ⊕ ð1
2
x2Þ × 140

26x1 þ 28x2 x1 þ x2

F4 26 26 1
G2 3 × 7 21 1
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Also, it is straightforward to check that

j ∝ bseed − ϵ ·
X4m
i¼1

bE8

i ð25Þ

gives timelike j with j ·b0 > 0, j · bseed > 0 and j · bE8

i > 0

when 24mþ 4Cδγδ > maxf0; 2δg and ϵ > 0 is small
enough.
In summary, we conclude that all of the anomaly

cancellation, positivity, and unimodularity conditions
are met, provided Eq. (20) is satisfied and m is taken
large enough to ensure that Hch − V þ 29T ≤ 273 and
24mþ 4Cδγδ > maxf0; 2δg. In the next section we will
make use of one additional mild lower bound on m,

CδWδðmÞ − 3m
C2
δ

> 1 ⇔ m >
CδðCδ − γδÞ

9þ Cδ
; ð26Þ

which is nontrivial only for δ ¼ −1, 1, 3, 7 or δ ≤ −3. Also,
for the most part we will only need the average E8 anomaly
vector,

bE8
avg ≔

1

4m

X4m
i¼1

bE8

i ¼
�
−1; 1;

�
1

2m

�
12m

�
: ð27Þ

This must satisfy kE8
avg ≔ Q · bE8

avg ≥ 0 as well, but kE8
avg is

clearly no longer necessarily integer valued.

B. Constraints from string probes are satisfied

It only remains to show that the constraints imposed by
string probes are satisfied for all admissible Q. While we
have in mind the situation where m is large (as must
ultimately occur if this is to be an infinite family), this will
only serve to guide the analysis and suggest a line of attack:
we make no approximations or large-m expansions and all
of the inequalities we derive, while not necessarily sharp,
are exact.
By design, the vectors bI have the following three key

features: (i) there are no “free” components of b0 which
could be leveraged to decrease Q ·Q and Q · b0 without
alteringQ · bi, (ii) the components of bseed and each quartetP

4
t¼1 b

E8

4rþt are all of opposite sign (or zero), and (iii) since

v⃗1 þ v⃗2 þ v⃗3 þ v⃗4 ¼ ð2; 2;…; 2Þ; ð28Þ

on average the contributions to Q · bE8

i from each of these
groups of 12 components are proportional to the correspond-
ing contributions toQ · b0. This is the reasonwhy thenumber
ofE8 factors was chosen to be a multiple of four. These three
features together lead to two mechanisms which will ensure
thatcL on the right-hand side ofEq. (8) outpaces the left-hand
side as m increases. The first is that the cone described
by Q · bseed ≥ 0 and Q · bE8

i ≥ 0 is restricted to be quite
narrow thanks to (ii), and due to charge quantization the
smallest nonzero admissibleQ is therefore necessarily large.

The second is that together (i) and (iii) will ultimately force
Q · b0 to be positive which, as we saw in Eq. (12), also
provides a nontrivial lower bound cL ≥ 12Q · b0 − 4.
We now set out to prove that (10) holds for all large-

enough m. To begin, write the string charge as

Q ≔
�
1

2
ðqþ þ q−Þ;

1

2
ðqþ − q−Þ; q1;…; q12m

�
; ð29Þ

where the “light-cone charges” q� must have the same
parity. The inner products with Q are

Q ·Q ¼ qþq− −
X

ðqaÞ2; ð30Þ

Q · b0 ¼ qþ þ 2q− −
X

qa; ð31Þ

Q · bseed ¼ WδðmÞqþ þ Cδq− þ
X0

qa; ð32Þ

Q · bE8
avg ¼ −qþ −

1

2m

X
qa: ð33Þ

where in order to reduce clutter we will leave all sums over
a∈ f1; 2;…; 12mg unadorned, other than primes such as in
Q · bseed above which indicate that for δ even the indices
a≡ 1; 2; 3; 4 mod 12 are omitted: cf. Eq. (24). Notice that
if Gseed and the corresponding vector bseed were absent,
then the charge

Q ¼ ð0;−1; 012mÞ; ð34Þ

for which cL ¼ 8, cR ¼ 0, kl ¼ 0, and kE8

i ¼ 1 would imme-
diately reveal the theories with G ¼ E4m

8 and no charged
hypermultiplets to be inconsistent for all m ≥ 1 [31].
However, the requirement of having non-negative level,
Q · bseed ≥ 0, presents an obstacle to choosing such a charge.

1. An upper bound

To warm up, let us first bound the left-hand side of
Eq. (8) from above. Using the inequality

1

N

XN
n¼1

xn
xn þ 1

≤
P

N
n¼1 xnP

N
n¼1ðxn þ 1Þ ; ð35Þ

which holds for any set of N non-negative real numbers
[32], we have

X4m
i¼1

Q · bE8

i

Q · bE8

i þ 30
≤ 4m ×

Q · bE8
avg

Q · bE8
avg þ 30

: ð36Þ

Therefore

X
i

ci ≤
992kE8

avg

kE8
avg þ 30

mþ dimGseed;

≤ min

�
1;
kE8
avg

30

�
× 992mþ dimGseed: ð37Þ
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It will be important that this quantity grows as quickly as
992m only if kE8

avg ≳ 30 is appreciable. For small kE8
avg the

growth with m is greatly reduced.

2. A bound on q�
Next, we claim that q� > 0 is required for a nonzero

charge to be admissible. The alternatives are each quickly
ruled out in turn:

(i) ðqþq− < 0Þ: From Q ·Q ≥ −1 we clearly need
qa ¼ 0 and jq�j ¼ 1. However, using WδðmÞ >
Cδ [which follows easily from Eq. (26)] in (32)
and (33) we see that no choice of signs for q� allows
for both Q · bseed ≥ 0 and Q · bE8

avg ≥ 0.
(ii) ðqþq− ¼ 0Þ: FromQ ·Q ≥ −1 we learn that at most

one of the qa is nonzero, say qb, and that jqbj ≤ 1.
Then from Q · bseed ≥ 0 and Q · bE8

avg ≥ 0 the only
possibility is qþ ¼ 0 and q− ≥ 0. However, kl ≥ 0
now gives

2ð1 − q−Þ ≥ 2ð1 − q−Þ þ qbð1 − qbÞ ≥ 0; ð38Þ

and since q− ≡ qþ mod 2 we must have q− ¼ 0 as
well. If qb ¼ 0, then Q ¼ 0 and we are done.
Otherwise, if Q · bseed ¼ qb we must have qb ¼ 1
but then Q · b0 ¼ −1 and cL ≥ 0 is violated. For δ
even, it is possible to haveQ · bseed ¼ 0 independent
of qb ¼ �1 when b≡ 1; 2; 3; 4 mod 12, but then
from the form of v⃗t it is clear that we cannot choose
qb so that all Q · bE8

i are non-negative.
(iii) ðq� < 0Þ: From Q · bseed ≥ 0 we find

�X0
qa

�
2

≥ ½WδðmÞqþ þ Cδq−�2; ð39Þ

and so

Q ·Q ≤ qþq− −
X0ðqaÞ2;

≤ qþq− −
1

12m

�X0
qa

�
2

;

≤ qþq− −
1

12m
½WδðmÞqþ þ Cδq−�2;

¼ −
CδWδðmÞ − 3m

C2
δ

ðqþÞ2

−
1

12m

�ðCδWδðmÞ − 6mÞqþ þ C2
δq−

Cδ

�
2

;

≤ −
CδWδðmÞ − 3m

C2
δ

ðqþÞ2; ð40Þ

violatingQ ·Q ≥ −1 thanks to Eq. (26). The second
line above follows from the Cauchy-Schwarz
inequality.

3. A lower bound on cL
Continuing with q� > 0, we immediately have that Q ·

b0 is positive by combining Eqs. (31) and (33):

Q · b0 ¼ ð2mþ 1Þqþ þ 2q− þ 2mkE8
avg: ð41Þ

If we use the crude bounds q� ≥ 1 then we find Q · b0 ≥
2mð1þ kE8

avgÞ þ 3 and cL ≥ 24mð1þ kE8
avgÞ þ 32 after

using Eq. (12). However, this is not sufficient to ensure
that Eq. (8) is satisfied since it is well below the upper
bound from Eq. (37). By finding better bounds on q� we
will be able to improve the lower bound on cL.
Inspired by Fig. 1, we should expect that the most

constraining bound comes from kl ≥ 0 since we have
already established that Q · b0 ≥ 1. Using Eqs. (30), (31),
and (33) in kl ≥ 0, we find

ðqþ − 2Þðq− − 1Þ ≥
X

ðqaÞ2 −
X

qa;

≥
1

12m

�X
qa

��X
qa − 12m

�
;

¼ m
3
ðqþ þ kE8

avgÞð6þ qþ þ kE8
avgÞ; ð42Þ

again using Cauchy-Schwarz for the second inequality. For
large m we must have q− ≳OðmqþÞ which means that Q
roughly aligns with bseed and thus also j in Eq. (25), as
expected: note that together bseed · bseed > 0, Q ·Q > 0,
j · j > 0, Q · bseed > 0, and j · bseed > 0 imply that the
string’s tension j ·Q is automatically positive. The right-
hand side above is manifestly positive and therefore
we must have qþ ≥ 3 and q− ≥ 2. Already this improves
the earlier bounds to Q · b0 ≥ 2mð3þ kE8

avgÞ þ 7 and
cL ≥ 24mð3þ kE8

avgÞ þ 80, but still this is insufficient.
We can clearly do much better since the right-hand side
above is ≥ 9m; dividing through by qþ − 2 > 0 to bound
q− and using Eq. (41), we find

cL ≥ 12Q · b0 − 4;

¼ 24mðqþ þ kE8
avgÞ þ ð12qþ þ 20Þ þ 24ðq− − 1Þ;

≥ 24mðqþ þ kE8
avgÞ þ 56

þ 8mðqþ þ kE8
avgÞð6þ qþ þ kE8

avgÞ
qþ − 2

;

¼ 8ðqþ þ kE8
avgÞð4qþ þ kE8

avgÞ
qþ − 2

mþ 56;

≕Cðqþ; kE8
avgÞmþ 56: ð43Þ

A quick calculation shows that for fixed kE8
avg ≥ 0 and

qþ ≥ 3, Cðqþ; kE8
avgÞ is minimized at
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q�þ ≔ 2þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðkE8

avg þ 2ÞðkE8
avg þ 8Þ

q
≥ 4; ð44Þ

and that

Cðq�þ; kE8
avgÞ ≥ 256þ 72kE8

avg: ð45Þ

This gives us our final lower bound on cL:

cL ≥ ð256þ 72kE8
avgÞmþ 56: ð46Þ

4. Summary

In summary, we have shown that for all nonzero charges
Q∈Γ satisfying Eq. (7),

cL ≥ ð256þ 72kE8
avgÞmþ 56; ð47Þ

X
i

ci ≤
992kE8

avg

kE8
avg þ 30

mþ dimGseed; ð48Þ

both hold for large-enough m. It is readily checked that

256þ 72kE8
avg ≫

992kE8
avg

kE8
avg þ 30

ð49Þ

for all kE8
avg ≥ 0 so that, given that dimGseed is fixed, we can

always ensure Eq. (8) is satisfied by takingm large enough.
Therefore we conclude that, provided only that Eq. (20) is
met, the theories of Eq. (16) satisfy all of the consistency
conditions, including those stemming from the consistency
of string probes, for infinitely many values of m.

IV. DISCUSSION

In this article we have demonstrated that the landscape of
consistent 6d supergravities with eight supercharges and
non-Abelian gauge group is infinite, even after assuming
BPS completeness and requiring the consistency of all
string probes. This is in stark contrast to the situation in
higher dimensions where supersymmetry and anomalies
together lead to an exact match with the finite string
landscape.
The examples we have constructed have very few

objectionable features other than their large number of
degrees of freedom and inclusion of many exceptional
groups: all of the hypermultiplets can be chosen to be in
standard representations (e.g. fundamental, two-index
(anti-)symmetric, spinor and adjoint); we have the usual
choice b0 ¼ ð3; 1TÞ which is both a characteristic and
primitive vector of the string charge lattice; although
nonzero admissible charges must be large, there is no
unnatural hierarchy sinceQ ·Q≳OðmÞ arises from requir-
ing Q have non-negative inner product with OðmÞ distinct
vectors of norm Oð1Þ and one vector of norm OðmÞ.

For concreteness we have considered theories where
Hch, V, and T are tied together through the single parameter
m. Given that not all of the inequalities are sharp and
Eq. (49) is satisfied by such a wide margin, it seems
reasonable to expect that this is just the tip of the iceberg
and more general examples of a similar nature could be
found. There are a few obvious places for generalization:
(1) The auxiliary E8 gauge factors used here can likely

be replaced by E6, E7, or E7 þ 1
2
56 (with the vectors

bI adjusted accordingly) without too much trouble:
these are the four combinations identified in [10] as
leading to infinite families with T unbounded.

(2) We took bseed · bseed, and b0 · bseed to grow at the
same rate with m [cf. Eq. (13)]; one could imagine
relaxing this and allowing for different constants of
proportionality in place of the “2” in Eq. (15), which
likely would change the requirement of Eq. (20).

(3) We considered cases where Gseed is a simple group,
but it is possible to have Gseed semisimple. As a
simple example, one can choose

Gseed ¼ Spð2Þ × Spð2Þ;
Hch

seed ¼ ð10; 1Þ ⊕ ð1; 10Þ
⊕ x½ð4; 4Þ ⊕ ð5; 1Þ ⊕ ð1; 5Þ�;

bseedi · bseedj ¼ bseed0 · bseedi ¼ x;

and by taking bseed1 ¼ bseed2 the analysis of Sec. III
continues to hold with essentially no changes. It may
be possible to find more general families with
semisimple Gseed and vectors bI which realize the
same mechanisms leveraged here.

A key feature of the class of theories presented here,
however, appears to be that Hch is unbounded: attempts to
adapt Eq. (16) to have Hch

seed (and thus also bseed · bseed)
constant were unsuccessful, although perhaps an entirely
different structure for the vectors bI which facilitates this
could be engineered.
How can we recover a finite landscape, as generally

expected from a theory of quantum gravity? Certainly there
are no known ways to construct theories with an unbounded
number of gauge factors or tensor multiplets from string
theory. The class of theories constructed here provide very
strong guidelines for any future attempts to definitively prove
finiteness of the supergravity landscape. For example, it is
not enough to bound the rank of individual gauge factors or
limit the possible hypermultiplet representations since the
examples above have rank Gi ≤ 8 and hypermultiplets can
be chosen to only appear in fundamental representations: the
proposals of [9] are easily met.
There appears to be two possible ways forward. (i) Some

universal bound on one of T, V, or Hch, perhaps in con-
nection with the species scale [33–35] (which here clearly
decreases rapidly with m), places an upper bound on m.
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(ii) Additional global anomalies kill these families at large
T ∼m, such as those of Dai-Freed type recently studied
in [36] for T ≤ 1 [37]. It may also be fruitful to consider
the introduction of brane probes of other dimensionality,
although their presence is then no longer guaranteed by
the completeness hypothesis. We leave demoting this
class of infinite families to the swampland for the bright
future.
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